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Summary  With the advent of microscale and nanoscale devices, théeNsalp boundary condition as a macroscale model of fluid
behaviour at a solid wall has seen renewed interest. Thdtpamamcept and variational formulation are extended hertedat partial
slip and related boundary conditions in viscous flow simatatAn analysis of the penalty partial-slip formulatiorrméts us to relate

it to the classical Navier slip condition and easily embad thass of boundary conditions in existing finite elemenwfimftware.

INTRODUCTION

While the most common macroscale model of the boundary tondbr a viscous fluid at a solid wall is “no slip” with
“no penetration”, the validity of the no-slip condition hiasig been debated [6] and there are flows for which it must be
relaxed to allow some slip. Moving contact line problems examples that have received much attention over a long
period of time [7]. Flows in micro and nanofluidic devices arere recent examples that have renewed interest in slip
boundary conditions [2]. The most common alternative tortheslip condition is the slip condition proposed by Navier
(see [8]), that at a solid wall the componepbf the fluid velocity in the direction of the unit tangeris proportional to the
rate of strain in that direction, the constant of proporiity (A) being the ‘slip length’ which is determined empirically.

Equivalently,

A
UV = ——Tt, (1)
M

wherey is the fluid viscosity and’; = T - t is the tangential stress, defined in terms of the stressv@tto o - n, with

o denoting the standard stress tensor anm#noting the unit outward normal to the wall. Thus, a zeglsihgth ¢ = 0)
corresponds to zero tangential velocity (no-slip), whilkk $lip or zero tangential stress is obtained\as> co. Note that

in three dimensions there will be two conditions of the forh, (n the directions of the tangent and binormal vectors,
respectively. An expression similar to (1), relating themal velocity and stress components, is appropriate forayso
wall (‘partial penetration’).

We here consider penalty methods for implementing such deynconditions. A variational finite element method is
the rational choice for investigating and interpreting glgnapproaches. We note that other implementations ofgbart
slip/penetration boundary conditions have presentedfgignt computational difficulties [5], and particular clesiges
when inclined or curved walls are involved [1, 4]. The pepatiethod here described has no such computational difficul-
ties, places no limitations on boundary shape and, addifigris simple to implement.

PENALTY FORMULATION AND ANALYSIS

To introduce the main penalty concepts, we consider thostat incompressible Stokes-flow problem
Vi +Vp—f=0 and V-v=0 2)

for the velocityv and pressurg in domain{2 with boundary™ on whichv = 0, wherey is the viscosity and is the body
force. For clarity, we first pose the associated variatipnablem on the space of divergence free velocity fidigliv)

in domain(?, using the standard penalty approach for including thelipozendition onI" and repeated indices to denote
summation, which is: find € H(div) that minimizes the functional [3]

_ ﬁavi ov; e i o
J(V) _</Q (2 8xj 8Ij fzvz) dv + 2¢ 7{;’01’[}1 ds. (3)

The boundary integral term is a constraint witl small positive penalty parameter. Asends to zero, the constraint

is more strongly enforced and the solution to the modifiedmmiration problem approaches the solution to the original
problem. On the other hand, if the penalty parameter is @tbte increase, the constraint will be enforced less stgongl|
and the no-slip constraint will be progressively weakerkxvéng both slip and penetration.

A simple extension follows from the above form on introdgctangential-normal coordinates at the boundary and en-
forcing the tangential boundary condition via a larger edgbenalty coefficient; to permit slip while enforcing the
no-normal flow condition by the previous small penalty pagtan More specifically, the boundary penalty functional in
(3) becomes

1 1
= % F(vf—l—vf)ds—i—z Fvids, (4)
where we have separated penalty contributions associatiedegpective tangential(), binormal () and normal ¢,,)

boundary velocity components. If we set both penalty patarag,,, ¢;) to the same small value then this reduces to the



previous penalty form for the no-slip condition. If, as adated here, certain penalty parameters are scaled refative
others, then we can imbed the Navier slip or other similad@mns in this simple penalty structure.

To analyse this using natural boundary conditions, therdaece condition is not satisfied a priori but instead is srefd

in the variational problem through the use of a Lagrangeiplidt which, interpreted physically, is the pressure [Bhe
corresponding Lagrangian for this saddle-point probleith e added penalty terms , is

B pov (dv;  Ovi\ . Ouy
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to— P (V] ) ds + 5— f vi ds, (5)
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where we have completed the deformation gradient tensdndnviscous term so as to recover the associated stress
boundary term in the resulting natural boundary conditidfith penalty parameters equal and small, we have a penalty
stick boundary condition, while a penalty slip type of boandcondition in the tangential directions is obtained with
small anck; finite.

To see this, let us examine the associated natural boundadition for this latter form. On taking variations of the
Lagrangian and applying divergence manipulations to tiseotis and pressure terms the resulting boundary integral
contributions involvindl' = o - n can be paired with the penalty boundary integral contrimgito yield:

jé {<Tt + ivt) vy + <Tb + ivb> oy + (Tn + ivn) 51)"} ds, (6)
T €t €t €n

and the respective mixed type natural boundary conditioh®# asT,, + v,,/e, =0, T} + v /e, = 0, T + vy /e, = 0.

For the case of Navier slip with no penetration the normalaftgrparameter is chosen very small so the first of the
natural boundary conditions approximates the no normal ffloundary condition and converges to this in the limitas
approaches zero, while the choige= )/ yields the Navier slip boundary condition in equation (1pn@ersely, for a
given choice ot; we have\ = ¢, as a compatible Navier slip length associated with the pesalution. Similarly, for
finite ¢,, we have partial penetration or fluid leakage through the daon

CONCLUDING REMARKS

Since penalty methods are now a standard practical strétegynforcing essential boundary conditions (like the no-
slip condition) in finite element computations, this imglighat partial slip and penetration conditions can be fivia
included in finite element codes by appropriate setting efdhsired penalty parameters. In particular we see that the
partial slip condition obtained above by this means is egldb the classical Navier slip condition, with the tangainti
penalty parameter dependent on both the Navier slip lergstinpeter and the fluid viscosity. Finally, one can treat free
surface flow boundary conditions and contact interactioite & free surface by appropriate penalty treatments. For
example, choosing both penalty parameters to be large intibee penalty formulation approximates a stress-free free
surface. Dividing a flow domain boundary into multiple segiseeach with its own penalty parameters, enables penalty
treatments of a variety of boundary conditions in a single fiwoblem. In addition to fixed boundaries on which no-slip,
slip, partial penetration and stress-free conditionsyyl using an algorithm that updates the flow geometry ovee ti
moving contact lines can also be handled. This also alloepémnalty parameters on a boundary segment to be varied in
time, which is useful for implementing time-varying bounglaonditions or for accelerating convergence of algorghm
These penalty strategies have been implemented recentiynierical simulations of problems with partial slip, mayin
boundary, free surface contact and similar features [9].
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