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1. Introduction

Thermal replication is an industrial process used in the manufacture of aspheric
optical surfaces, as discussed by Smith et al. [12]. A glass workpiece is placed on a
ceramic mould and this combination heated in a kiln so that the glass softens and
“slumps” into the mould, so replicating the mould surface. This process is illustrated
in Figure 1.
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FIGURE 1. Thermal Replication (after Smith et al.)

The upper free—surface of the glass, that does not contact the mould, is the critical
optical surface. It is very smooth and requires no polishing — a difficult process for
complicated aspheric surfaces. However, this surface does not exactly replicate the
mould surface, and an iterative process for correcting the mould in order to achieve
the desired optical surface at the required accuracy, is necessary at the design stage.
Here we investigate numerically modelling this slumping process, with the aim of
greatly reducing, if not eliminating, the experimental iteration currently required.

Molten glass is a very viscous fluid having a viscosity of order 107 Pa-s and higher,
at normal slumping temperatures. Thus, flow is very slow and can be modelled by
the Stokes creeping—flow equations. We solve these using the finite—element method,
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which is the preferred numerical method for modelling of forming processes (see
Preface of [9]), and is especially so where moving free-surface boundaries are involved.

The slumping of a bridge of very viscous fluid spanning the gap between two vertical
no—slip walls, and involving no mould contact has been considered by Tuck et al. [14].
Similar to slumping, blow-moulding is a process where a layer of very viscous fluid
is forced against a mould by creating a pressure drop across its thickness, and this
has been the subject of considerable investigation with particular application to the
manufacture of axisymmetric containers [3, 4, 6, 16]. In all of this work, slow-flow
approximations have been made and finite—element methods employed. Asymptotic
methods have also been used for pressure driven flows of thin viscous sheets without
mould contact [8, 15], but are not easily extended to include mould contact.

2. Glass Properties

It is generally assumed that molten glass in the viscosity range at which moulding
is done, is an incompressible fluid. While this is not strictly true, it is considered to be
sufficiently accurate for practical purposes, and in any case, is an assumption made in
all current methods for determining molten glass viscosities [7]. Furthermore, while
a viscous isotropic Maxwell fluid model was used in some early glass modelling work
[4, 16], it is now generally accepted that molten glasses, with but few exceptions, are
Newtonian fluids [10], and this assumption has been adopted in more recent work
[3, 6, 8, 14, 15]. Thus, we assume that slumping molten glass is an incompressible,
Newtonian flow. The density of glass does not vary much with temperature so that
we may reasonably assume this to be constant. We also ignore any surface tension
effects, which we justify on the basis that the capillary number is large (see [14]).

Complex issues do however arise in the consideration of the relationship between
temperature and viscosity, which must be the most important physical consideration
in modelling of glass forming processes. Firstly, there is the phenomenon of relax-
ation and equilibrium viscosity, and secondly the viscosity of a molten glass is highly
temperature sensitive.

At large viscosity, a change in temperature takes a finite time to be reflected in the
corresponding change in viscosity, with this time increasing as viscosity increases (and
temperature decreases). This is known as relaxation, and the final viscosity reached is
called the equilibrium viscosity. With viscosity (1) measured in decipascal seconds (or
poise), Scholze and Kreidl [10] give L = log(x) = 10 as the point at which viscosity
lags by some seconds behind a fast cooling rate, and 13 < L < 14.5 as the glass
transition in which lag time varies from around 15 minutes to 4 hours and properties
are most definitely time dependent. In the numerical modelling of slumping, we are
concerned with the change in glass viscosity as it is heated at the commencement of
the slumping process, when viscosity is potentially higher than equilibrium. From
our experience slumping will occur, given sufficient time, at viscosities as high as
L = 11, which is just on the fringes of the time-dependent property region given in
[10]. Practically however, very little slumping would occur at such high viscosities,
since oven temperatures are quickly increased to bring the viscosity down into the
region 7 < L < 8 where slumping occurs at a faster and more acceptable rate, and
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any lag will only serve to further prevent slumping at this stage. Thus we assume
that relaxation will not significantly affect slumping, and that computation based on
equilibrium viscosities will be adequate. In any case any time lag in the viscosity can
be easily corrected by adjusting the time scale as we will show.

The sensitivity of viscosity to temperature is an issue that is less easily dismissed.
With viscosity varying by more than an order of magnitude over the slumping temper-
ature range, there is a clear possibility that spatial variation of temperature through-
out the molten glass may significantly affect its flow behaviour. Certainly for some
processes such as blow-moulding, where a parison must first be formed and the mould
is cold, spatial temperature variations are likely to be quite important, and thermal
modelling should be coupled with fluid—flow modelling [3, 4, 16]. In slumping how-
ever, both mould and glass are heated together from room temperature so that spatial
temperature variations will be considerably less than for blow-moulding. On the other
hand, the tolerances on the quality of optical surfaces formed by slumping are nec-
essarily very much tighter than tolerances on container wall thickness and surface
finish, so that such spatial variations as do exist might still be of importance. Thus,
while an isothermal model might be adequate, there is a need to investigate spatial
temperature variation.

At this point however, we are presented with considerable difficulties. We can use
the commonly adopted Vogel-Fulcher-Tammann (VFT) empirically derived equation
to approximate the viscosity—temperature relationship of the glass [10, 11], but this
relies on being able to determine the temperature within the glass. This is by no
means trivial given a general lack of information on glass thermal properties and how
these vary with temperature, plus very ill-defined issues of glass-mould contact and
non-uniformity of kiln temperatures. As a result, in other work very approximate
and simple thermal models have been assumed [3, 4, 16] or the isothermal case alone
has been solved [6, 15], in order to get some qualitative idea of the flow behaviour.

From this discussion, it is apparent that sensitivity studies of this problem would
be of considerable value, and for this purpose we develop a finite element formulation
and program that enables us to impose any temperature/viscosity distribution that
we might like to investigate. However, in this paper we assume isothermal slumping
conditions to be reasonable, and focus on our computation methods. It is worth
commenting that any temporal temperature profiles are easily accommodated with
an isothermal model, as we will see.

3. A Stokes—Flow Model

The very large viscosity of molten glass and the consequent small slumping velocity
scale (~ 1/p) and Reynolds number (~ 1/p?) permit a quasi-steady formulation of
the problem, obtained by simplifying the full Navier-Stokes flow equations to the
creeping flow or Stokes equations [2, p.216 ff]. These are solved for the (steady) flow
applicable over a small time interval. The fluid geometry is then updated to reflect
the small changes brought about by this flow, and the process repeated.

For a fluid of density p and viscosity pu, in a gravity field of strength ¢ acting in
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the —z3 direction, the equations to be solved are (in tensor notation)

dp 0 Ou;  Ou;

together with the continuity equation for incompressible flow

3ui .
5 =0 (3.2)

At boundaries that are in contact with the mould we must satisfy the no-slip
condition

and on all other boundaries, the no-stress free-surface conditions apply

—pni + [ <% + a;) =0, (3.4)
] 2

where n; is the unit normal. In all equations, indices 7 and j have range from 1 to 3
for three dimensions.

We solve equations (3.1) and (3.2) subject to the prescribed boundary conditions
(3.3) and (3.4) for velocity u; and pressure p, using the finite—element method with
a mesh of 6-node triangles over the flow domain. As is usual, we use linear basis
functions for pressure and quadratic basis functions for velocity.

The time evolution of the flow geometry is given by solving the slumping dynamics
equations

at each node using the known velocity field, to give the new node position x;. The
mesh is then adjusted by moving each node to its new position, to give a new geometry
on which the procedure is repeated. As slumping progresses, the lower free—surface
of the glass contacts the mould surface, and because of this we have chosen to use
Euler’s method to solve equation (3.5) for z; at the (n + 1)th time step
P =2l Ul x At (3.6)
Then we can easily check that no node crosses the mould boundary, but at best just
reaches it, and if necessary reduce the time step At to satisfy this criterion. We
find this method gives good accuracy provided node displacements are sufficiently
small. When a node reaches the mould boundary its boundary conditions are changed
from free-surface to no-slip. This is exactly the method of handling mould contact
described in [3, 6].
Rather than work with the dimensional equations given above, we solve the dimen-
sionless equations obtained by setting p, ¢ and p to unity. Dimensional quantities
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are given by multiplying by the appropriate scales. Choosing the disc radius a as the
length scale £, the velocity, pressure and time scales U/, P and T are given by

2
u =" P = paa, L (3.7)

7 pga

From this we see that the Reynold’s number (pl{L/y) is like 1/u? as claimed earlier.

An important consequence of the neglect of the time derivatives in the field equa-
tions (3.1), together with the isothermal assumption, is that temporal changes in
viscosity may be accommodated by a time-varying time scale T (¢). Then a time
period of length ¢, is in dimensionless terms given by

t t

te = /0 ! T(t) tdt = pga/0 ! p(t) tdt. (3.8)
Thus, given some initial geometry, the final product will be the same for different
curves £(t) and slumping periods ¢;, provided that the value of ¢, in each case is the
same. In other words, the area under each curve of inverse viscosity must be equal
(see Figure 2). This means that, if our assumption of isothermal conditions is shown
to be valid, the dimensionless problem can be solved once and post-processing used to
look at different viscosity profiles resulting from different temperature-time profiles.
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Ficure 2. Equivalent Viscosity Curves

4. Numerical Slumping — An Example

To illustrate our methods, we take an axisymmetric arrangement of an initially
flat glass disc supported on a concave mould as shown in Figure 3. For clarity the
vertical scale is twice the horizontal scale. The mould surface may have an aspheric
profile, though for our purposes we have chosen it to be spherical in order to more
clearly show the differences that slumping produces in the top free-surface of the glass
compared with the mould surface. While the axisymmetry of the problem certainly
simplifies our computations, a fully three-dimensional case can be readily solved, once
the more difficult tasks of mesh generation for both mould surface and glass have been
accomplished.

Computation time for this example with a mesh of 1494 nodes, 695 triangular
elements and 73 time steps of size 0.005 and less, was about 20 minutes using a single
167 MHz processor on a Sun Ultra Sparc 170 computer having 256MB of RAM.
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FIGURE 3. Geometry Prior to Slumping (¢ = 0)
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F1GURE 4. Full Mould Contact at t = 0.075

Figure 4 shows the slump after full mould contact has been attained. Prior to full
mould contact, slumping proceeds quite rapidly, though in real terms this may take
in excess of 1 hour. Mould contact greatly reduces the rate of flow, and after full
mould contact, slumping effectively ceases with further flow taking many hours or
even days.

Figure 4 does not show at optical accuracy, how well or poorly the mould surface
has been replicated on the top glass surface. Hence we now look at determining

surface curvature.

5. Surface Curvature

For optical surfaces, the design criterion is that the surface curvature meets the
specification to within tolerance. For the axisymmetrical example under considera-
tion, the top glass surface height z is a function of radius r only and curvature & is
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given by
Z”

(1 + 212)3/2
where primes denote differentiation with respect to r. As output from our finite—
element program we obtain the coordinates (r,z) of nodes located on this boundary,
and from this we want to obtain second derivatives to give curvature to within £0.001.
The obviously difficult task of accurately differentiating non-exact data such as is
obtained from any discretized computation process is an area of current research [1].

The method that we use is to fit a least squares B-spline series [5] to the surface
node coordinates using about one fifth as many terms as nodes. Knots and nodes
are not coincident (excepting at end points), and we use B-splines of high degree
(k > 4), to ensure adequate continuity and smoothness. From this we can obtain
first and second derivatives and so calculate the curvature along a radius of the glass
disc. This method may also be extendible to three-dimensional surfaces (see [5]),
though we have not yet progressed this far.

(5.1)

K =
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FIGURE 5. Surface Curvature

Figure 5 shows curvature from a degree 6 least squares B-spline series for our
numerical slumping example (solid curve), as well as the constant mould curvature
(dashed line). A comparison of curves obtained by varying the number of terms and
the degree of the B-splines, leads us to believe that we are able to calculate curvature
to an accuracy that is close to, if not actually, within tolerance, but further work
is required to verify this. However, even allowing for error in curvature calculation
greater than the desired tolerance, it is clear that the actual slumped profile differs
from the mould curvature that we are attempting to replicate by amounts well outside
the given optical tolerance, and we could proceed immediately to modify the mould
surface so as to more nearly obtain the desired optical surface.

6. Conclusion

We have developed tools to numerically simulate the slumping of molten glass into
an axisymmetric mould which may have an aspheric profile, and to compute the
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curvature of the resulting top free—surface. We have demonstrated their use for a
flat glass disc slumping into a spherical mould, and shown that the mould surface is
not replicated to optical accuracy. This work is in qualitative agreement with some
initial experimental results [13]. We are now able to utilise these tools to investigate
the importance of spatial temperature variations, and to iteratively determine the
mould profile that will yield the required free—surface.
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