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Summary With the advent of microscale and nanoscale devices, the Navier-slip boundary condition as a macroscale model of fluid
behaviour at a solid wall has seen renewed interest. The penalty concept and variational formulation are extended here to treat partial
slip and related boundary conditions in viscous flow simulation. An analysis of the penalty partial-slip formulation permits us to relate
it to the classical Navier slip condition and easily embed this class of boundary conditions in existing finite element flow software.

INTRODUCTION

While the most common macroscale model of the boundary condition for a viscous fluid at a solid wall is “no slip” with
“no penetration”, the validity of the no-slip condition haslong been debated [6] and there are flows for which it must be
relaxed to allow some slip. Moving contact line problems areexamples that have received much attention over a long
period of time [7]. Flows in micro and nanofluidic devices aremore recent examples that have renewed interest in slip
boundary conditions [2]. The most common alternative to theno-slip condition is the slip condition proposed by Navier
(see [8]), that at a solid wall the componentvt of the fluid velocity in the direction of the unit tangentt is proportional to the
rate of strain in that direction, the constant of proportionality (λ) being the ‘slip length’ which is determined empirically.
Equivalently,

vt = −
λ

µ
Tt, (1)

whereµ is the fluid viscosity andTt = T · t is the tangential stress, defined in terms of the stress vector T = σ · n, with
σ denoting the standard stress tensor andn denoting the unit outward normal to the wall. Thus, a zero slip length (λ = 0)
corresponds to zero tangential velocity (no-slip), while full slip or zero tangential stress is obtained asλ → ∞. Note that
in three dimensions there will be two conditions of the form (1), in the directions of the tangent and binormal vectors,
respectively. An expression similar to (1), relating the normal velocity and stress components, is appropriate for a porous
wall (‘partial penetration’).
We here consider penalty methods for implementing such boundary conditions. A variational finite element method is
the rational choice for investigating and interpreting penalty approaches. We note that other implementations of partial
slip/penetration boundary conditions have presented significant computational difficulties [5], and particular challenges
when inclined or curved walls are involved [1, 4]. The penalty method here described has no such computational difficul-
ties, places no limitations on boundary shape and, additionally, is simple to implement.

PENALTY FORMULATION AND ANALYSIS

To introduce the main penalty concepts, we consider the stationary incompressible Stokes-flow problem

−µ∇2
v + ∇p − f = 0 and ∇ · v = 0 (2)

for the velocityv and pressurep in domainΩ with boundaryΓ on whichv = 0, whereµ is the viscosity andf is the body
force. For clarity, we first pose the associated variationalproblem on the space of divergence free velocity fieldsH(div)
in domainΩ, using the standard penalty approach for including the no-slip condition onΓ and repeated indices to denote
summation, which is: findv ∈ H(div) that minimizes the functional [3]

J(v) =

∫

Ω

(

µ

2

∂vi

∂xj

∂vi

∂xj

− fivi

)

dV +
1

2ε

∮

Γ

vivi ds. (3)

The boundary integral term is a constraint withε a small positive penalty parameter. Asε tends to zero, the constraint
is more strongly enforced and the solution to the modified minimization problem approaches the solution to the original
problem. On the other hand, if the penalty parameter is allowed to increase, the constraint will be enforced less strongly
and the no-slip constraint will be progressively weakened allowing both slip and penetration.
A simple extension follows from the above form on introducing tangential-normal coordinates at the boundary and en-
forcing the tangential boundary condition via a larger scaled penalty coefficientεt to permit slip while enforcing the
no-normal flow condition by the previous small penalty parameter. More specifically, the boundary penalty functional in
(3) becomes

P =
1

2εt

∮

Γ

(v2

t + v2

b ) ds +
1

2εn

∮

Γ

v2

n ds, (4)

where we have separated penalty contributions associated with respective tangential (vt), binormal (vb) and normal (vn)
boundary velocity components. If we set both penalty parameters (εn, εt) to the same small value then this reduces to the



previous penalty form for the no-slip condition. If, as advocated here, certain penalty parameters are scaled relativeto
others, then we can imbed the Navier slip or other similar conditions in this simple penalty structure.
To analyse this using natural boundary conditions, the divergence condition is not satisfied a priori but instead is enforced
in the variational problem through the use of a Lagrange multiplier which, interpreted physically, is the pressure [3].The
corresponding Lagrangian for this saddle-point problem, with the added penalty terms , is

Lε(v, p) =
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where we have completed the deformation gradient tensor in the viscous term so as to recover the associated stress
boundary term in the resulting natural boundary condition.With penalty parameters equal and small, we have a penalty
stick boundary condition, while a penalty slip type of boundary condition in the tangential directions is obtained withεn

small andεt finite.
To see this, let us examine the associated natural boundary condition for this latter form. On taking variations of the
Lagrangian and applying divergence manipulations to the viscous and pressure terms the resulting boundary integral
contributions involvingT = σ · n can be paired with the penalty boundary integral contributions to yield:
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ds, (6)

and the respective mixed type natural boundary conditions follow asTn + vn/εn = 0, Tt + vt/εt = 0, Tb + vb/εt = 0.
For the case of Navier slip with no penetration the normal penalty parameter is chosen very small so the first of the
natural boundary conditions approximates the no normal flowboundary condition and converges to this in the limit asεn

approaches zero, while the choiceεt = λ/µ yields the Navier slip boundary condition in equation (1). Conversely, for a
given choice ofεt we haveλ = µ εt as a compatible Navier slip length associated with the penalty solution. Similarly, for
finite εn we have partial penetration or fluid leakage through the boundary.

CONCLUDING REMARKS

Since penalty methods are now a standard practical strategyfor enforcing essential boundary conditions (like the no-
slip condition) in finite element computations, this implies that partial slip and penetration conditions can be trivially
included in finite element codes by appropriate setting of the desired penalty parameters. In particular we see that the
partial slip condition obtained above by this means is related to the classical Navier slip condition, with the tangential
penalty parameter dependent on both the Navier slip length parameter and the fluid viscosity. Finally, one can treat free
surface flow boundary conditions and contact interactions with a free surface by appropriate penalty treatments. For
example, choosing both penalty parameters to be large in theabove penalty formulation approximates a stress-free free
surface. Dividing a flow domain boundary into multiple segments, each with its own penalty parameters, enables penalty
treatments of a variety of boundary conditions in a single flow problem. In addition to fixed boundaries on which no-slip,
slip, partial penetration and stress-free conditions apply, by using an algorithm that updates the flow geometry over time,
moving contact lines can also be handled. This also allows the penalty parameters on a boundary segment to be varied in
time, which is useful for implementing time-varying boundary conditions or for accelerating convergence of algorithms.
These penalty strategies have been implemented recently innumerical simulations of problems with partial slip, moving
boundary, free surface contact and similar features [9].
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An initially semicircular 2D drop
sliding down a vertical plane with
Navier-slip and free surface BCs
specified using penalty methods.


