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In flows of very viscous fluids, it is often justifiable to neglect inertia and solve the
resulting creeping-flow or Stokes equations. For drops hanging beneath a fixed wall and
extending under gravity from an initial rest state, an inevitable consequence of neglect of
inertia and surface tension is that the drop formally becomes infinite in length at a finite
crisis time, at which time the acceleration of the drop, which has been assumed small
relative to gravity g, formally also becomes infinite. This is a physical impossibility, and
the acceleration must in fact approach the free-fall value g. However, we verify here, by
a full Navier-Stokes computation and also with a slender-drop approximation, that the
crisis time is a good estimate of the time at which the bulk of the drop goes into free fall.
We also show that the drop shape at the crisis time is a good approximation to the true
final shape of the freely-falling drop, prior to smoothing by surface tension. Additionally,
we verify that the drop has an initial acceleration of g, which quickly decreases as viscous
forces in the drop become dominant during the early stages of fall.

1. Introduction

Extensional flow and break-off of viscous fluid drops has been much studied (see the
literature review in Stokes, Tuck & Schwartz 2000). In particular, fall under gravity of a
drop of very viscous fluid hanging under a solid boundary, such as honey dripping from
a spoon held upside-down, was examined in Stokes et al. (2000). Because of the high
viscosity of the fluid, inertia and surface tension were assumed to be small relative to
viscous and gravitational forces, and were therefore neglected. The resulting Stokes-flow
problem was solved using both a slender-drop approximation and finite-element methods.
However, neglect of inertia in the latter stages of the fall of the drop, when its acceleration
is no longer small and in fact must eventually approach the free-fall value g, results in
a finite “crisis” time at which the length and acceleration of the drop formally become
infinite, simultaneously with its cross-sectional area becoming zero at some point along
its length (often close to the solid boundary).
Wilson (1988) suggested for a similar problem that this non-physical infinity could be

removed by putting inertia back into the problem, and also identified the crisis time with
the time at which the drop breaks. Kaye (1991) considered some problems of viscous
extensional flow with inertia, but did not discuss the effect of inertia on the crisis time or
acceleration. Cram (1984) also studied falling drops numerically using a one-dimensional
approximation. More recent references on drops that are falling and/or in extensional
flow include Henderson et al. (2000), Wilkes, Phillips & Basaran (1999) and Sarkar &
Schowalter (2001).
Clearly, inertia can only be justifiably neglected when the acceleration of the fluid in

the drop is small compared to the gravitational acceleration g, and inclusion of inertia
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terms in the equations of motion should lead to a solution that agrees more closely with
reality. It is of interest to demonstrate this explicitly and so determine the time at which
inertia begins to play a significant role, in the latter stages of the fall of the drop.

Actually, inertia must also be important in the very earliest stages of its fall. Neglect
of inertia yields Stokes-flow equations which imply that the initial acceleration of the
drop is infinite and that the drop starts with an impulsively-developed initial velocity.
In practice, it must undergo an acceleration from rest of magnitude g, which is large
compared to the fluid accelerations that apply soon after motion begins, when viscous
retarding forces in the drop are dominant. Again the physics requires inclusion of inertia
in any analysis of the very early stages of the flow, if we wish to estimate the true
magnitude of the accelerations.

In the context of inertial influence on this extensional flow, the shape of the evolving
drop is also of considerable interest. The shape as a function of time is non-trivially and
uniquely determined by the drop’s initial shape, and only after a relatively long time in
free fall will surface tension mandate smoothing of that shape. When inertia is neglected
as in Stokes et al. (2000), we are able to compute a drop shape up to but not beyond the
finite crisis time. However, since we anticipate break-off at close to this time, the drop
shape at crisis should be a good approximation to the subsequent shape of the freely
falling drop.

On the other hand, as soon as inertia is included in the analysis, the computations can
proceed beyond the crisis time of the inertia-less theory, into a regime where the physics
demands that the main drop is nearly in free fall as a rigid body, except for a very thin
extending filament connecting it to the wall. Then we can determine just how well the
shape of this almost-rigid body compares with the drop shape at crisis time predicted by
the inertia-less theory. In contrast to the inertia-less theory, with inertia included and in
the absence of surface tension, the thin connecting filament never breaks, but becomes
ever thinner and thinner as time increases. Such filaments can indeed be very long in
practice for very viscous fluids, as a drop of honey shows, but for less viscous fluids,
surface tension effects (neglected here) eventually play a role and cause the filament to
break (Eggers 1993; Papageorgiou 1995).

Once inertia is included in the analysis we need not be restricted to highly viscous
fluids, but may measure the influence of inertia by a Reynolds numberR which is inversely
proportional to the square of the viscosity. For small R we expect the drop behaviour to
be well-approximated by the inertia-less theory, with the quality of this approximation
decreasing as R increases. Meanwhile, as the fluid viscosity decreases, surface tension will
also play a more significant role in drop behaviour, but we do not consider quantitative
effects of surface tension in the present paper, concentrating our attention on the effects
of inertia.

2. Mathematical formulation

We consider a drop of incompressible Newtonian fluid with density ρ and kinematic
viscosity ν = µ/ρ, hanging beneath a horizontal surface at x = 0. The complete math-
ematical formulation is similar to that in Stokes et al. (2000), but with the addition of
inertia. Thus, g acts in the x direction and the Navier-Stokes and continuity equations
are given in Cartesian coordinates by

∂q

∂t
+ q · ∇q = gi− 1

ρ
∇p+ ν∇2q , (2.1)
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and

∇ · q = 0 , (2.2)

where q = (u, v, w) is the velocity vector, p is the pressure and i is the unit vector in
the x direction. We consider a drop that lies in 0 < x < L(t), where x = 0 is the wall
boundary and x = L(t) is the (to-be-determined) lower free end. The drop is assumed
to be initially at rest with a given initial shape, having length L0 = L(0) and maximum
width w0.
Equations (2.1) and (2.2) would usually be solved subject to no-slip boundary condi-

tions at the wall x = 0 and zero-stress free-surface and kinematic conditions on all other
boundaries (see Stokes et al. 2000). However, for a slender drop approximation, we must
allow slip along the wall.
As already indicated, our main attention in the present paper is directed toward two

matters, namely computation of the acceleration L′′(t) of the bottom point of the drop,
and determination of the shape of the final freely-falling drop. Very small Reynolds num-
bers will give the best comparison with results from the inertia-less theory, but larger
Reynolds numbers, i.e. less viscous fluids, display more clearly the large-time character-
istics of a falling viscous fluid drop.
We consider both two-dimensional thin sheets and axisymmetric slender drops. In

the absence of significant surface tension effects, these behave similarly, drop width in
two dimensions being equivalent to drop cross-section area for axisymmetric drops. For
extremely slender axisymmetric filaments, the large lateral curvature implies surface
tension effects which are absent in the equivalent two-dimensional case, but these effects
do not have any major influence on the main-drop behaviour over the time frame of
interest here. Rather they are of interest in the study of pinch-off and rupture of the
filament to release the main drop into actual free fall. Significantly, our work (both here
with inertia and previously Stokes et al. (2000) without inertia), although neglecting
surface tension, does give an indication of when and where the high-curvature factors
causing filament rupture become important, and hence when and where break-off of the
drop is likely to occur, without specifying the surface-tension-dependent details of this
subsequent event.
The full flow problem defined above may be readily solved without approximation

using finite elements, and we first do this to identify interesting features of the flow.
Most (but not all) of these features are also captured by a semi-analytic slender-drop
analysis to follow, by use of which we seek to better understand what is happening. An
intuitive large-time asymptotic analysis for slender drops then gives an explicit formula
connecting initial and final shapes, which is confirmed by the detailed computations.

3. Finite-element computations

A finite-element algorithm was described and used in Stokes et al. (2000) for computing
the extension under gravity of a viscous drop, neglecting inertia. We need only modify
this algorithm for the problem formulated above including inertia.
First note that, because of the Lagrangian time-stepping method, the non-linear nature

of the inertia terms in the Navier-Stokes equations presents no difficulties. We simply
discretise the acceleration Dq/Dt = ∂q/∂t+(q.∇)q following a particle, using backward
Euler differencing so that (2.1) becomes

qn+1 −∆t
(

gi− 1
ρ
∇pn+1 + ν∇2qn+1

)

= qn, (3.1)
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where ∆t is the time-step size and qn and pn are the velocity and pressure distributions
in the flow domain at the nth time step, with q0 = 0. The continuity equation (2.2) is
just

∇ · qn+1 = 0. (3.2)

Now, (assuming for the moment 2D flow) let a fluid particle be labelled by its initial
position vector r0 = (ξ, η), and let its position at time t ≥ 0 be given by r(r0, t) =
(x(r0, t), y(r0, t)), with r(r0, 0) = (x(r0, 0), y(r0, 0)) = (ξ, η). In particular, ξ is the initial
distance of the particle below the wall. Then we compute the subsequent displacement
of this particle by backward differencing, i.e.

qn+1 =
dr

dt

n+1

=
rn+1 − rn

∆t
, (3.3)

where rn = r(r0, n∆t) is the particle position at the nth time step.
Thus our computational algorithm can be summarised as follows:
(a) construct a mesh of interconnected nodes over the fluid region, each node repre-

senting a fluid particle;
(b) set n = 0;
(c) use the finite-element method to solve the discretised forms of the Navier-Stokes

and continuity equations (3.1), (3.2) for the velocity qn+1 and pressure pn+1 at each
of the mesh nodes, subject to the initial condition q = 0 and no-slip and zero-stress
conditions on the wall and free surface boundaries respectively;
(d) solve (3.3) for the new position vector rn+1 of each mesh node;
(e) move each node to its new position;
(f) increment n and repeat steps c–e to obtain the time-evolution of the drop.
At time step n = 1, 2, . . ., we can compute the vertical component an of the fluid

acceleration of a mesh node, i.e. of a fluid particle, by simple backward differencing,

an = a(r0, n∆t) =
un − un−1

∆t
, (3.4)

where un = u(r0, n∆t) is the x-component of velocity of the particle at time step n. In
particular, the vertical acceleration L′′(n∆t), n = 1, 2, . . ., at the centre-bottom of the
drop, is given by (3.4) with r0 = (L0, 0). Close to t = 0 we use a very small time step,
but progressively increase this at larger times.
This algorithm has been implemented in the finite-element package Fastflo, CSIRO

(1999), for both two-dimensional and axisymmetric drops. The symmetry of the drop en-
ables us to use only half of the fluid domain. An augmented-Lagrangian method was used
to solve for velocity and pressure (CSIRO 1999, pp. 165–169). Eventually the computa-
tions must cease because of excessive stretching of mesh elements leading to numerical
inaccuracy and ultimately failure.
Results are presented in non-dimensional form using the length scale L0, a time scale

T = ν∗/(gL0), and a velocity scale U = gL2
0/ν

∗, where ν∗ = 4ν in two dimensions and
ν∗ = 3ν in three dimensions. This allows definition of a Reynolds number

R =
UL0

ν∗
=

gL3
0

ν∗2 . (3.5)

Results for an initially-rectangular two-dimensional drop of aspect ratio w0/L0 = 0.2,
for a very small Reynolds number R = 0.001 and a somewhat larger value R = 0.1,
are shown in Figures 1 to 4. A mesh of 690 quadratic triangular elements was used,
with elements clustered near the wall where there is most distortion from the initial
shape. Computations were continued at least until the drop acceleration had (very nearly)
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Figure 1. Vertical acceleration RL′′ versus time t. Initially rectangular drop of aspect ratio
w0/L0 = 0.2.
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Figure 2. Acceleration as a function of initial position ξ along the drop centre line,
R = 0.1, t = 0.2, 0.3, . . . , 3.0.

returned to g, but could not be taken too far beyond this time due to excessive mesh
distortion.
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3.1. Accelerations

The scaled vertical acceleration RL′′(t) of the bottom-most point of the drop, which is
unity when the actual acceleration takes the value g, is plotted in Figure 1. As expected,
the actual acceleration starts at g, falls rapidly to a small value while viscosity dominates,
and then rises, returning to g at large times when the drop is effectively in free fall. The
smaller the Reynolds number, the faster and larger is the initial drop in acceleration from
g, the minimum value of RL′′(t) being of the order of R as is most clearly seen from the
curve for R = 0.1. Further, the smaller the Reynolds number, the longer the acceleration
remains small, but then the more rapid is the return to g which also occurs nearer to the
crisis time of inertia-less theory (t = 1 for a rectangular drop in the slender limit).
The above discussion relates strictly only to the acceleration of the particle at the

bottom of the drop. It is also of interest to consider other particles. Plotting vertical
acceleration versus particle label ξ along the drop centreline (y = η = 0), as is done for
R = 0.1 in Figure 2, reveals an interesting characteristic of the flow in the falling drop.
In the initial stages of fall (not shown), the actual acceleration throughout most of the

drop is g, but quickly decreases in the viscosity-dominated time range. During this time,
the curves at first show an acceleration increasing with ξ, with the maximum acceleration
at the bottom ξ = 1.
However, this soon changes and the point of maximum acceleration moves progressively

up to a position of the order of ξ = w0 << 1 distant from the wall. (Note that physically,
in terms of x, this is typically quite far from the wall, though in terms of ξ it appears
to be very near the wall.) As this occurs and as the acceleration throughout the lower
bulk of the drop approaches g, the maximum acceleration may even exceed g for some
time. For the R = 0.1, w0/L0 = 0.2 case illustrated, the acceleration rises to a value of
about 1.03g around t ≈ 2 and ξ ≈ 0.16 (4.5 < x < 5); then subsequently, the maximum
acceleration decreases to g, until we effectively reach a steady state with the bulk of the
drop in free fall. Decreasing the aspect ratio of the initial drop results in an increase in
the peak value of acceleration (e.g. for w0/L0 = 0.1, acceleration reaches about 1.08g
around t ≈ 1.8 and ξ ≈ 0.09 (2.5 < x < 3)), but decreasing the Reynolds number R
causes a decrease in this peak value, so that for R = 0.01, w0/L0 = 0.1 the acceleration
in the drop nowhere exceeds g.
Finally, the fluid in the region just below the wall boundary of approximate initial

length w0 has an acceleration that reduces from g at ξ ≈ w0, to 0 at the wall ξ = 0. This
region 0 < ξ < O(w0), occupying a smaller and smaller fraction of the length of the drop
as the aspect ratio w0/L0 decreases, includes but extends beyond the “wall boundary
layer” discussed in Stokes et al. (2000).
In Figure 2 the acceleration profile reaches a steady state by t = 3. Reducing the

Reynolds number reduces the time period over which the acceleration profile evolves,
with the time period approaching the crisis time as R→ 0 (c.f. Figure 1).

3.2. Drop shapes

In Figure 3 we plot, for a range of times t and for R = 0.1, the scaled drop width
w(ξ, t)/w0 versus the particle label ξ. Similarly in Figure 4 we plot w/w0 versus distance
L(t)− x from the bottom of the drop. The latter plot shows just the portion of the drop
furthest from the wall containing the bulk of the fluid mass. Both plots show the drop
shape to be effectively unchanging at large time, excepting for an ever-thinning filament
connecting the main drop to the wall.
At about t = 2, as the acceleration in the bulk of the drop nears g, there is a pinching

in of the drop near ξ ≈ w0, corresponding to a distance L(t)− x ≈ 2 from the bottom of
the drop and from where the filament extends back to the wall. Referring to Figure 2 we
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main drop is effectively a solid body at large
time.

see that it is in this filament region that the acceleration decreases from g at the main
drop to 0 at the wall, which is to be expected from physical considerations. Because this
pinching in occurs once the bulk of the drop has almost reached free fall, it will occur
closer and closer to crisis time as R → 0 and can be associated with the breaking off of
the main drop.
This pinching behaviour can be understood with reference to the inertia-less theory

(Stokes et al. 2000). In the connecting filament attaching the drop to the wall, viscous
forces are still dominant even at large times, so that the acceleration is small and inertia
can therefore still be neglected in this region. The main bulk of the drop in virtual free
fall below this filament exerts minimal force on the filament, so that we have, effectively,
a thin fluid filament extending under the influence of its own mass. Thus, a connecting
filament with a free-surface shape similar to those plotted in Stokes et al. (2000) for an
initially rectangular drop can be expected. We shall return to this matter later.

4. Slender-drop approximation

Considerable insight into this type of extensional flow can be obtained through an
approximate one-dimensional slender-drop analysis. The following development in the
main relates to three-dimensional drops where the drop length is much greater than any
cross-section width; however, it also applies to two-dimensional drops or sheets where
the length is much greater than the sheet thickness.
In a Lagrangian reference frame (Wilson 1988; Stokes et al. 2000) we let x = X(ξ, t),

where ξ is a fluid-particle label such that x = ξ at t = 0. The initial drop geometry is
assumed to have a cross-section area distribution given by some function A0(ξ). That is,
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A(ξ, 0) = A0(ξ), 0 ≤ ξ ≤ L0, where A(ξ, t) is the cross-sectional area at label ξ and time
t, and L0 is the initial drop length.
Consider a small element of length dx = Xξ(ξ1, t)dξ1 at ξ = ξ1, with volume dV =

A(ξ1, t)dx. Conservation of mass demands that dV is time-independent, i.e. A(ξ1, t)dx =
A0(ξ1)dξ1. Since dx = Xξdξ1, we have AXξ = A0, which is the differential form of the
Lagrangian continuity equation. Integration yields

X(ξ, t) =

∫ ξ

0

A0(ξ1)

A(ξ1, t)
dξ1 (4.1)

as in Stokes et al. (2000).
Newton’s second law for this element states that its mass times its downward accelera-

tion is equal to its weight less the net viscous force resisting elongation. The latter viscous
force can be written as stress σ times area A on the top side ξ = ξ1 minus that on the
bottom side ξ = ξ1 + dξ1. Thus if a = a(ξ1, t) = Xtt(ξ1, t) is the downward acceleration,

(ρdV )a = (ρdV )g +

[

σA

]ξ=ξ1+dξ1

ξ=ξ1

. (4.2)

Using the continuity requirement dV = Adx = A0dξ1 as above, and summing over all
elements ξ = ξ1 lying below station ξ, assuming zero stress σ = 0 at the bottom ξ = L0

of the drop, we have
∫ L0

ξ

ρ [g − a(ξ1, t)]A0(ξ1)dξ1 = σ(ξ, t)A(ξ, t)

= −µ∗ ∂
∂t
A(ξ, t). (4.3)

In the above, µ∗ is the elongational (Trouton) viscosity (Bird 1977, p. 30), namely µ∗ =
3µ in three dimensions and µ∗ = 4µ in two dimensions, which relates stress σ and
elongational rate of strain −At/A. Integrating (4.3) with respect to time t gives

A(ξ, t) = A0(ξ)−
ρ

µ∗

∫ L0

ξ

A0(ξ1) [gt− u(ξ1, t)] dξ1. (4.4)

where u(ξ1, t) = Xt(ξ1, t) is the downward velocity of the element at ξ = ξ1.
Equation (4.4) is the appropriate generalisation of the corresponding inertia-less equa-

tion in Stokes et al. (2000), namely that resulting from dropping the term in u, and is to
be solved together with the continuity equation (4.1).
Equivalent Eulerian equations are also not difficult to construct. Defining a small

slenderness parameter (in 3D) as the maximum value of
√

A0(x)/L0, a formal asymptotic
expansion of (2.1) and (2.2) with respect to this parameter yields equations for the
velocity u(x, t) and cross-section area A(x, t), namely a “one-dimensional Navier-Stokes
equation”

∂u

∂t
+ u

∂u

∂x
= g + ν∗

1

A

∂

∂x

(

A
∂u

∂x

)

(4.5)

(ν∗ = µ∗/ρ), and a one-dimensional continuity equation

∂A

∂t
+

∂

∂x
(Au) = 0 . (4.6)

Equations equivalent to (4.5) and (4.6) were given by Kaye (1991). In practice, the
Lagrangian system (4.4) and (4.1) is much easier to solve. However, the presence of the
term in u = Xt in (4.4) couples the two Lagrangian equations and variables X and A
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together, which means that the solution is no longer just a pair of quadratures, as it was
in Stokes et al. (2000).

4.1. Nonlinear diffusion equations

We proceed by differentiating (4.4) with respect to ξ, dividing through by A0(ξ), and
then differentiating again with respect to ξ to give

∂

∂ξ

[

1

A0

∂

∂ξ
(A−A0)

]

= − 1
ν∗

∂u

∂ξ
. (4.7)

Differentiating (4.1) with respect to t and ξ gives uξ in terms of A, and substituting into
(4.7) finally yields

∂A

∂t
= ν∗

A2

A0

∂

∂ξ

[

1

A0

∂

∂ξ
(A−A0)

]

. (4.8)

For any given initial drop shape A0(ξ), we must solve equation (4.8) for A(ξ, t) subject
to the initial condition

A(ξ, 0) = A0(ξ) . (4.9)

The boundary condition at the bottom (free) end of the drop ξ = L0 is just

A(L0, t) = A0(L0) , (4.10)

obtained by setting ξ = L0 in (4.4) and equivalent to the Eulerian zero-stress condition
ux = 0. The zero normal-velocity boundary condition u = 0 at the wall end ξ = 0 is

∂A

∂ξ
(0, t) = A′

0(0) +
g

ν∗
A0(0)t (4.11)

obtained by differentiating (4.4) with respect to ξ and setting ξ = 0. The zero tangential-
velocity boundary condition v = 0 at the wall is by necessity violated in this slender-drop
approximation; when included it induces a wall boundary layer, as discussed in Stokes
et al. (2000). Once A(ξ, t) is found, we use the continuity equation (4.1) to find X(ξ, t),
and hence the drop length L(t) = X(L0, t).
A suitable non-dimensional form of this problem follows by scaling A(ξ, t) and A0(ξ)

with respect to A0(0), ξ with respect to L0, and t with respect to ν
∗/(gL0). Then equation

(4.8) becomes

A2

A0

∂

∂ξ

[

1

A0

∂(A−A0)

∂ξ

]

= R
∂A

∂t
, (4.12)

where R is defined by equation (3.5).
The special case of an initially-cylindrical drop with A0(ξ) = 1 simplifies (4.12) to

A2 ∂
2A

∂ξ2
= R

∂A

∂t
. (4.13)

Equation (4.13) is a nonlinear diffusion equation with a diffusivity proportional to the
square of the “concentration” A, and is to be solved in 0 < ξ < 1 with initial condition
A = 1 at t = 0, and boundary conditions A = 1 at ξ = 1, and ∂A/∂ξ = t at ξ = 0.
This equation was derived by Kaye (1991) (equation (4.3.20), p. 72) from an Eulerian
formulation. Although there are methods (see e.g. Ames 1972, p.14) for converting (4.13)
to a linear diffusion equation, and hence solving analytically, these solutions are not
appropriate for the present boundary conditions, and we shall instead use direct numerical
methods.
The inertia-less limit is R = 0, and in that limit the solution of (4.13) subject to these
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boundary conditions is simply

A(ξ, t) = 1− t+ tξ (4.14)

corresponding to a drop length

L(t) = −t−1 log(1− t) (4.15)

which becomes infinite at the (scaled) crisis time t = 1. However, we expect that for any
finite R the drop length remains finite for all finite t, and that for large t the acceleration
approaches gravity, which means that RL′′(t)→ 1.

4.2. Slender-drop numerical computations

In the general case, it is convenient to define B(ξ, t) = A(ξ, t) − A0(ξ) as the departure
from the initial shape A0(ξ). Then (4.12) is a nonlinear diffusion equation for B, with
diffusivity proportional to A2 = (A0 +B)2.
We have for the present purpose solved (4.12) numerically, and indeed have not found

it necessary to use anything other than the most direct explicit finite-difference method,
i.e. with time step ∆t and space step ∆ξ, we approximate (4.12) by

B(ξ, t+∆t) = B(ξ, t) + C

[

B(ξ+∆ξ, t)−B(ξ, t)

A0(ξ+∆ξ/2)
− B(ξ, t)−B(ξ−∆ξ, t)

A0(ξ−∆ξ/2)

]

(4.16)

where

C =
∆tA(ξ, t)2

R∆ξ2A0(ξ)
. (4.17)

The boundary conditions are B = 0 at t = 0 and ξ = 1, and ∂B/∂ξ = t at ξ = 0; the
latter is implemented simply by defining an artificial value B(−∆ξ, t) = B(∆ξ, t)− 2t∆ξ
for use in the last term of (4.16) at ξ = 0.
The Courant number C must be kept less than 0.5 for stability, which presents no

problems with respect to nonlinearity since the cross-section area A = A0 + B tends to
reduce from its initial value, but does present a few problems when R is small, which is
of course the most interesting case. In practice however, there appear to be no barriers
to use of extremely small time steps ∆t when R is small. We have generally found that
∆ξ ≈ 0.02 gives adequate spatial accuracy; but then for example with R = 0.001 we need
∆t ≈ 10−7 for stability.
The actual results for A(ξ, t) are simple and well behaved. For example, for the initially-

rectangular case shown in Figure 5, the cross-section area at first reduces steadily and
almost linearly with respect to both time t and spatial label ξ, as in the inertial-less limit
(4.14). Near t = 1 and ξ = 0 (i.e. at the wall) the rate of this reduction slows down and
then A slowly approaches zero at ξ = 0 as time further increases.
It appears from our computations for this case that A(ξ, t)→ ξ as t→∞, as indicated

in Figure 5, in agreement with a large-time asymptotic theory to be discussed below.
Kaye (1991) conjectured (based on a relatively-coarse discretisation) that the wall value
of A would go negative at a finite time t identifiable as that for breaking, but we have
found no such event, and believe that breaking cannot occur in the present model for
any R > 0, and that A must remain positive.
Equating A with drop width w in two-dimensions, we see that there is good comparison

between the slender-drop results shown in Figure 5 and and our earlier finite element
results shown in Figure 3. Noting that the main drop shape below the filament given by
our finite element computations appears to approach

w/w0 = (ξ − w0/2)/(1− w0/2) (4.18)
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as t → ∞, we retrieve the slender drop result w/w0 → ξ as w0 → 0. The pinching in of
the filament seen in finite-element simulations at ξ ≈ w0 will not be observable in the
slender-drop limit but can be associated with the large slope ∂A/∂ξ that develops at
large time at ξ = 0 as indicated by (4.11). It is tempting to attribute the differences seen
between Figures 3 and 5 to the fact that slip is necessarily permitted along the wall in
the slender-drop theory which is not permitted in finite-element simulations. Certainly
this results in a wall boundary layer in Figure 3 which is absent in Figure 5. However,
this cannot extend the length of the filament and explain the pinching in of the filament
just above the main drop.
This is emphasised by running a finite-element simulation with wall boundary condi-

tions of no normal velocity and no tangential stress, thus allowing slip along the wall
similar to the slender-drop theory, Figure 6. Again we have a pinching in of the filament,
but near ξ = w0/2 not ξ = w0, which clearly demonstrates that this is a finite-width
effect rather than a consequence of a no-slip wall boundary, though the no-slip boundary
does increase the distance of the pinching position from the wall by the thickness of the
boundary layer O(w0/2). It is very interesting to note that the large-time shape of the
drop below the filament (see Figure 6) appears to be w/w0 → ξ just as for the slender-
drop theory. Thus, with a no-slip wall boundary, the deviation of the main drop shape
from w/w0 → ξ to (4.18), is attributable to the wall effect, as it was in the inertia-less
case (Stokes et al. 2000).
Returning to our slender-drop theory, once we have solved for A(ξ, t), other flow vari-

ables follow, in particular the acceleration as measured by the second derivative of the
drop length. This is computed from A(ξ, t) by evaluating the velocity u(ξ, t) by numerical
ξ-differentiation of (4.4), followed by numerical t-differentiation of the bottom velocity
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u(1, t) = L′(t). In Figure 7 we plot RL′′(t) versus time for various values of R, for an
initially rectangular slender drop. As with the finite-element results, this quantity starts
and ends at 1 with a viscosity-dominated time period in between. As before, reducing R
causes the rise in acceleration near t = 1 to become steeper and steeper and to approach
closer and closer to the inertia-less crisis at t = 1. The curves from the finite-element
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computations for an initially rectangular drop of aspect ratio w0/L0 = 0.2, also shown
(dashed) on Figure 7, compare well with their slender-drop theory counterparts and show
a delay in the return to RL′′(t) = 1 as the effect of the no-slip wall boundary.
Of even more interest is the acceleration profile in the drop, as a function of ξ, in the

slender drop limit. This is shown over a range of times in Figure 8. As in the finite-
element calculations we find that, after a relatively short time, the acceleration takes
its maximum value at a position in the interior of the drop for a considerable time,
with this position moving towards the wall as time progresses. However, the maximum
acceleration is very much larger than in the finite-element computations and, in fact,
due to limitations on the spatial grid near ξ = 0, we have not been able to determine
just how large it becomes, but only that it increases as our grid resolution at the wall
decreases. Further, the position of maximum acceleration appears to approach the wall,
whereas in our finite-element computations it only came as close as the transition region
between the main drop and the filament.
Finally, in the slender-drop limit, the acceleration versus ξ curve appears to approach

the step function Ra(ξ, t) = 1, 1 ≤ ξ < 0, Ra(0, t) = 0 as t → ∞, as seen in Figure 8,
with no progressive decrease in acceleration from g at ξ = w0 to 0 at ξ = 0, as occurred in
the finite-element computations. This seems to be associated with the fact that pinching
in of the connecting filament occurs at ξ = 0 in the slender limit with the whole of the
drop effectively going into free fall, and implies that the drop then breaks at the wall.

4.3. Initially paraboloidal drops

Although the example of an initially-rectangular 2D drop is used for simplicity in the
above, it is not particularly realistic as a model of real drops. An example of an initial drop
shape which is reasonably realistic is that for which A0(ξ) = 1−ξ. In the 3D axisymmetric
case, this drop has an initially paraboloidal shape, with radius proportional to

√
1− x.

Figure 9 shows the computed A(ξ, t) for this case at R = 0.1, plotted at time intervals of
0.2 up to t = 3.6. Note that the inertia-less theory (R = 0) predicts a scaled crisis time
of t = 2 for this case. As with the initially-rectangular drop, at first the output A(ξ, t)
decreases essentially linearly with t, but this decrease slows near to the crisis time, and
then it appears that A(ξ, t)→ ξ(1− ξ) as t→∞.
The actual axisymmetric drop shapes in the physical plane are shown in Figure 10 by

plotting x = X(ξ, t) versus r =
√

A(ξ, t). This time history seems quite sensible, and in
particular demonstrates for large time an approach to a freely falling state which we now
discuss.



14 Y.M. Stokes & E.O. Tuck

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

PSfrag replacements

x

ξ

Ar =
√
A

Figure 9. Drop cross-section area A as
a function of particle label ξ, for ini-
tially paraboloidal drop A0(ξ) = 1 − ξ,
at Reynolds number R = 0.1, for times
t = 0, 0.2, 0.4, . . . , 3.6.

0

2

4

6

8

10

12

14

16

18
-1 -0.5 0 0.5 1

PSfrag replacements

x

ξ

A

r =
√
A

Figure 10. Evolution of the initially
paraboloidal drop of Figure 9, as seen in
physical coordinates x, r.



Fall of a viscous drop 15

4.4. Large-time drop shape

An intuitive argument for the large-time behaviour is as follows, reverting temporarily
to unscaled variables.
Once the drop is in free fall as if it were a rigid body, its velocity must be of the form

u(ξ, t) = g(t− t0) (4.19)

for some constant t0, physically interpretable as the apparent time when this free fall
begins. Because of the initial slowing down of motion due to viscosity, we expect t0 > 0,
but otherwise in principle the quantity t0 is unknown in advance.
However, when fluid inertia has only a small effect, i.e. for relatively small R, we

may expect that t0 = t∗, where t∗ is the crisis time (when formally the inertia-less
theory (Stokes et al. 2000) predicts breaking), because then close to the crisis time, the
acceleration of the drop (excepting a small region near the wall) rapidly approaches g
and remains at that value thereafter. Prior to this event, all fluid velocities u(ξ, t) were
small, and from a large-t viewpoint we may assume that the drop was then at rest.
If we substitute (4.19) into (4.4), we find

A(ξ, t) = A0(ξ)−
g

ν∗
t0V (ξ) (4.20)

where

V (ξ) =

∫ L0

ξ

A0(ξ1) dξ1 (4.21)

is the volume of drop fluid below station ξ.
Now in the present slender-drop theory, there is slip at the wall, and for a large family

of initial drop shapes, including those considered above, it appears that the wall thickness
tends to zero at large times. If therefore we demand that A = 0 at ξ = 0 in (4.20), we
find

t0 =
ν∗

g

A0(0)

V (0)
(4.22)

so

A(ξ, t) = A0(ξ)−
A0(0)

V (0)
V (ξ) . (4.23)

It happens that (4.22) is the correct formula for the crisis time t∗ in the inertia-less
theory of Stokes et al. (2000), for those initial drops that break at the wall according to
that theory, confirming that t0 = t∗ when R is small.
Indeed, we expect that t0 ≈ t∗ in all cases, whether or not inertia is small, and whether

or not the drop breaks at the wall, but this is not yet proved. In any case there appears
to be a remarkable relationship between the inertia-less theory and the large-time limit
of the flow with inertia. Namely, as t→∞ in a computation including inertia, the drop
shape approaches that which would have been obtained at the (finite) crisis time t = t∗

in a computation neglecting inertia.
For an initially cylindrical drop A0 = 1, with V (ξ) = 1− ξ (in scaled form), equation

(4.23) predicts A→ ξ as t→∞. Similarly, for the initially paraboloidal drop A0 = 1− ξ,
with V (ξ) = (1− ξ)2/2, we have A→ ξ(1− ξ). Both of these limits are are confirmed by
our computations.
The actual final drop shape as a function of the physical coordinate x = X(ξ, t) is

obtained by integrating the continuity equation Xξ = A0/A. However, this integration
cannot be (as with (4.1)) from the wall ξ = 0, where (4.23) has A = 0, because this
integral diverges. Of course it must so diverge, since at infinite times the drop is an
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infinite distance from the wall! If instead we integrate from the bottom ξ = L0, using the
asymptotic estimate (4.23) for A(ξ, t), we find

X(ξ, t) = L(t)−
∫ L0

ξ

A0(ξ1)dξ1
A0(ξ1)− [A0(0)/V (0)]V (ξ1)

. (4.24)

Equations (4.23) and (4.24) provide the formal connection between initial and final drop
shapes.
For example, a drop with A0 = (1−ξ)n for any n (including both the initially rectangu-

lar and paraboloidal cases) gives X = L(t) + log ξ, or ξ = e−(L−x). Thus the asymptotic
radius of this family of drops is

√
A where

A = e−(L−x)[1− e−(L−x)]n , (4.25)

an explicit function of distance L(t)− x measured upward from the bottom of the drop.
Then, in two dimensions where w ≡ A, setting n = 0 for the initially rectangular drop,
we have w/w0 = e−(L−x) in close agreement with the shapes shown in Figure 4. Figure 11
shows just how good this agreement is for an initial aspect ratio of w0/L0 = 0.2, and the
comparison is almost identical for w0/L0 = 0.1. For the initially paraboloidal drop (n = 1)

we have r =
√
A =

√

e−(L−x)[1− e−(L−x)], which corresponds closely to the large-time
drop shape seen in Figure 10. This final drop takes a maximum width 0.5 (times the
original maximum width) at a distance log 2 = 0.693 (times the original length) above
the bottom, and its thickness then decays exponentially at greater distances above the
bottom.
The present asymptotic theory does not quite provide an estimate of the actual bottom

position x = L(t), although equation (4.19) gives an estimate of its time derivative
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L′(t) = u(L0, t). Further work would be needed to estimate the constant of integration,
i.e the apparent initial length L(t)− g(t− t0)

2/2.
In summary, the asymptotic theory of the present section enables estimates of the shape

of the drop in its “final” freely-falling rigid-body-like state, given any initial shape. There
must also be a fine filament connecting this drop to the wall, whose thickness reduces
with time. The above description applies until surface tension breaks the filament, and
eventually (after a sufficient time in free fall) converts any 3D drop into a sphere.

5. The filament

Comparisons of finite-element computations for drops of finite width with results from
the slender-drop theory do show a difference in the filament behaviour and further work
is required to determine exactly what is happening for small ξ. Nevertheless, for drops of
finite width the computations show the main drop beginning to pinch off from the thin
filament, even in the absence of surface tension in the problem formulation. In the slender-
drop limit we infer that this happens at the wall itself, but in practice it happens beyond
a thin wall boundary layer. We can expect that surface tension will play a significant
role in the vicinity of this pinching zone, and will finally determine the exact breaking
position, but we suggest that the present theory neglecting surface tension yields a good
indication of this position. In the inertial-less limit, pinching of the filament is not seen,
due to the fact that we cannot compute beyond the crisis time, and the approximate
position of drop break-off is determined as in Stokes et al. (2000), being at the wall
itself for the drops considered above. Thus, in the slender-drop limit, inclusion of inertia
makes no difference to the predicted position of break-off, but for drops of finite width
this matter needs further investigation.
We might argue that for t ≥ t0, the acceleration is just g throughout the main freely

falling drop below ξ = Lf , for some Lf marking the boundary between filament and
main drop. Then (4.3) becomes

−µ∗ ∂
∂t
A(ξ, t) =

∫ Lf

ξ

ρ [g − a(ξ1, t)]A0(ξ1)dξ1 (5.1)

and, hence,

A(ξ, t) = A(ξ, t0)−
1

ν∗

∫ Lf

ξ

[g(t− t0)− (u(ξ1, t)− u(ξ1, t0))]A0(ξ1)dξ1. (5.2)

But, in the filament 0 ≤ ξ ≤ Lf it seems reasonable to neglect inertia, drop the terms
in u(ξ, t) and use the inertia-less theory and results given in Stokes et al. (2000). In
particular, the time and location of filament breaking are determined by the filament
shape at t = t0, as is its subsequent shape. However, while we may thus explain the
filament behaviour as seen in our finite-element computations above, any meaningful
analysis of the ultimate behaviour of these very thin filaments must include surface
tension.

6. Conclusion

By including inertia terms in the flow model, both in a slender-drop approximation
and in an exact computation, we have demonstrated how, in both the very early and
very late stages of the fall of a drop of viscous fluid, the drop’s acceleration becomes
equal to the gravitational acceleration g. In the intervening period, from soon after it
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begins its descent until a “crisis” time when a rapid increase occurs, accelerations are
small compared to gravity, and neglect of inertia is valid for small values of the parameter
R = gL3

0/ν
∗2. The crisis time t∗ = O(ν∗/(gL0)) computed from the inertia-less theory is

then a good estimate of the time at which the drop acceleration increases rapidly toward
g, when we can expect the drop to break and go into free fall.
Drop shapes are available from the exact or slender-drop computations at all times

and for all Reynolds numbers. However, the slender-drop theory also provides explicit
formulae via simple quadratures for the final quasi-rigid-body shape of the drop when
it is in free fall prior to smoothing by surface tension, this shape being the same as the
inertia-less theory predicts at the finite crisis time.
Including inertia also provides insight into the behaviour of the ever-thinning filament

which connects this ultimate drop to the wall, prior to breaking events controlled by
surface tension.
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