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Abstract

This thesis examines the flow of very viscous Newtonian fluids driven by gravity. It is

written with concern for specific applications in the optics industry, with emphasis

on the slumping of molten glass into a mould, as in the manufacture of optical

components, which are in turn used to manufacture ophthalmic lenses. This process

is known as thermal replication. However, the work has more general applicability,

and disc viscometry, used to determine the viscosity of very viscous fluids, is also

considered. In addition, one chapter of the thesis is devoted to the flow of dripping

honey, as another example of a very viscous flow to which the model can be applied.

The Stokes creeping-flow equations are used to model the very viscous flows

of interest. The main solution method is finite elements, and a purpose-written

computer program has been developed to solve the creeping-flow equations by this

method. The present program is restricted to solving for either two-dimensional or

axisymmetric flows but is extendible to three dimensions. In addition, semi-analytic

series and asymptotic methods are used for some small portions of the work.

The optical applications of this work demand consideration of the topic of com-

puting surface curvature, and therefore second derivatives, from inexact and discrete

numerical and experimental data. For this purpose, fitting of B-splines by a least-

squares method to coordinate data defining the surface has been used.

Much of the work assumes isothermal conditions, but in the context of the

accuracy required in optical component manufacture it is also possible that non-

isothermal effects will be important. Consequently, this restriction is eventually

x



Abstract xi

relaxed and some consideration given to non-isothermal conditions.

In order to validate the creeping-flow model and finite-element program, com-

parisons of numerical simulations with experimental results are performed. A pre-

liminary assessment of the importance of non-isothermal conditions to the thermal-

replication process is also made by comparing isothermal and non-isothermal simu-

lations with experimental results. The isothermal model is found to best match the

experimental data.
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Chapter 1

Introduction

The viscosity of a fluid is the ratio between shear stress and the resulting time rate

of strain or velocity gradient [7, p. 36]. It is a measure of the internal resistance of

the fluid to deformation. A very viscous fluid is characterized by a large viscosity,

and has large internal resistance to deformation.

Some common household examples of very viscous fluids include honey; syrups

such as maple syrup, malt, molasses; motor-oil additives; and cooking mixtures.

Such fluids are found to be more difficult to stir or pour than low-viscosity fluids

such as water. In nature we see many spiders and insect larvae produce very viscous

fluids from which they spin webs and cocoons. Beneath its crust, the earth consists

of very viscous molten rock, which is seen only when forced to the surface in volcanic

eruptions and larva flows.

Very viscous fluids feature in a number of industrial processes. Polymers, such

as nylon, on heating become very viscous fluids, that can be spun into threads for

use in textiles, or injection, press or blow moulded to form the plastic items that

have become so common in the twentieth century. Molten glass is yet another very

viscous fluid which has long been used to produce items of both artistic and practical

value — windowpanes, containers of various forms, mirrors, and optical lenses to

name just a few.

1



Introduction 2

The primary focus of this thesis is on the simulation of slumping flows of molten

glass due to self weight under the influence of gravity, using a creeping-flow model

and finite-element methods. Of particular interest is the industrial process of ther-

mal replication [84], which has application to the production of aspheric surfaces

for optical uses. Thermal replication involves placing a glass workpiece on a mould,

and then heating this combination in an oven so that the glass melts and slumps

into the mould. During slumping, the lower surface of the glass workpiece contacts

the mould, and hence is affected by the roughness of the mould. However, a very

smooth profile is obtained on the upper surface of the glass workpiece. The process

is described in more detail in [84] and in Chapter 6 of this thesis. At this stage it

is sufficient to note that the idea is to obtain a near replica of the mould surface

on the upper surface of the glass workpiece, that is sufficiently smooth for optical

applications. The curvature profile of this surface is critical; a model that can accu-

rately predict the final curvature of the upper glass surface from some initial glass

workpiece and mould combination, would be of considerable benefit to industry.

A considerable amount of research into the modelling of glass forming has been

carried out over the past ten to fifteen years, but this research, with few exceptions,

relates to container manufacture by blow moulding of thin glass films. There are two

main stages to that process: the forming of an initial shape, known as the parison,

usually by pressing a quantity of molten glass in a mould; this still molten parison

is then transferred to another mould and air blown into it so that it expands to

fill that mould. Most modelling of blow moulding has been focused on the second

blowing stage.

In 1984 a paper appeared by Cormeau, Cormeau, and Roose [21] in which a

creeping-flow finite-element model for simulating only the blowing stage is pre-

sented, along with some initial computational results. Further work of a similar

nature followed, by Williams, Owen, and Sa in 1986 [100], and then some years

later by Burley and Graham (1991) [14] and Graham, Burley, and Carling (1992)



Introduction 3

[38]. Although one flow is driven by gravity and the other by pressure, there is

considerable similarity between thermal replication and the blowing of a molten-

glass parison out to a mould, and similar modelling techniques to those outlined in

these papers on blow moulding have been employed in this thesis. With respect to

the first parison-forming stage of blow moulding, just recently (1996) Simons and

Mattheij [83] published their work on pressing (or stamping) of parisons, for which

both finite-element and boundary-element methods were used.

Methods other than finite elements may also be used to analyse both glass slump-

ing and glass blowing. One used in this thesis is thin-layer approximation, and the

equations obtained are comparable with thin-layer equations for a creeping-flow

model of pressure driven flows of thin films that have been recently derived by van

de Fliert, Howell, and Ockendon (1995) [96], and Howell (1996) [48].

The issue of major concern in container manufacture, and because of which the

research referred to above has been carried out, is achieving a uniform wall thickness

in the finished product, of a strength that is appropriate to its intended use. Above

all, thin weak spots must be avoided, while it is also desirable to keep material

costs to a minimum and not have excessive wall thickness either. This issue is quite

different to the issue of accurate surface curvature that is of major concern in thermal

replication of optical surfaces. Consequently, although a creeping-flow model and

finite-element methods similar to those used in some of the above-mentioned work,

have been used in the present thesis, it differs from previous work in its concern with

calculation of curvature from non-exact discrete numerical data yielded by finite-

element simulations. Compared with film thickness, curvature is highly sensitive to

small variations in the profile of a surface.

In the area of glass slumping, particularly in relation to the generation of op-

tical surfaces, very little research has been reported in the published literature. A

1976 paper by Gulati, Fontana, and Plummer [42] reports investigations by Corn-

ing Glass Works into disc slumping as a method for determining glass viscosities
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using a viscoelastic analogy model. The paper [42] also mentions unpublished work,

that is nevertheless the subject of an internal Corning Glass Works report [41], on

developing of disc sagging schedules for use in the manufacture of lens blanks of a

desired surface curvature. Mould contact was not a feature of any of the Corning

slumping work. Also, only average curvatures of lens surfaces, computed from the

measured sag at the disc centre, assuming lens geometry to be spherical, were ob-

tained, whereas the curvature profile over the whole of a progressive power optical

surface is of interest, and is a matter addressed in this thesis.

Although glass slumping and thermal replication are the main focuses of this

thesis, the creeping-flow model and finite-element program developed are applicable

to a wide range of gravity-driven very viscous flows, both involving contact with a

mould, and without mould contact. A simple household example considered here is

honey dripping from a spoon. This is a flow that anyone can relate to and experiment

with, and for that reason this work at one time aroused some media interest [6]. It is

an example of an extensional flow, a class of motions that has received considerable

attention in the published literature over many years, for example in relation to fibre

spinning [28, 78].

The literature mentioned in this introduction will be further discussed through-

out this thesis in the context of specific flow problems. Additional literature, relating

to the processes considered and methods used, will also be surveyed, as the context

requires and allows. The structure of the thesis is as follows.

First in Chapter 2 a constant-viscosity creeping-flow model applicable for gravity-

driven very viscous flows is developed, and its solution by finite-element methods

is discussed. A computer simulation program using a finite-element method is also

developed, which is referred to throughout this thesis as the “purpose-written” pro-

gram/code. Where there is no danger of confusion with other finite-element pro-

grams it may also be simply referred to as “the finite-element program/code”.

In Chapter 3 we consider sagging of a very viscous liquid bridge, which is a two-
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dimensional case of slumping without progressive mould contact. Initial motion is

obtained by a semi-analytic method, as well as by finite elements using both a com-

mercial CFD package Fastflo and the purpose-written code developed in Chapter 2.

The purpose-written code is, in this manner, able to be verified, and is then used

to solve for the flow at later times. An asymptotic method is used to solve for thin

bridges.

The dripping of honey from a spoon is considered in Chapter 4 using both a

slender-filament approximation and finite elements. The time and position at which

a drop will break is given special attention.

Slumping of glass in the absence of a mould is the subject of Chapter 5, with the

sagging work of Gulati et al. considered in some detail, and compared with finite-

element simulations. Because the temperature changes in time, it is necessary to

compute for a time-varying viscosity, and it is shown how this is possible using the

constant-viscosity finite-element model and a time-varying time scale. At this stage

it is assumed that, at any point in time, the viscosity is spatially constant throughout

the glass. In addition, in this chapter a common myth concerning slow flow of

glass windows over centuries is disproved by a thin-layer mathematical analysis not

previously employed in relation to this subject.

In Chapter 6 we begin our specific analysis of thermal replication, developing

methods for handling mould contact and computing surface-curvature profiles. A

viscosity that varies in time but is spatially constant throughout the glass is still

assumed. The transfer of mould roughness to the optical surface is also examined,

with attention given to the importance of glass thickness relative to the coarseness

of the mould surface.

Because even small changes to the shape of an optical surface have a large effect

on the curvature profile of that surface, and because the viscosity of a glass, and

hence its flow properties, are very sensitive to temperature, there is a real possibil-

ity that spatial temperature variations in the glass will significantly affect the final
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optical surface. However, measurement of actual temperature throughout a slump-

ing glass disc presents practical difficulties, and developing a full thermo-mechanical

model of thermal replication is also very difficult. Hence, in Chapter 7, the finite-

element model is extended to handle a spatially-varying viscosity, and a number of

simulations run for different prescribed temperature gradients in the glass so as to

qualitatively assess the effects of spatial temperature variations on the curvature

of the final optical surface. A simple one-dimensional diffusion model is used to

examine the magnitude of spatial temperature variations that possibly develop in

slumping glass during the thermal-replication process, and give some guidance in

the prescription of the temperature gradients.

Then, in Chapter 8, a comparison is made between experimental slumping re-

sults and slumping simulations, with and without spatial temperature gradients in

the glass, the aim being to find whether a spatially constant-viscosity model is ap-

propriate for thermal replication, or whether more complex heat-flow modelling is

warranted.

Some conclusions from this work are given in Chapter 9. In particular it ap-

pears that, for the thermal-replication process, curvature profiles computed from

finite-element simulations with the assumption of spatially constant glass viscosity

correspond well with profiles computed using available experimental data. There

are differences between numerical and experimental results in the time over which

slumping occurs, which can be explained by incorrect viscosity data and corrected

by multiplying viscosity by an appropriate factor.



Chapter 2

A Creeping-Flow Model

2.1 The Equations

As already indicated in the Introduction, there are many fluids that can be described

as very viscous. Of these, some may be considered to be Newtonian, with stress being

proportional to rate of strain, the viscosity µ being the constant of proportionality.

Others are non-Newtonian, requiring more complicated models to describe accu-

rately the relationship between stress and rate of strain (see [10]). Because of the

uncertainty associated with non-Newtonian models and their application to specific

flow problems, it is common to adopt the Newtonian assumption as a starting point

in modelling, even for known non-Newtonian fluids.

A Newtonian fluid is commonly thought of as having constant viscosity both in

time and space. However the definition, as given above, does not demand this, and

in this thesis a fluid is described as Newtonian provided that there is proportionality

between stress and rate of strain, even though the viscosity may vary temporally

and/or spatially. In addition, conditions are said to be isothermal if the viscosity is

spatially constant for all time (i.e. temporal variation is allowed). This terminology

is appropriate in circumstances where variations in viscosity are associated with a

time-varying temperature.

7
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Throughout this thesis it is assumed that the very viscous fluids with which we

shall be concerned are incompressible with constant density ρ, and Newtonian. For

the present, it is also assumed that the viscosity is constant in both time and space,

although this will be relaxed later. At this stage no attempt is made to justify these

assumptions; that is left until we come to deal with specific fluids and flow problems.

Employing tensor notation let us denote the Cartesian coordinate system by xi,

and let x2 be a vertically upward axis. With gravity g acting as the driving force

vertically down in the −x2 direction, and defining ui as the velocity vector and p as

pressure, the flow is given by solving [7, pp. 75,147,175] the Navier-Stokes equations

ρ

(

∂ui

∂t
+ uj

∂ui

∂xj

)

= −
∂p

∂xi

+
∂

∂xj

[

µ

(

∂ui

∂xj

+
∂uj

∂xi

)]

− ρgδ2i, (2.1)

and the continuity equation for incompressible flow

∂ui

∂xi

= 0. (2.2)

The use of the Kronecker delta in (2.1) restricts the contribution of the gravitational

force (last) term to the second (i = 2) equation.

Because the fluids to be modelled are very viscous with µ very much larger than

1Pa · s, we can further simplify (2.1). Let us denote characteristic length L, velocity

U , time T = L/U , and pressure P = ρgL, and dimensionless quantities for position

x∗i , velocity u
∗
i , time t∗, and pressure p∗ such that

xi = Lx
∗
i , ui = Uu

∗
i , t = T t∗, and p = Pp∗. (2.3)

Then equations (2.1) become

U

T g

(

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

)

= −
∂p∗

∂x∗i
+

∂

∂x∗j

[

µU

ρgL2

(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)]

− δ2i. (2.4)

On defining

U =
ρgL2

µ
(2.5)
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so that all terms on the right-hand side of (2.4) are of order one, we have inertial

terms on the left-hand side of these equations of order

U

T g
=
U2

gL
=
ρUL

µ
=
ρ2gL3

µ2
. (2.6)

When this Reynolds number is much less than one, as can be expected for very

viscous fluids, the inertial terms may be neglected yielding the (dimensionless) Stokes

equations (cf. [7, p. 217])

∂p∗

∂x∗i
=

∂

∂x∗j

(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)

− δ2i. (2.7)

If instead we multiply (2.4) by T g/U so that the inertial terms on the left-hand

side are of order one, we see that the inertial and viscous terms are of the same

order only for a time of size

T =
ρL2

µ
. (2.8)

For fluids of large viscosity, this is typically an extremely short time period during

which the fluid particles accelerate to a speed of order

gT =
ρgL2

µ
, (2.9)

and move very small distances of order

gT 2 =
ρ2gL4

µ2
. (2.10)

Subsequently, the inertial terms have negligible contribution to the flow and may

be dropped from the equations, as is plain from a comparison of (2.5) and (2.9).

Because of the smallness of both the time interval in which this happens and the fluid

particle displacements, it is reasonable to ignore the inertial terms altogether, and

assume instantaneous development of an initial velocity field before any significant

movement of the fluid particles.

Thus the flow of very viscous fluids is given by the solution of the Stokes creeping-

flow equations (2.7) subject to appropriate initial and boundary conditions, though
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we shall need to check the validity of our assumptions in the context of specific flow

problems. Deferring a consideration of the initial conditions till a little later, let us

first discuss the specification of boundary conditions.

For all problems considered in this work, the boundaries of the flow domain are

either in contact with a solid support or are free surfaces. Use will also be made of

vertical and horizontal planes of symmetry and anti-symmetry to reduce the amount

of computation.

At boundaries that are in contact with a solid support, it is assumed that there

is no slip so that

ui = u∗i = 0. (2.11)

At free-surface boundaries, surface stresses are given by [75, p. 14]

Ti = −pni + µnj

(

∂ui

∂xj

+
∂uj

∂xi

)

= γni

(

1

R1
+

1

R2

)

(2.12)

where γ is the coefficient of surface tension, ni is the outward unit normal to the

surface, and R1 and R2 are the principal radii of curvature. Written in terms of

non-dimensional quantities as before, equations (2.12) become

−p∗ni + nj

(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)

=
γ

µU
ni

(

1

R∗
1

+
1

R∗
2

)

. (2.13)

The dimensionless parameter

Ca = µU/γ = ρgL2/γ, (2.14)

known as the capillary number, is large in problems of interest here, except in very

localized regions of high curvature characterized by a small length scale L. Therefore,

at free-surface boundaries, the simplified no-stress free-surface conditions

−p∗ni + nj

(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)

= 0 (2.15)

can be applied. Planes of symmetry and anti-symmetry with normal parallel to axis

xI also require that (2.15) be satisfied, and in addition we must have

u∗I = 0 (2.16)
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on a plane of symmetry since there can be no flow normal to the plane, and

u∗i = 0, i 6= I (2.17)

on a plane of anti-symmetry since there can be no flow tangential to the plane.

We now come to a consideration of the issue of initial conditions. The equations

given so far, to describe the very viscous fluid flows with which we shall be concerned,

do not involve the time variable. This was removed with the inertial terms in

the Navier-Stokes equations, and has not featured since. Thus, initial velocity or

pressure fields are not required in order to solve the creeping-flow equations; only

the geometry of the flow domain needs to be specified. The solution velocities and

pressures so obtained are for a particular instant in time when the geometry is known

and specified. In particular, any flow that is apparently started from ‘rest’ appears

to instantaneously establish a flow field appropriate to the initial geometry, as was

discussed earlier.

To complete the mathematical formulation and obtain the evolution of geometry

and flow in time one further equation must be included, involving the time variable

t, and giving the change in the flow domain geometry that results from the flow field

that develops. This could be the kinematic condition [75, p. 13] on all free surfaces

F(xi, t) = 0, namely

DF

Dt
=
∂F

∂t
+ ui

∂F

∂xi

= 0. (2.18)

Alternatively, the Lagrangian equation

ui = dxi/dt (2.19)

can be solved [104, p. 29] to determine the displacement of points xi, including those

that fall on free-surface boundaries. The latter method is preferred for the solution

methods used in this thesis, excepting for a few occasions where the kinematic

condition (2.18) is more suitable.
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There is an interesting consequence deriving from this method of solving the

creeping-flow model for the velocity field in a particular geometrical configuration,

and then modifying the geometry to reflect the fluid flow. Because there is no need

for initial conditions apart from the initial geometry, therefore we do not need to

know any of the previous flow history in order to solve for the flow at any point in

time; all that is required is the geometrical configuration at that point in time. How

that geometrical configuration was arrived at is quite immaterial, so that whether

the flow commenced with a specified geometry, or that geometry was attained as

the result of some flow history, the future flow behaviour will be identical.

The method used for time advancing the flow geometry will be discussed further,

after considering some methods for solving the Stokes equations.

2.2 Methods of Solution

There are a number of methods that might be used to solve Stokes creeping-flow

problems, with their suitability depending on the precise nature of the flow problem

in hand and the solution sought. Thus in selecting a solution method it is necessary

to first consider the important properties of the flow problems to be solved, and the

output desired. Already we have the requirement that we be able to handle free

surfaces, and accurate tracking of moving free-surface boundaries is of considerable

importance to some applications that we shall consider. In addition, for the flows

considered in this thesis, it is necessary to be able to model flow in completely general

flow domains, and allow possible interaction with a mould. As will be seen, although

isothermal conditions have been assumed for the moment, we shall eventually wish

to relax this condition and permit non-uniform fluid properties throughout the flow

domain.

Of the numerical solution methods applied in the field of computational fluid

dynamics (CFD), those most well-known are finite-element, finite-difference, finite-
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volume, and boundary-element methods, all of which have been utilized in commer-

cial and purpose-written CFD programs. Of these, the finite-element method has

been selected as the most suitable for the type of problem we wish to solve, with

reasons as follows.

A well-recognized major drawback to using finite-difference techniques is the

requirement to use a structured rectangular mesh, making the boundaries of complex

flow domains difficult to represent. Sometimes this problem can be overcome by

mapping the physical domain to a rectangular computational domain, which does

of course result in an additional level of computational complexity. By contrast the

unstructured meshes permissible with finite-element methods can much more easily

accommodate complex domain boundaries, and since one of the major aims of this

work is to accurately determine the evolution of free-surface boundaries, it makes

good sense to use finite elements rather than finite differences. Another known

difficulty with finite difference methods is the accurate specification of boundary

conditions, and the specification of zero-stress free-surface boundaries, as we require,

is extremely difficult, especially by comparison with the finite-element method which

handles them quite naturally, as we shall see.

At the commencement of this work, use of the finite-volume commercial package

Phoenics, developed by CHAM [19], was investigated. Grids used with the finite-

volume method must still be reasonably structured arrangements of quadrilateral

elements, though variable element sizing does make things easier for non-rectangular

domains. There is also a boundary-fitted coordinates facility to assist with mapping

from physical to computational domains. However, as with finite differences, the

natural boundary conditions of the finite-volume method are Dirichlet and Neu-

mann conditions or a mixed form of these, and, again, specification of the no-stress

boundary condition is difficult. Despite communication with the user support fa-

cility of CHAM in the United Kingdom, no way was found to specify this using

Phoenics, and, while it is almost certainly possible to devise a means to specify this
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boundary condition by finite-volume methods, this experience along with the desire

to represent possibly complex and changing non-rectangular flow domains led to the

definite conclusion that finite elements are more appropriate for problems involving

free surfaces. Thus, the attempt to use finite-volume methods, and Phoenics in

particular, was abandoned.

The boundary-element method causes no difficulties when it comes to represent-

ing complex domain boundaries, since it is these that are discretized rather than

the whole flow domain. In addition this results in a reduction of the order of the

problem to be solved. However it does assume that the fluid properties are spa-

tially constant, so that our ultimate desire to permit non-uniform fluid properties

(especially viscosity) renders this method inappropriate.

For some simple flow domains and simplifying assumptions, some useful solutions

can be readily, and sometimes more efficiently, obtained by methods other than fi-

nite elements. As already intimated the boundary-element method could be used so

long as we keep the isothermal assumption, though this has not been done because

program development for boundary elements is as complex and time consuming as

for finite elements, even if the result is computationally more efficient. However use

has been made of series methods with collocation to solve for flow in simple rect-

angular domains, and asymptotic methods for slender and nearly plane geometries.

These special solutions yield information that is not easy, or even possible, to obtain

by finite elements, and also provide a means of verifying the finite-element solution.

Having settled on finite elements as the generally-preferred numerical solution

technique for this work, the question arises as to whether use can or should be made

of a commercial CFD finite-element package. At the commencement of this work, it

was thought to be a good idea to make use of existing software if applicable, and it

was for this reason that the finite volume code Phoenics was investigated. Having

discarded this for reasons already given, attention was turned to the finite-element

code Fastflo [22] written by the CSIRO Division of Mathematics and Statistics,
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which was accessible during the course of this work. This proved to be much better

for handling free surfaces, and was utilized in much early work involving no mould

contact. However, updating a boundary segment from free surface to no slip, as is

necessary for modelling a free surface contacting a mould, was found to be extremely

difficult to achieve within Fastflo. Consequently the decision was made to write

a special-purpose finite-element program, rather than spend further time trialling

other available packages or trying to devise a method that would enable continued

use of Fastflo.

In the remainder of this chapter, a detailed description of the finite-element

method as it has been applied to Stokes creeping flow is given. This description

relates not only to the purpose-written program developed in connection with the

present work, but also to Fastflo, since very similar methods are employed in both

programs. It follows, to a considerable extent, that given in the finite-element books

by Becker, Carey and Oden, particularly the first volume [8]. Use of series and

asymptotic methods for solving very viscous fluid flows will be described in the

context of specific problems to which they have been applied.

2.3 The Variational Equations

To implement the finite-element method let us first write the equations in their weak

form. This is obtained by multiplying through by an appropriate test function, and

then integrating over the flow domain Ω. Dropping asterisks (*) on dimensionless

variables, the continuity equation (2.2) becomes

∫

Ω
v
∂ui

∂xi

dV = 0, (2.20)

and the Stokes equations (2.7) become

∫

Ω
wi
∂p

∂xi

dV −
∫

Ω
wi

∂

∂xi

(

∂ui

∂xj

+
∂uj

∂xi

)

dV = −δ2i

∫

Ω
wi dV, (2.21)

where wi is a vector test function and v is a scalar test function.
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Next we obtain the variational form suitable for finite-element solution by ap-

plying Green’s theorem to (2.21) which becomes

−
∫

Ω
p
∂wi

∂xi

dV +
∫

Ω

∂ui

∂xj

∂wi

∂xj

+
∂uj

∂xi

∂wi

∂xj

dV

−
∫

∂Ω
wi

[

−pni + nj

(

∂ui

∂xj

+
∂uj

∂xi

)]

dS

= −δ2i

∫

Ω
wi dV (2.22)

with ∂Ω being the boundary of the flow domain Ω. In this form there are no terms

involving the pressure gradient, which have been replaced with terms involving the

unknown pressure p, and terms involving second derivatives of velocities have been

replaced with terms involving first derivatives. This process has also yielded a

boundary-integral term which is readily recognized as containing the expression for

the stress on a free surface. Because of its appearance in the variational equations,

specification of the surface stress as a boundary condition, as done in (2.15), is known

as a natural boundary condition, while the no-slip boundary conditions given in

(2.11) are called essential boundary conditions. It is the occurrence of the expression

for surface stress in the equations describing the problem, that makes the finite-

element method so suitable for modelling the type of free-surface flows that are the

subject of this thesis.

At this stage the test functions wi and v are quite arbitrary, and we now re-

strict wi to the space of functions that satisfy the homogeneous essential boundary

conditions defined for ui in (2.11).

Returning again to the boundary integral term in (2.22) we now have wi = 0 on

all no-slip boundary segments, while on all free surfaces there is zero surface stress,

so that there is no contribution to the boundary integral from these segments of the

domain boundary ∂Ω. Similarly, because of the zero stress conditions, the boundary

integral evaluates to zero on boundary segments that are planes of symmetry and

anti-symmetry. Since these are the only boundary conditions applicable to the

problems we shall consider, the boundary integral term evaluates to zero and may
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be removed from the variational equation.

2.4 Penalty Formulations

The problem as formulated so far requires the solution of coupled velocity and pres-

sure fields. A common device used with the finite-element method, for decoupling

the velocity and pressure solutions, is to introduce an artificial compressibility by

writing

∂ui

∂xi

= −
p

λ
(2.23)

where λ is a large penalty number [18, 34]. For sufficiently large λ this is almost

the continuity equation for incompressible flow. Equation (2.23) can be used to

eliminate pressure from the Stokes creeping-flow equations, so that our variational

problem is, on removing the boundary integral, reduced to solving the equations

∫

Ω

∂ui

∂xj

∂wi

∂xj

+
∂uj

∂xi

∂wi

∂xj

+ λ
∂uj

∂xj

∂wi

∂xi

dV = −δ2i

∫

Ω
wi dV (2.24)

for the velocity field. Once this is known, the pressure field, if required, can be

obtained by solving (the weak form of) (2.23).

Because of the introduction of artificial compressibility, there should be, strictly

speaking, additional terms on the left-hand side of (2.24), deriving from the momen-

tum equation for compressible flow, all of which are integrals of products of ∂ui/∂xi.

However, from (2.23), these terms are small compared with the other terms, and

hence are neglected.

Equation (2.24) is a penalty form of the equations for incompressible Stokes

creeping flow, and has been successfully used in the finite-element modelling of

forming processes [70]. However, while we would like to choose λ to be as large

as possible, if it is chosen too large, an ill-conditioned matrix will result and the

method will not work. Furthermore the maximum permissible size of the penalty

number λ is dependent on the mesh size [18].
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A variation to the penalty method, known as the augmented Lagrangian method,

leads to an iterative scheme for solving for the velocity and pressure fields [105, pp.

357–360]. After modifying (2.23) to

pn+1 = pn − λ
∂ui

∂xi

(2.25)

where pn is the nth pressure iterate, we substitute the expression for pn+1 for p in

(2.22) leading to (2.24) with an additional term

∫

Ω
pn
∂wi

∂xi

dV

on the right-hand side. We can then start with some initial guess p0 for the pressure

field and iteratively solve this equation for the unknown velocity field followed by the

weak form of (2.25) to update the pressure field. When the pressure has converged

(i.e. pn+1 = pn) then the continuity equation for incompressible flow will be satisfied,

so that the solution should be more accurate than obtained by the penalty method.

This method has the advantage that λ does not need to be as large as for the

penalty method. Rather it is chosen to speed convergence, and hence is called the

convergence accelerator.

Both the penalty and augmented-Lagrangian methods were investigated while

trialling the CFD package Fastflo which was not, at that time, capable of solving

the fully-coupled equations. This is reported in Chapter 3, where we also compare

with results given by the purpose-written program solving the fully-coupled Stokes

creeping-flow problem of Section 2.3.

2.5 The Axisymmetric Equations

So far the equations we have derived are applicable to completely-general three-

dimensional flow domains. Three-dimensional problems do however present consid-

erable difficulties when it comes to generating both volume and surface meshes
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for complex flow regions, and as a result attention has been restricted to two-

dimensional and axisymmetric problems. While the tensor notation of the equa-

tions that we have employed is easily applied in two dimensions, the axisymmetric

equations do differ slightly requiring the addition of a few extra terms, and these

are given here for completeness.

Let ur, uθ, and uz be the radial, angular, and vertical velocity components in

cylindrical coordinates (r, z, θ). Then, for axisymmetry, uθ = 0, and the conversion

from cartesian to cylindrical coordinates is given by

x1 = r cos θ, x2 = z, and x3 = r sin θ, (2.26)

u1 = ur cos θ, u2 = uz, and u3 = ur sin θ. (2.27)

Using these, we may convert equations (2.20) and (2.22) to their axisymmetric

equivalents. Changing notation, let us now define x1 and x2 to be the radial and

vertical directions respectively, so that we can express these in tensor notation.

Then, we have the axisymmetric variational forms of the continuity equation

∫

Ω
v

(

∂ui

∂xi

+
u1
x1

)

x1 dx1 dx2 = 0 (2.28)

and the Stokes equations

−
∫

Ω
p

(

∂wi

∂xi

+
δ1iw1
x1

)

x1 dx1 dx2

+
∫

Ω

(

∂ui

∂xj

∂wi

∂xj

+
∂uj

∂xi

∂wi

∂xj

+
2δ1iu1w1

x21

)

x1 dx1 dx2

−
∫

∂Ω
wi

[

−pni + nj

(

∂ui

∂xj

+
∂uj

∂xi

)]

x1 dS (2.29)

= −δ2i

∫

Ω
wi x1 dx1 dx2, (2.30)

where, again, the boundary integral can be dropped from (2.30) since, as for Carte-

sian coordinates, it has zero contribution for the types of problem of current interest.

The penalty system of axisymmetric equations is obtained by substituting

−p = λ

(

∂uj

∂xj

+
u1
x1

)

(2.31)
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in (2.30), and as before, the iterative augmented Lagrangian method is obtained

from a modification of (2.31).

2.6 The Galerkin Finite Element Method

Having obtained the variational form of either the fully-coupled or penalty equa-

tions, we now wish to solve them using finite elements. Before we can proceed

further, we need to discretize the flow domain by defining a mesh over it. A good

discussion of the issues surrounding mesh generation is contained in [62, Ch. 7].

For two-dimensional and axisymmetric flows, quadrilateral or triangular elements

are the usual choices. Historically, prior to the advent of isoparametric mapping,

straight-sided triangles were very popular, being much more suitable for approximat-

ing irregular boundaries. More recently, with isoparametric formulations, quadrilat-

eral elements have become the more common [32, 69]. However, as is well-known,

for any particular problem, convergence of a finite-element method is not assured

for all element types (see [62]), and while no rigorous testing has been conducted to

determine the reason, experimentation has shown quadrilateral elements to be quite

unsuitable for our problems, yielding obviously erroneous results. Structured trian-

gular meshes obtained from quadrilateral meshes by dividing all elements across the

same diagonal were also found to be unsuitable, displaying convergence problems

as the number of elements was increased. Hence unstructured meshes of isopara-

metric triangular elements are used, which do yield good results, and in addition

are automatically generated by appropriate input to Fastflo, a facility that is used

extensively in this work.

The discretized problem is to solve the variational equations for the unknowns at

the mesh nodes. For stability reasons it is usual to use a mixed method whereby the

solution for pressure is obtained using elements of an order lower than those used

for solving for velocity [9, 18, 75]. Therefore we mesh with quadratic triangular
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elements defined by three corner and three mid-side nodes, noting that the lower

order linear elements are defined by just the three corner nodes. Then, we solve for

the velocity components at all six nodes, and for pressure at the three corner nodes.

Let N be the total number of nodes in our mesh and M be the total number of

corner nodes where N > M . We then define the usual set of quadratic polynomial

basis functions

{φk(xi), k = 1, N} (2.32)

that are piecewise continuous between elements, with one per node such that φk = 1

at node k and is zero at all other nodes. Each φk will be non-zero on only those

mesh elements that include node k, and over all other elements φk = 0. We also

define another set of M linear basis functions using only corner nodes,

{ψk(xi), k = 1,M} (2.33)

that are also piecewise continuous between elements and only non-zero on elements

containing node k, such that ψk = 1 at node k and is zero at all other corner nodes.

Then we set

wi =
N
∑

k=1

aki φ
k(xj), ui =

N
∑

k=1

αk
i φ

k(xj), (2.34)

and

v =
M
∑

k=1

bkψk(xi), p =
M
∑

k=1

βkψk(xi), (2.35)

where the aki and bk are constant coefficients that we can choose, while the αk
i and

βk
i are constant coefficients for which we must solve so as to find the velocity and

pressure fields throughout the flow domain. Note the use of summation notation

in order to clearly show the number of terms involved, while tensor notation is still

used in relation to problem dimension.

These expressions for wi, ui, v and p are now substituted into the variational

equations. This gives for the continuity equation (2.20)

−
M
∑

k=1

bk
N
∑

`=1

∫

Ω
ψk ∂φ

`

∂xi

dV α`
i = 0, (2.36)
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and for the Stokes equation (2.22)

−
N
∑

k=1

aki

M
∑

`=1

∫

Ω

∂φk

∂xi

ψ` dV β` +
N
∑

k=1

aki

N
∑

`=1

∫

Ω

∂φk

∂xj

∂φ`

∂xj

α`
i +

∂φk

∂xj

∂φ`

∂xi

α`
j dV

= −δ2i
N
∑

k=1

aki

∫

Ω
φk dV. (2.37)

Ignoring for the moment the essential homogeneous boundary conditions, the coef-

ficients aki and bk can be anything we like to choose, and if we choose successively

aki = δ1k, δ2k, . . . , δNk,

bk = δ1k, δ2k, . . . , δMk, (2.38)

for a problem of dimension D we get M + DN equations for the M pressure and

DN velocity unknowns, namely

−
N
∑

`=1

∫

Ω
ψk ∂φ

`

∂xi

dV α`
i = 0 for k = 1, 2, . . . ,M, (2.39)

and

−
M
∑

`=1

∫

Ω

∂φk

∂xi

ψ` dV β` +
N
∑

`=1

∫

Ω

∂φk

∂xj

∂φ`

∂xj

α`
i +

∂φk

∂xj

∂φ`

∂xi

α`
j dV

= −δ2i

∫

Ω
φk dV for k = 1, 2, . . . , N. (2.40)

If the penalty equations are used then we have only DN unknown velocity com-

ponents obtainable by solving the DN equations

N
∑

`=1

∫

Ω

∂φk

∂xj

∂φ`

∂xj

α`
i +

(

∂φk

∂xj

∂φ`

∂xi

+ λ
∂φk

∂xi

∂φ`

∂xj

)

α`
j dV

= −δ2i

∫

Ω
φk dV for k = 1, 2, . . . , N. (2.41)

The axisymmetric equivalents of (2.39), (2.40) and (2.41) are

−
N
∑

`=1

∫

Ω
ψk

(

∂φ`

∂xi

α`
i +

φ`

x1
α`
1

)

x1 dx1 dx2

= 0 for k = 1, 2, . . . ,M, (2.42)
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−
M
∑

`=1

∫

Ω

(

∂φk

∂xi

+
φk

x1
δ1i

)

ψ` x1 dx1 dx2 β
`

+
N
∑

`=1

∫

Ω

([

∂φk

∂xj

∂φ`

∂xj

+
2φkφ`

x21
δ1i

]

α`
i +

∂φk

∂xj

∂φ`

∂xi

α`
j

)

x1 dx1 dx2

= −δ2i

∫

Ω
φk x1 dx1 dx2 for k = 1, 2, . . . , N, (2.43)

and

N
∑

`=1

∫

Ω

([

∂φk

∂xj

∂φ`

∂xj

+
2φkφ`

x21
δ1i

]

α`
i + λ

[

∂φk

∂xi

φ`

x1
+
φkφ`

x21
δ1i

]

α`
1

+

[

∂φk

∂xj

∂φ`

∂xi

+ λ

{

∂φk

∂xi

∂φ`

∂xj

+
φk

x1

∂φ`

∂xj

δ1i

}]

α`
j

)

x1 dx1 dx2

= −δ2i

∫

Ω
φk x1dx1 dx2 for k = 1, 2, . . . , N. (2.44)

In order to satisfy the essential boundary conditions (2.11) we must have αk
i = 0

for all nodes k that lie on a no-slip boundary, and in addition at these nodes we must

also have aki = 0, so that our removal of the boundary integral from (2.22) remains

valid. Similarly, for nodes k lying on a boundary that is a plane of symmetry with

normal parallel to axis xI , we must have αk
I = akI = 0, or if it is a plane of anti-

symmetry we must have αk
j = akj = 0, j 6= I. This removes some of the equations

and unknowns leaving a set of equations to be solved which can be represented in

matrix form

Kijcj = fi (2.45)

where Kij is the stiffness matrix, cj is a vector of the unknown αk
i and βk, and fi is

the force vector containing the known right-hand side components of the equations.

Because the basis functions φk and ψk are non-zero only on elements which

include node k, the stiffness matrix is sparse and may be evaluated mesh element

by mesh element. Each non-zero component of the matrix is just the sum of the

contributions from each of the mesh elements that have a contribution to make.

Thus

Kij =
∫

Ω
gij(xk) dV =

Ne
∑

e=1

∫

Ωe

gij(xk) dV (2.46)
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Figure 2.1: Master triangular element Ω̂ for finite-element computations (after Becker et
al. [8]).

where there areNe mesh elements, Ωe is the region occupied by element e, and the gij

are functions of position representing the integrands. For our problems the stiffness

matrix is symmetric and, depending on the node-numbering scheme, may well be

banded, though the bandwidth can be large. The force vector is also evaluated by

computing the sum of the contributions from each mesh element.

Restricting our attention now to problems in two dimensions or that are axisym-

metrical, we follow the usual method as described by Becker et al. [8, Ch. 5–6], and

define the master triangular element Ω̂ shown in Figure 2.1. All nodes are labelled

by their area coordinates (ζ1, ζ2, ζ3) which are related to cartesian coordinates thus:

ζ1 = 1− x1 − x2, ζ2 = x1, and ζ3 = x2. (2.47)

This master element has a set of quadratic basis functions which we denote φ̂j, j =

1, . . . , 6, such that φ̂j = 1 at node j and is zero at all other nodes, and a set of linear

basis functions which we denote ψ̂j, j = 1, . . . , 3, such that ψ̂j = 1 at vertex j and

is zero at the other two vertices. Now we can compute the components of the

stiffness matrix and force vector for each mesh element, by mapping each element to

the master element. For a mesh of six-node triangles with nodes (xj
1, x

j
2), j = 1, . . . , 6,
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the transformation is given by

x1 =
6
∑

j=1

xj
1φ̂

j, x2 =
6
∑

j=1

xj
2φ̂

j, (2.48)

and for a mesh of three-node triangles the transformation is similar, with the sum-

mation being over just the three vertices and the ψ̂j replacing the φ̂j. Then,

∫

Ωe

g(x1, x2) dx1 dx2 =
∫

Ω̂
ĝ(ζ1, ζ2, ζ3) |J | dζ2 dζ3

=
∫

Ω̂
G(ζ1, ζ2, ζ3) dζ2 dζ3 (2.49)

where |J | is the Jacobian determinant of the transformation from Cartesian coordi-

nates (x1, x2) to area coordinates (ζ1, ζ2, ζ3) (see Figure 2.1), and G = ĝ|J |.

To evaluate these integrals we use numerical quadrature rules that evaluate poly-

nomial integrands exactly, and have the form [8]

∫

Ω̂
G(ζ1, ζ2, ζ3) dζ2 dζ3 =

n
∑

j=1

WjG(ζ1j, ζ2j, ζ3j). (2.50)

Here n is the number of quadrature points, (ζ1j, ζ2j, ζ3j) are the area coordinates of

quadrature point j, andWj are the weights. Typical quadrature points and weights,

for polynomial integrands of various degrees, are given in numerous finite-element

texts, and some that we have used are reproduced (from [55, p. 114], [98, p. 115],

and [105, p. 176]) in Table 2.1. The maximum order of polynomial that will be

exactly evaluated is given in the table.

The finite-element and true solutions of the variational equations will, of course,

differ, due to two sources of error: discretization error arises from representing a fluid

domain with a discrete mesh, and from evaluating the integrals using quadrature

rules for a discrete number of points; truncation or round-off error is incurred by the

representation of numbers with a finite number of digits. In order to keep truncation

error to a minimum, all our programming is done using double-precision arithmetic.

With respect to discretization error, let us first assume that all integrals are

evaluated exactly and consider the error arising from representing a fluid domain
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Table 2.1: Quadrature constants for triangles [55, 98, 105].

Order Error n ζ1 ζ2 ζ3 Wi

Linear O(`2) 1 1/3 1/3 1/3 1/2

Quadratic O(`3) 3 1/2 1/2 0 1/6
0 1/2 1/2 1/6

1/2 0 1/2 1/6

Cubic O(`4) 4 1/3 1/3 1/3 −27/96
0.6 0.2 0.2 25/96
0.2 0.6 0.2 25/96
0.2 0.2 0.6 25/96

with a discrete mesh. Then, as shown by Zienkiewicz and Taylor [105, pp. 37, 228–

230], the finite-element approximation locally, over an element, has error of order

O(`q+1) where ` is the mesh element size and q is the order of the polynomial basis

functions used in the finite-element expansions. Thus, for the very viscous flow

problems with which we are concerned, velocity ui has error of order O(`3) since

quadratic polynomials φ are used in the expansions (2.34), and pressure p has error

of order O(`2) since linear polynomials ψ are used in the expansions (2.35). Summed

over the whole flow domain this error is of order O(`q) [53, Ch. 4].

Discretization error due to evaluation of the integrals in the stiffness matrix

and force vector using quadrature rules, varies depending on the integrand and the

quadrature rule used. Since any quadrature rule will converge to the exact result

as ` goes to zero provided that it has error of order O(`) or less [105, p. 178], we

can just use the simple one-point rule given in Table 2.1, giving a local error of

order O(`2). However we can do better than this. For two-dimensional problems

using straight-sided triangular elements Ωe, the Jacobian determinant is twice the

element area [55, p. 116] and all terms in the integrand are polynomials — linear for

three-node elements and quadratic for six-node elements — so that evaluation using

the appropriate order quadrature rule from Table 2.1 is exact and no error arises
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from this quarter. Quadrature rules will not be exact, leading to discretization error,

when using six-node triangles that are not straight sided so that the integrand is not

necessarily a polynomial, and in axisymmetric problems in which one of the terms

contains the radius in the denominator which contributes a non-polynomial part to

the integrand even with straight-sided mesh elements. In these cases we can at least

preserve the order of convergence of the finite-element method by using a quadrature

rule that is exact for the degree of polynomial occurring in the integrand [105, p. 178],

[53, p. 61]. In two dimensions the degree of the polynomial integrand is 2q − 2

where q is the degree of the polynomial basis functions, while for an axisymmetric

geometry the integrands are of degree 2q − 1 on account of the multiplication by

x1 (see equations (2.28) and (2.30)). Thus in the two-dimensional quadratic case

the three-point quadrature is suitable, and for axisymmetric cases the appropriate

choices are the one-point and four-point rules for linear and quadratic mesh elements

respectively. In much of the work in this thesis, the four-point rule is used for all

integration because it is as good as, or better, than we require. Zienkiewicz and

Taylor [105, p. 177] do note that it can be a disadvantage to use higher orders of

integration than actually needed, but no problems have arisen on this account.

There is one further point to note in choosing quadrature rules for axisymmetric

problems that is briefly discussed in [38]. Evaluation of the term u1w1/x1 from

(2.30), containing the radius in the denominator, will be a problem should any of

the quadrature points fall on the axis of symmetry x1 = 0. At these points we

also have u1 = w1 = 0, but it is not obvious that the term will evaluate to zero.

Choosing a quadrature rule using points in the interior of the element avoids this

problem so that the one-point and four-point rules given in Table 2.1 are suitable

while the three-point rule may not be. Graham [38] uses a seven-point quadrature

with all quadrature points in the interior of the element, possibly that given in [55],

but we cannot see that the extra computation is warranted since the four-point

quadrature rule gives an error only as large as the mesh discretization error. For
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interest we shall obtain some results using both quadratures with points lying on the

element boundaries on the assumption that the difficult term is indeed zero on the

symmetry axis, and quadratures with only interior points so that this assumption

is not required. A comparison of these may indicate whether the term u1w1/x1 is

indeed zero on the axis or not.

Having evaluated the stiffness matrix and force vector, we must solve the system

of equations (2.45) for the unknowns cj. By using a sparse or banded matrix solver

we save on memory usage because we do not store all the zero entries in matrix

Kij. We can also exploit the symmetry of the matrix. Various library routines, such

as NAG and LAPACK, are available. One that has been found to be particularly

efficient is DGELB [91]. This routine is applicable to a general banded matrix, but

has been slightly modified to make it more efficient for our particular problems. It

solves directly by Gauss elimination.

2.7 Advancing in Time

Having solved for the velocity and pressure fields in our flow domain, we shall wish

to determine how the fluid region evolves in time due to the motion of the fluid

particles. For the unsteady problems, that we consider, a simple method adopted

for this work is to solve (2.19) at each mesh node j = 1, . . . , N having coordinates

[xi]
n
j at the nth time step, for the new node position [xi]

n+1
j after some time step

∆t has elapsed, using the velocity [ui]
n
j = ui([xi]

n
j ) that has been computed there

by the finite-element method. When the mesh nodes have been updated by moving

them to their new locations, we have a new flow region on which we can solve for

velocity and pressure, and we can continue in this manner to determine the further

evolution of the fluid region and the free surfaces in particular. This method is

described in [104]. It has the advantage of incorporating automatic remeshing in

the time-stepping process. Mesh elements can, however, become quite distorted in
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time, when it is necessary to stop the process and define a completely new mesh

over the flow region. In general, when this is done, it is necessary to interpolate

the velocity and pressure fields onto the new mesh, but because the solution of the

Stokes equations requires no information from a previous time step we do not have

this complication. As noted in [104], this method also requires that time steps be

chosen so that the displacement of any node is not too large, and so that boundary

nodes do not penetrate fixed boundaries. We shall discuss these matters further in

the context of specific flow problems.

To solve (2.19) we use, depending on the specific problem, either the simple Euler

method as given in [104] leading to

[xi]
n+1
j = [xi]

n
j + [ui]

n
j∆t, (2.51)

or a fourth order Runge-Kutta method [52]

[ki]
1
j = ui([xi]

n
j )∆t,

[ki]
2
j = ui([xi]

n
j + [ki]

1
j/2)∆t,

[ki]
3
j = ui([xi]

n
j + [ki]

2
j/2)∆t, (2.52)

[ki]
4
j = ui([xi]

n
j + [ki]

3
j)∆t,

[xi]
n+1
j = [xi]

n
j + ([ki]

1
j + 2[ki]

2
j + 2[ki]

3
j + [ki]

4
j)/6.

The Euler method is best for contact problems as we shall see, but otherwise the

Runge-Kutta method is preferable because of its greater accuracy. The Runge-Kutta

method is computationally more expensive than the Euler method, but this is offset

by being able to take larger time steps for a comparable or better accuracy, as will

be shown.

2.8 What Next?

The Stokes creeping-flow finite-element program that has been developed, as de-

scribed in this chapter, is applicable to a wide range of very viscous fluid flows, and



2. A Creeping-Flow Model 30

throughout the remainder of this thesis we make use of it in modelling just a few of

these. As we proceed we shall test and validate the code, introduce further details

not yet described, and expand upon some others only briefly touched upon to this

point in time.

In addition to this program, the finite-element CFD package Fastflo, given ap-

propriate input, solves some creeping-flow problems by a finite-element method very

similar to that described in this chapter. We use Fastflo, along with the purpose-

written program, for the first of the flows that we consider, as well as for generation

of meshes that form part of the input to the purpose-written program.



Chapter 3

A Sagging Viscous Bridge

3.1 Introduction

An initially rectangular two-dimensional ‘bridge’ of width 2w and thickness 2h spans

the gap between two vertical no-slip walls as shown in Figure 3.1. We suppose that

at time t = 0 the bridge becomes a very viscous fluid such that the assumptions

underlying the creeping-flow model of Chapter 2 are justified, and then compute the

sag of this bridge under the influence of gravity. This flow is the subject of a paper

by Tuck, Stokes, and Schwartz [93].

-

6

x

y

s

-¾ 2w

6

?

2h

Figure 3.1: An initially rectangular viscous bridge before sagging commences.

Although a very simple idealised flow problem, it does have some ‘real-world’

applications. One of these is bending-beam viscometry [92] whereby the sag of a

horizontal beam is used to measure viscosities of such things as molten glass [44],

31
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butter [60], and ice-cream [80]. A cylindrical beam is common, but a beam of

any regular cross section, including rectangular, can be used [44]. This problem

is also relevant to disc-bending viscometry [42], being directly comparable to the

sagging of an axisymmetrical initially flat disc clamped around its perimeter for

which the results are qualitatively similar. We shall return to the subject of disc-

bending viscometry in Chapter 5. A final application, that is mentioned here and

described in more detail later, is glass slumping/sagging as in the manufacture of

windshields and other vehicle components [36, 61], and aspheric optical surfaces [84].

The slumping of optical surfaces is the main focus of this thesis.

In this chapter we analyse this flow using finite-element methods, comparing

the solutions obtained using the fully-coupled, penalty and augmented-Lagrangian

methods described in Chapter 2. For penalty and augmented-Lagrangian solutions

we use Fastflo which can readily solve using methods such as these that decouple

the pressure and velocity calculations. However the version of Fastflo used (2.4, 11

August 1995) cannot simultaneously solve for pressure using linear mesh elements

and velocity using quadratic elements, and for this we use the purpose-written finite

element code described in Chapter 2. The Fastflo solutions provide an indepen-

dent means of verifying this program code. In using the penalty and augmented-

Lagrangian methods we need to consider the size of the penalty number/convergence

accelerator, and how this is influenced by mesh size.

We first compute the initial motion of the bridge at time t = 0+. Harking back to

the discussion in Chapter 2 justifying the creeping-flow model, we can assume that

the initial velocity profile is developed instantaneously, before there is any significant

departure of the free surface from its initial rectangular configuration. At this early

stage of the flow a semi-analytic solution may be obtained for comparison with the

finite-element solutions, providing a check of the finite-element methods used. For

the motion and free-surface shape at later times, we must depend upon the finite-

element method, excepting that, for nearly plane geometries of small aspect ratio



3. A Sagging Viscous Bridge 33

h/w, asymptotic calculations do provide some useful information.

3.2 A Semi-Analytic Series Solution

Instead of using the primitive variables u, v, and p (or ui and p) as we have described

in Chapter 2, the creeping-flow model may be written in terms of a stream function

ψ where the flow velocity is given by (u, v) = (ψy,−ψx). This stream function

automatically satisfies the continuity condition for incompressible flow, while the

Stokes equations,

px = µ∇2ψy, py = −ρg − µ∇2ψx, (3.1)

where subscript variables denote differentiation with respect to those variables, can

be reduced to the biharmonic equation

∇4ψ = 0. (3.2)

On the walls x = ±w the no-slip conditions become

ψx = ψy = 0, (3.3)

and, at t = 0+ when the geometry is still rectangular, the zero normal and tangential

stress conditions become

−p− 2µψxy = 0, and (3.4)

ψxx − ψyy = 0 (3.5)

respectively. The pressure p must be obtained by integrating equations (3.1).

We next write the stream function ψ as a series expansion

32h2µ

ρg
ψ =

1

5
x5 + 2x3y2 − 3xy4 + 24h2xy2

+A0w
4x+B0w

2(
1

3
x3 + xy2) (3.6)

+w5<
∞
∑

j=1

Cj

[

cos kj cos(kjy/h) +
y

h
sin kj sin(kjy/h)

]

sinh(kjx/h)

sinh(kjw/h)
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where A0 and B0 are dimensionless real constants, the Cj = Aj + iBj are dimen-

sionless complex constants, and the eigenvalues kj are solutions of sin 2k = 2k. The

expansion (3.6) satisfies the biharmonic equation, as well as the no-stress boundary

conditions on the free surfaces y = ±h. The solution is then obtained by solving

for the real coefficients {Aj, Bj}, j = 0, 2, . . ., such that the wall conditions (3.3)

are also satisfied. Since this flow is symmetrical about x = 0, and ψ given by the

expansion (3.6) satisfies this symmetry requirement, we need, in fact, only satisfy

these conditions on one wall, say x = w. This is done by truncating the infinite

series portion of (3.6) to N terms. We then choose N + 1 collocation points on the

wall x = w at which we satisfy (3.3), to give 2N + 2 equations that can be solved

for the 2N + 2 unknowns {Aj, Bj}, j = 0, 2, . . . , N .

The result should converge to the true solution as the number N of terms in

the series increases, although as N becomes large we expect to have problems of

numerical precision. Table 3.1 shows the vertical velocity −v/V at the top centre of

a typical bridge of aspect ratio h/w = 0.2 for different values of N , computed using

a program written by Tuck [95], that utilizes this method. The velocity scale

V =
ρgw4

32µh2
(3.7)

is justified below. Although the results for N = 150 and N = 300 deviate from

the general trend for some reason that is not understood, it would appear that we

have three figure accuracy, i.e. −v/V = 1.60, with just 50 terms, and four figure

accuracy i.e. −v/V = 1.599, with 350 terms. This can be compared with the results

of finite-element calculations.

In the thin-layer limit the coefficients Cj in (3.6) tend to zero quite rapidly so

that it can be simplified to

32h2µ

ρg
ψ =

1

5
x5 + w4x−

2

3
w2x3. (3.8)
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Table 3.1: Initial sagging velocity by the series-expansion method.

N −v/V N −v/V

50 1.601304 400 1.599479
100 1.600067 450 1.599498
150 1.591763 500 1.599540
200 1.599636 600 1.599418
250 1.599706 700 1.599404
300 1.598656 800 1.599414
350 1.599447 900 1.599433

This represents a unidirectional (vertical) flow with a parabolic-squared velocity

profile

v = −ψx = −
ρgw4

32µh2

(

1−
x2

w2

)2

. (3.9)

Setting x = 0 in (3.9) gives the thin-layer velocity limit at the centre of the bridge

as v = −ρgw4/(32µh2), and suggests the velocity scale V that we use throughout

this chapter.

This is a very ad hoc derivation of a thin-bridge result, and is a particular case

of a more general result that we shall formally derive using an asymptotic expansion

in Section 3.6.

3.3 Initial Motion by Finite Elements

Prior to any movement of the bridge the problem is symmetrical about x = 0 and

anti-symmetrical about y = 0 so that the calculation of initial velocities and pres-

sures may be restricted to one quarter of the total flow domain 0 ≤ x ≤ w, 0 ≤ y ≤ h.

We non-dimensionalize choosing the bridge half-width as the characteristic length,

i.e. L = w, giving the computational region 0 ≤ x∗ ≤ 1, 0 ≤ y∗ ≤ h/w where

h/w is the aspect ratio. (As earlier, asterisks denote dimensionless variables.) With

the characteristic velocity given by U = ρgw2/µ (see equation (2.5)), the flow is ob-
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Figure 3.2: A typical uniform finite-element mesh with Ne = 326.

tained by solving (2.2) and (2.7) subject to the no-slip boundary conditions (2.11) on

x∗ = 1, the free surface conditions (2.15) on y∗ = h/w, symmetry conditions (2.15)

and (2.16) on x∗ = 0, and anti-symmetry conditions (2.15) and (2.17) on y∗ = 0.

For a bridge of some aspect ratio h/w, we define a mesh of Ne uniformly dis-

tributed six-node triangles over it. A typical mesh is shown in Figure 3.2. As the

number of mesh elements is increased, we expect to see convergence to the true

solution, for each of the solution methods used. To show this, we consider a bridge

of aspect ratio h/w = 0.2 and look at (dimensionless) pressure and vertical velocity

at the top centre of the bridge (x∗, y∗) = (0, h/w). We re-scale the vertical velocity

using the velocity scale V = ρgw4/(32µh2) derived in the previous section. The ver-

tical velocity should then be comparable with that obtained by the series solution

of the previous section. Because the sample point is on the vertical centreline, there

is no horizontal velocity component there. The pressure scale used is that defined

in Chapter 2, i.e. P = ρgw.

We first solve this problem using Fastflo and the penalty method. In order to

obtain a reasonable solution we must use a penalty number λ of suitable size. We

require that it be sufficiently large to achieve reasonable mass conservation while we

cannot allow it to become so large that the stiffness matrix becomes ill-conditioned.

The size of λ is influenced by the size of mesh elements `, and λ = 102`−2 is given in

the literature [56] as a suitable choice. This means that λ increases as ` decreases,

and becomes very large as `→ 0. Now the condition number of the matrix is O(λ`−2)

[56], and, clearly, for small ` the condition number is unacceptably large and the
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Table 3.2: Initial sagging velocity by the classical penalty method with a uniform mesh.

Ne λ −v/V p/P

158 10000 1.57533 1.23921
326 10000 1.59144 1.24828
518 10000 1.59127 1.24705
718 10000 1.59112 1.24781
918 8000 1.59036 1.24615

1095 8000 1.59631 1.25367
1254 8000 1.59585 1.25046
1454 8000 1.59622 1.25018

penalty method is unstable. Carey and Oden [18, p. 153] discuss the failure of the

penalty method as λ becomes very large with reasonably fine meshes, observing that

the discrete problem becomes overconstrained yielding a null solution as λ → ∞.

In order to obtain a non-zero solution the penalty number λ must be reduced.

This behaviour is completely borne out by our results, which are given for the

top centre of the bridge in Table 3.2. Taking `2 as the average element area (0.2/Ne),

and 100 ≤ Ne ≤ 1500, the literature would suggest a penalty number λ of order

O(105) to O(106). However, in solving this problem with Fastflo, penalty numbers

of these orders are found to be too large, as indicated by clearly erroneous results

or by instability with small changes to the penalty number. As shown in Table 3.2

penalty numbers of λ = 104, and even less for very fine meshes, have been used so

as to obtain a non-zero and stable solution.

The reduction of the penalty number with mesh element size, while ensuring a

solution, results in the continuity condition being less well satisfied so that the con-

vergence seen in Table 3.2 is, in fact, to a flow with small compressibility. Hence we

must question how closely this approximates the true incompressible flow solution.

Carey and Oden [18, p. 153] refer to experiments that suggest that for rather fine

meshes the penalty number has to be chosen so small that the continuity constraint is

not satisfactorily approximated. They also discuss reduced integration as a method



3. A Sagging Viscous Bridge 38

that can sometimes give a satisfactory solution with large penalty numbers, but we

have not gone down this path. Rather we consider the modified penalty method of

Lin et al. [56] which uses solutions obtained with two different penalty numbers of

lower order than needed for the classical penalty method. For similar accuracy to

the classical penalty method with λ = O(102`−2), penalties of λ1 = O(10`−1) and

λ2 = O(102`−1) are used, and higher values will yield greater accuracy. Results from

the two solutions are combined to give a more accurate solution using

Q12 = Qλ2

Qλ1
−Qλ2

λ1 − λ2
(3.10)

where Q is replaced by u, v, and p to give each of the velocity components and

the pressure. With this method convergence to a result that is closer to the true

incompressible solution can be expected, though, even so, there is some error due

to small compressibility. Eventually, the penalty numbers still have to be reduced

below desirable magnitudes so as to keep the stiffness matrix well conditioned, but

this will be required for finer meshes than with the classical penalty method.

The results of the modified penalty method are given in Table 3.3. In addition to

the penalties determined from mesh element size as discussed, results are included

for λ1 = λ/10 and λ2 = λ where λ is the penalty number used previously with the

classical method (see Table 3.2).

By comparing the results of the classical and modified penalty methods in Ta-

bles 3.2 and 3.3 respectively, we see that a mesh of around 1500 elements is about as

fine as we can get, since for finer meshes (Ne > 1500) the penalty numbers required

for satisfactory accuracy become too large even for the modified penalty method.

In fact, the apparent loss of accuracy for Ne = 1454 in the first set of results in Ta-

ble 3.3 may well be caused by a penalty number that is too large. Apart from this

solution, which we ignore, the modified penalty method gives results in which we

can have reasonable confidence, and which show more satisfactory convergence (to

around four figures) than the classical penalty method. They do however indicate
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Table 3.3: Initial sagging velocity by the modified penalty method with a uniform mesh.

Ne λ1 λ2 −v/V p/P

158 300 3000 1.58363 1.23773
326 400 4000 1.59503 1.24533
518 500 5000 1.59389 1.24488
718 600 6000 1.59457 1.24650
918 700 7000 1.59476 1.24689

1095 750 7500 1.59772 1.25028
1254 800 8000 1.59772 1.24914
1454 850 8500 1.59622 1.24750
158 1000 10000 1.57812 1.23919
326 1000 10000 1.59279 1.24716
518 1000 10000 1.59237 1.24601
718 1000 10000 1.59338 1.24737
918 800 8000 1.59757 1.25053

1095 800 8000 1.59757 1.25043
1254 800 8000 1.59772 1.24914
1454 800 8000 1.59773 1.24865

that the classical penalty method is giving around three figures of accuracy with a

mesh of more than 1000 elements, despite the reduced size of the penalty number.

A feature of this flow that compounds convergence difficulties is found by a cor-

ner flow analysis as conducted in [93]. To do this we again consider the flow in

terms of a stream function ψ as in Section 3.2. Changing to local polar coordi-

nates (r, θ) centred at the intersection of the lower free surface and the left wall

(x, y) = (−w,−h), a biharmonic function satisfying the no-stress conditions on the

free surface θ = 0 is

ψ = rλF (θ) (3.11)

where λ ≈ 1.5946 is the solution of sin(λπ/2) = (λ − 1), and F is a function of

θ [93]. It is easy to show, by change of variables from (x, y) to (r, θ), that both

u = ψy and v = −ψx go to zero as r → 0 like r(λ−1), so that the wall boundary

conditions are also satisfied. Let us however consider the behaviour of the pressure



3. A Sagging Viscous Bridge 40

1

2

3

4

5

6

7

8
9

10

0.01 0.02 0.03 0.04 0.05 0.06

PSfrag replacements

|p|/P

r

Ne = 1454
Ne = 1254
Ne = 1095
Ne = 918
Ne = 718
Ne = 518
Ne = 326

Ne = 326− 718

Ne = 918− 1454

SLOPE = −0.4054

Figure 3.3: Pressure behaviour near a corner singularity for a uniform mesh.

p at this corner. On the free surface θ = 0, pressure is given by (3.4), into which

we substitute (3.11). Defining local Cartesian coordinates ξ = w − x = r cos θ, and

η = y + h = r sin θ, we write

p = −2ψxy

= 2ψξη

= 2

(

ψrθ

r
−
ψθ

r2

)

= 2(λ− 1)r(λ−2)F ′(0)

≈ 1.1892 r−0.4054F ′(0) (3.12)

with primes denoting differentiation with respect to θ. Thus, with p ∼ r(λ−2) ≈

r−0.4054, there is a mild pressure singularity at the intersection of free surface and

wall, and p increases rapidly as r → 0. This behaviour can be expected to slow

the convergence of any numerical method, and suggests that the mesh should be

constructed so as to concentrate elements about these points.
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Figure 3.4: A typical finite-element mesh with elements concentrated at the intersection
of free surface and wall, and Ne = 337.

Writing equation (3.12) as

log |p| = (λ− 2)log r + log [2(λ− 1)|F ′(0)|] (3.13)

we see that on the free surface near these corner singularities, log |p| is a linear

function of log r with slope (λ − 2) ≈ −0.4054. In Figure 3.3 we plot log |p| versus

log r on the free surface θ = 0 for 0.01 ≤ r ≤ 0.05 (i.e. 0.99 ≥ x∗ ≥ 0.95) using

results obtained with the classical penalty method and a uniform mesh. It is clear

that for the number of mesh elements used, we are not capturing the behaviour of p

at the intersection of wall and free surface particularly well. In fact smaller numbers

of mesh elements appear to do better than larger numbers, with Ne = 326 giving a

slope that best matches our expectation.

In order to better capture the behaviour in the corners we try meshes with el-

ements concentrated around the intersection of wall and free surface. These are

generated using the automatic mesh generator within Fastflo to which is supplied

information specifying the point(s) at which the mesh is to be concentrated. A typi-

cal mesh for one quarter of the domain for this problem, with elements concentrated

at the corner singularity, is given in Figure 3.4. The vertical velocity and pressure

at the top, centre of the bridge, computed using this type of mesh and the classical

penalty method, is given for different numbers of mesh elements in Table 3.4.

These results show much faster convergence, to nearly four significant figures on

refining the mesh to about 700 elements, than given by a uniform mesh with both

the same classical penalty method (see Table 3.2) and the modified penalty method
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Table 3.4: Initial sagging velocity by the penalty method with a non-uniform mesh.

Ne λ −v/V p/P

154 10000 1.59341 1.25004
337 10000 1.59771 1.25190
511 10000 1.59722 1.25152
707 10000 1.59839 1.25175
892 8000 1.59896 1.25249

1086 8000 1.59831 1.25034

(see Table 3.3). They are also in good agreement with the results obtained with

a uniform mesh having around 1000 elements and the modified penalty method,

probably giving increased accuracy in the fourth figure. We do not consider non-

uniform meshes of more than about 1000 elements because the small size of the

elements around the region of concentration demands that we relax the penalty

number even more than for a uniform mesh, giving results that are too suspect.

In Figure 3.5 we plot the relationship between log |p| and log r on the free surface

near the corner singularity, obtained with the classical penalty method as before,

but this time using a concentrated mesh. Now the behaviour of p at the intersection

of wall and free surface is much closer to that predicted by our corner flow analysis,

with the slope being quite accurate for Ne = 892 and 1086.

From this it is clear that a non-uniform mesh with finer resolution about the

corner singularity is highly desirable for computational efficiency. In theory, a uni-

form mesh which matches the resolution of the non-uniform mesh about the corner

singularity would also be satisfactory, but the penalty method precludes this be-

cause of the large penalty numbers necessary and the consequent ill-conditioning

of the stiffness matrix. Thus, in fact, concentrating mesh elements at the corner

singularity is essential for this solution method.

We could further improve our solution by using the modified penalty method

with a non-uniform mesh, but, rather, we prefer to try a different method that
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Figure 3.5: Pressure behaviour at a corner singularity with mesh elements concentrated
at that corner.

overcomes the need to use large penalty numbers with fine meshes. The augmented

Lagrangian method iteratively ensures that the continuity condition is satisfied so

that the penalty number acts as a convergence accelerator and can be greatly reduced

compared to the penalty method. Thus the augmented Lagrangian method will

potentially give better accuracy than penalty methods, and, in addition, should

permit finer mesh resolution. Results from using this method for our test problem

with non-uniform meshes are given in Table 3.5. Although a larger penalty number

will result in faster convergence, a small penalty number has been deliberately chosen

so as to avoid ill-conditioning problems for fine meshes.

The results given in Table 3.5 show convergence of velocity to four figures for a

mesh of 892 elements, and also show the classical penalty method with a non-uniform

mesh to be just a little less accurate for similar numbers of mesh elements and

considerably less computation time (cf. Table 3.4). As anticipated, the augmented

Lagrangian method does allow us to use much finer meshes with more elements,
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Table 3.5: Initial sagging velocity by the augmented Lagrangian method with a non-
uniform mesh.

Ne λ n −v/V p/P Error

511 100 7 1.59795 1.25138 1.0E-7
707 100 7 1.59835 1.25149 3.2E-7
892 100 8 1.59876 1.25231 3.1E-7

1086 100 8 1.59855 1.25099 9.2E-8
1278 100 7 1.59882 1.25198 1.9E-7
1472 100 7 1.59885 1.25213 6.0E-7
1657 100 7 1.59881 1.25187 3.6E-7
1837 100 7 1.59896 1.25192 7.3E-7

and we can more easily see convergence, and thus have greater confidence in our

solution, as a result.

Because the augmented Lagrangian method permits very much finer meshes than

the penalty method, it is theoretically possible to achieve the same accuracy with a

sufficiently fine uniform mesh matching the resolution of the non-uniform mesh at the

singularity corner. However convergence is very slow, and we need many thousands

of elements as can be appreciated from a comparison of Figures 3.2 and 3.5. These

give some idea of the intense clustering of mesh elements about the corner singularity

in a non-uniform grid, and the resolution in the immediate proximity of the corner is

extremely fine with the larger numbers of mesh elements that we are using (> 700).

The very large computational cost and computer memory requirements associated

with the numbers of mesh elements in a corresponding uniform distribution (≈

7000), make these meshes very inefficient and undesirable, and we do not consider

them any further.

By solving the fully-coupled equations for velocity and pressure, we completely

do away with the need for penalty numbers. For this a special-purpose finite-element

code has been developed, as described in Chapter 2. The results of this method with

a non-uniform mesh are given in Table 3.6 and show good convergence that is a little
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more rapid than the augmented Lagrangian method.

Table 3.6: Initial sagging velocity from the fully-coupled equations with a non-uniform
mesh.

Ne −v/V p/P

154 1.597754 1.248916
337 1.598345 1.251754
511 1.598661 1.251161
707 1.598712 1.251163
892 1.598930 1.252068

1086 1.598999 1.251989
1278 1.599011 1.251915
1472 1.599002 1.251776

Allowing for the varying accuracy of the different methods and meshes used, all

of the finite-element methods that we have investigated, and both Fastflo and the

purpose-written program, give a very consistent solution for both vertical velocity

and pressure at the top centre of the bridge. With a mesh of uniformly sized and

distributed triangles, and using penalty methods with Fastflo, three figure accuracy

— v/V = −1.60, p/P = 1.25 — was achieved, while with a mesh that clusters

elements about the intersection of wall and free surface, and using the more accurate

augmented-Lagrangian and fully-coupled methods, with Fastflo and the purpose-

written program respectively, four figure accuracy — v/V = −1.599, p/P = 1.252

— was achieved. With this consistency alone we have reasonably good verification

of the program code that had been developed. But, in addition, we have identical

three and four figure results from the series-expansion method of Section 3.2 (cf.

Table 3.1), which is very satisfying.

The series-expansion method gives good results with little programming effort

compared with finite-element methods, and, hence, is perhaps a preferable technique

for computing the initial flow in a rectangular domain. It is also relatively fast in

terms of its computer-time expenditure, although, with the computing resources
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available today, this is less of a consideration. However we wish to compute the

slumping of the bridge at later times when it is no longer rectangular. In addition,

in later chapters, we shall consider flow domains that are not necessarily initially

rectangular, and compute how the domain shape changes in time. For these, the

series-expansion method is no longer convenient, and a finite-element method is

preferable.

Of the finite-element methods considered, it finally seems best to use the purpose-

written program and solve the fully-coupled equations because this gives the best

accuracy without the uncertainties introduced by the penalty number. Accuracy

will be of considerable importance to us when we come to model the slumping of

optical surfaces. However the classical penalty method does give a reasonably good

solution for considerably less computer time, and is therefore an attractive solution

method if accuracy is not so important. For this reason it was used in [93] where

only graphical accuracy was needed. The modified penalty method greatly improves

on the accuracy of the classical penalty method, but it carries the overhead of having

to solve the equations twice with two different penalty numbers, and then combine

these. Also, because of the iteration necessary, the augmented Lagrangian method

is at least as expensive in computer time, if not more so, as solving the fully-

coupled equations. Thus there is no benefit in using either the modified-penalty

or augmented-Lagrangian methods, and we have chosen to solve the fully-coupled

equations from here on.

3.4 Further Initial Velocity Results

Now that we have confidence in the purpose-written finite-element program, and

before we consider the slumping of a very viscous bridge over time, we compute

the relationship between the aspect ratio h/w and the initial sagging velocity at

the top centre of the bridge and at the centroid where the velocity is a maximum.
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The results presented here were obtained using the finite-element program, but the

semi-analytic solution gives identical results and was in fact used in similar figures

in [93].

In Figure 3.6 we plot −v/V versus aspect ratio h/w at the bridge centroid and

at the centre of the top free surface. As previously, the finite-element results have

been re-scaled using the thin-layer centre-velocity limit V of (3.7), given by the

semi-analytic method. Velocities were computed for h/w ≥ 0.05 at increments of

0.025 using meshes of between 337 and 1482 elements, and a spline curve drawn

through all points (h/w,−v/V ) including the point (0, 1) which we anticipate from

the semi-analytic thin-layer solution (3.9). The figure shows that −v/V → 1 as

h/w → 0, confirming V as the thin-bridge centre-velocity limit. If instead we use

the velocity scale

V =
ρgw2

2µ
(3.14)

then we have −v/V → 1 as h/w →∞ as shown in Figure 3.7, showing that V is the

thick-bridge centre-velocity limit.

We earlier obtained, from the semi-analytic solution, the thin-limit velocity pro-

file across the width of the bridge (3.9) which has a parabolic-squared shape. In

Figure 3.8 we show how the initial velocity v/V varies across the top free surface of

the bridge, for a bridge of aspect ratio h/w = 0.2, which also indicates the initial

surface deformation. The curve is somewhat bell-shaped, with significantly greater

velocities near the centre of the bridge than near the walls (more so than would

be the case for a parabolic profile, but less than for a parabolic-squared profile),

and with a final rapid decrease toward zero occurring in the last five percent of

the distance from the wall. This last effect can be explained using the corner flow

analysis discussed earlier (p. 39), which gives that the free-surface vertical velocity

v tends to zero like (1 − |x|/w)0.5949 as x → ±w. On taking the x-derivative of

this expression we have that the slope of the free-surface vertical velocity becomes

infinite as x→ ±w as we see in Figure 3.8.
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Figure 3.6: Initial sagging velocity −v scaled with respect to the thin-bridge limit V =
ρgw4/(32µh2), as a function of aspect ratio h/w. Solid curve is the velocity at the bridge
centroid, dashed curve is the velocity at the centre of the top free surface.

0

1

2

3

4

5

0.5 1 1.5 2

PSfrag replacements

h/w

−v/V

Figure 3.7: Same as Figure 3.6, but with velocities scaled with respect to the thick-bridge
limit V = ρgw2/(2µ).
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Figure 3.8: Variation across the bridge of the initial free-surface sagging velocity (also
proportional to the initial free surface deformation) at h/w = 0.2.

In the thick-bridge limit the bridge will fall as if it had no top or bottom free

surface, driven solely by the hydrostatic pressure. Hence the flow will approach

the parabolic Poiseuille solution for flow down a channel with no dynamic-pressure

gradient:

v = −
ρgw2

2µ
(1− x2/w2). (3.15)

The thick-limit centre sagging velocity V = ρgw2/(2µ) confirms the numerical result

obtained earlier and shown in Figure 3.7. Thus, as the aspect ratio varies over the

range 0 ≤ h/w < ∞, the sagging profile across the bridge changes smoothly from

parabolic-squared to parabolic.

3.5 Sagging Over Time

Now we move on to consider how the sagging bridge evolves over time. As explained

in Section 2.7, the Stokes and continuity equations are first solved for the velocity

field at an instant in time by the finite-element method, and this result is then used

to solve (2.19) for the node displacements that result over a small time interval.
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Table 3.7: Bridge-centroid sag at tV/(2h) = 1.953125.

∆t∗ Euler Runge-Kutta
Sag δ/w Area Sag δ/w Area

0.2 0.806835 0.432237 0.756980 0.400044
0.1 0.781072 0.414370 0.756973 0.400003
0.05 0.768849 0.406762 0.756974 0.400000
0.02 0.761687 0.402605
0.01 0.759325 0.401286
0.001 0.757209 0.400127

After the nodes have been moved to their new locations, this procedure is repeated.

We solve the fully-coupled equations using the purpose-written finite-element pro-

gram, and compare both the Euler and Runge-Kutta methods of solving for the

displacements.

Once the bridge moves the anti-symmetry in y = 0 that exists initially is

lost, and hence we must compute over one half of the flow domain 0 ≤ x∗ ≤ 1,

−h/w ≤ y∗ ≤ h/w. The computations are for a bridge of aspect ratio h/w = 0.2,

and we use a non-uniform mesh of 526 triangular elements which gives the initial ve-

locity and pressure at the top centre of the bridge, to nearly four figures (−1.598287

and 1.251907 respectively, cf. Table 3.6).

We continue to re-scale the velocity output of our computations using the thin-

bridge velocity limit V of equation (3.7). In addition, rather than using the natural

time scale of the finite-element method, w/U where U = ρgw2/µ (see p. 8), it seems

appropriate to introduce a new time scale 2h/V , which is the time in which a bridge

sagging at a constant velocity of V , will sag a distance equal to its initial thickness

2h. We shall use this new time scale throughout the remainder of this section.

Table 3.7 shows the sag δ/w of the point initially located at the bridge centroid,

(x, y) = (0, 0), at tV/(2h) = 1.953125 (≡ tU/w = 1) for various values of time step

∆t∗, using the Euler and Runge-Kutta methods. (Note that the dimensionless time
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Figure 3.9: Bridge with h/w = 0.2 at time tV/(2h) = 0.78125, when it has sagged about
one thickness.

step ∆t∗ is the value actually used in the finite-element program and has not been

re-scaled using the new time scale.) In addition, the computed half-area of the bridge

is shown, which gives a measure of conservation of mass and should be equal to 0.4

for the bridge under consideration. Mass conservation has been found to be a good

indication of accuracy for problems involving a moving mesh. Clearly the Runge-

Kutta method is better than the Euler method giving much more accurate results

for larger time steps. A very much smaller time step must be used at considerable

cost in computational time with the Euler method, to match the results given by

the Runge-Kutta method. Even with a time step of 0.001, the Euler result is not as

good as that obtained with the Runge-Kutta method and a time step of 0.2. Hence

the Runge-Kutta method is here used for time advancing the mesh, choosing a time

step of ∆t∗ = 0.05.

Figure 3.9 shows the bridge (and the evolving triangular grid with corner concen-

trations) when it has sagged a distance approximately equal to its initial thickness,

at which point the time is given by tV/(2h) = 0.78125. This figure confirms, es-

pecially on the upper free surface, the behaviour suggested by the initial velocity

profile of Figure 3.8, with a near quadratic-squared shape in the middle parts of the

bridge, coupled with a rapid return to the original attachment point near the corner.

While probably unimportant in some applications, the multiple changes in curvature
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Figure 3.10: Bridge slumping velocity as a function of time for h/w = 0.2.

on the free surfaces — fully four inflexion points — would be undesirable if this type

of sagging flow were to be used in the manufacturing of optical components.

Figure 3.10 shows the sagging velocity (at the point which starts as the centroid

of the rectangle) as a function of time for a bridge of aspect ratio h/w = 0.2.

At first the sagging velocity decreases rapidly with time from its initial value of

−v/V = 1.674, reaching a minimum value of about 37 percent of the initial velocity

at time tV/(2h) = 2.5 when the amount of sag equals a little over two and a quarter

bridge thicknesses. It then increases again as the central portions of the bridge begin

to lose touch with the walls and enter a state of flow which will eventually culminate

in free fall. This type of behaviour is qualitatively typical for other aspect ratios

too. However, as the aspect ratio falls below 0.2, we see a larger decrease in the

sagging velocity over a longer time, with the bridge sagging considerably more that

three bridge thicknesses before the velocity begins to increase again. For example,

with h/w = 0.1 the velocity drops to 13 percent of its initial value by tV/2h = 15,
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at which time the bridge has sagged nearly four thicknesses. Conversely, when the

aspect ratio increases above 0.2, there is a smaller decrease in velocity over a shorter

time period, and the bridge sags a smaller distance in this time. For h/w = 0.5

the velocity decreases to 73 percent of its original value by tV/(2h) = 0.24 before

increasing again, at which time the bridge has sagged just one thickness.

The final free-fall state will eventually violate the assumption of neglect of inertia,

but so long as inertia remains neglected, the velocity (and acceleration) will appear

to approach infinity at some finite time t = tC = µ/(ρgLe). Here Le is an effective

drop length which depends on w and h. This type of behaviour is considered in

the context of another creeping flow in Chapter 4 and [89]. Meanwhile, we make no

attempt to approach that time in the present computations. All accelerations being

computed here are formally very small compared to gravity g, but, in this approach

to free fall, they will become comparable to g at times just less than the critical

time t = tC , and inertia would have to be re-introduced into the problem in order

to complete the solution for times close to and greater than tC .

Figure 3.11 shows the time taken to sag one bridge thickness 2h as a function

of aspect ratio. Obviously, we are not able to compute the y-axis intercept using

finite-element methods, but can only approach h/w = 0. In fact computations were

stopped at an aspect ratio of h/w = 0.05 since, for smaller aspect ratios, meshing

becomes difficult and the finite-element method is not reliable. For this reason the

figure given in [93] was left incomplete for very small aspect ratios. We are, however,

able to complete the graph via a formal thin-layer asymptotic expansion which is

described in the next section (Section 3.6). This gives a time of tV/(2h) = 1.487 (see

p. 71) for a bridge of very small aspect ratio h/w → 0 to sag one bridge thickness.

Since the time scale used for Figure 3.11 is 2h/V , a unit value would correspond

to fall at the constant speed V , which is the initial rate of fall of very thin bridges

with small h/w. However, for such thin bridges, even though the initial velocity is

close to V , we find a time nearly 50 percent larger than 2h/V , since (as in Figure 3.10)
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Figure 3.11: Time to sag one bridge thickness as a function of aspect ratio.

there is a significant drop in sagging velocity from its initial value during a sag of one

bridge thickness. On the other hand, at larger h/w values, the time to slump one

bridge thickness becomes significantly less than 2h/V , since the sagging velocity then

significantly exceeds V , not just initially (see Figure 3.6), but also at all later times.

In fact, for very thick bridges, the time to slump one bridge thickness approaches

2h/V as h/w becomes large, corresponding to the flow approaching the Poiseuille

thick-bridge limit with centroid slumping velocity V .

3.6 Motion of Nearly Plane Bridges

In Section 3.2 a solution for the initial sagging velocity of a thin bridge with h/w → 0

was derived. This is a special case that can also be obtained from a formal asymp-
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totic analysis of a two or three-dimensional version of the initial sagging problem,

and the fully three-dimensional case is described in the Appendix of [93]. How-

ever this analysis can be further generalized for the sagging of a bridge of a general

shape, both initially and at later times. This has been considered by Howell [48]

and van de Fliert et al. [96] for transverse flow of thin viscous sheets, with both

negligible and non-negligible curvature, in the absence of gravity. Here we consider

a two-dimensional asymptotic-expansion method for gravity-driven flow of very vis-

cous bridges which are thin and nearly flat (i.e. have small surface slope), sagging

distances of up to a few bridge thicknesses in the vertical direction. The sag is small

relative to the width of the bridge so that the bridge remains nearly flat. In addition

to formally deriving the thin-bridge initial sagging-velocity profile, and perhaps of

more interest, this analysis enables us to determine the time for a very thin bridge

to sag one bridge thickness, as shown in Figure 3.11. This is a result that cannot be

obtained by finite-element methods, or indeed any numerical method. It will also be

of interest to see how well this thin-limit model matches the finite-element solution

for bridges of finite thickness, and so determine its applicability to real problems.

Figure 3.12 shows the geometry of the problem under consideration. Again we

have a very viscous fluid bridge of width 2w spanning the gap between two vertical

no-slip walls. This time however the initial shape of the bridge is defined more

generally by the centreline equation y = h̄(x, t), and the top and bottom free-surface

equations y = h̄(x, t)± h(x, t). Thus h(x, t) is the half-thickness of the bridge at

position x and time t. By definition h/w = O(ε) where ε is a very small positive

real number. The only other restriction that we place on the initial geometry, so

as to satisfy the requirement of being nearly flat, is that h̄ only deviate from the

horizontal by distances of order O(h). For the specific initially rectangular geometry

we have been considering, we need the initial conditions at t = 0

h̄(x, 0) = 0 (3.16)

h(x, 0) = εw (3.17)
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Figure 3.12: A thin and nearly-flat viscous bridge of general shape.

although we shall derive equations for a general initial bridge shape for as long as

possible. We consider this bridge slumping distances of order O(h) vertically.

As in [48], we define new dimensionless variables (denoted by asterisks in keeping

with our earlier convention) such that

x = wx∗, y = εwy∗,

u(x, y, t) = Vu∗(x∗, y∗, t∗), v(x, y, t) = Vv∗(x∗, y∗, t∗),

t = εwt∗/V , p(x, y, t) = µVp∗(x∗, y∗, t∗)/w,

h̄(x, t) = εwh̄∗(x∗, t∗), h(x, t) = εwh∗(x∗, t∗),

(3.18)

where, as previously, u is the horizontal velocity component, v is the vertical velocity

component, p is the pressure, and V is a velocity scale to be determined. Then

−1 ≤ x∗ ≤ 1 and initial conditions (3.16) and (3.17) become

h̄∗(x∗, 0) = 0, (3.19)

h∗(x∗, 0) = 1. (3.20)

Now, with subscripts denoting differentiation, we express the problem in terms

of these dimensionless variables so that the continuity equation (2.2) becomes

εu∗x∗ + v∗y∗ = 0, (3.21)

and the Stokes equations (2.7) become

ε2p∗x∗ = ε2u∗x∗x∗ + u∗y∗y∗ , (3.22)

εp∗y∗ = ε2v∗x∗x∗ + v∗y∗y∗ − ε
2ρgw

2

µV
. (3.23)



3. A Sagging Viscous Bridge 57

At this stage we need to define the velocity scale V . Already we know, from

our series-expansion and finite-element analyses, that the initial central sagging

velocity of a thin rectangular bridge, in the limit as h/w → 0, is ρgw4/(32µh2)

(see Figure 3.6). Since the thin initially-rectangular bridge is a particular case in

the class of bridges we are now considering, given by initial conditions (3.16) and

(3.17) so that h/w = ε, this indicates that a suitable choice for the velocity scale is

V = ρgw4/(µh2) = ρgw2/(ε2µ). The last term in (3.23) is then ε4.

We also write the boundary conditions in terms of the new variables. On the

walls x∗ = ±1 the no-slip boundary conditions (2.12) become

u∗ = v∗ = 0 (3.24)

while, on the zero stress free surfaces y∗ = h̄∗(x∗, t∗) ± h∗(x∗, t∗), the no-stress

boundary conditions (2.15) become

ε2(p∗ − 2u∗x∗)(h̄
∗
x∗ ± h

∗
x∗) + u∗y∗ + εv∗x∗ = 0, (3.25)

−εp∗ − ε(h̄∗x∗ ± h
∗
x∗)(u

∗
y∗ + εv∗x∗) + 2v∗y∗ = 0. (3.26)

In this analysis we do not use the Lagrangian method to compute the evolution of

the geometry in time, but rather use the kinematic condition (2.18) which becomes

h̄∗t∗ ± h
∗
t∗ + εu∗(h̄∗x∗ ± h

∗
x∗) = v∗. (3.27)

Next we expand u∗, v∗, p∗, h̄∗ and h∗ in power series in epsilon

u∗ = u∗0 + εu∗1 + ε2u∗2 + ε3u∗3 + . . . ,

v∗ = v∗0 + εv∗1 + ε2v∗2 + ε3v∗3 + . . . ,

p∗ = p∗0 + εp∗1 + ε2p∗2 + ε3p∗3 + . . . ,

h̄∗ = h̄∗0 + εh̄∗1 + ε2h̄∗2 + ε3h̄∗3 + . . . ,

h∗ = h∗0 + εh∗1 + ε2h∗2 + ε3h∗3 + . . . ,

(3.28)

and after substituting into (3.21) to (3.27), equate like powers of epsilon.
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Dropping asterisks on dimensionless variables, continuity immediately gives v0

as a function of x and t only

v0 = v0(x, t), (3.29)

and, in addition, the leading-order kinematic boundary condition on y = h̄± h (i.e.

h̄0t ± h0t = v0) immediately gives

h̄0t = v0, (3.30)

h0t = 0, (3.31)

which says that, to leading order, the bridge thickness at any position x remains

unchanged in time. Thus, h0 = h0(x) for all time, and with initial condition (3.20)

we have h0(x) = 1.

Continuity further demands

u0x = −v1y, (3.32)

u1x = −v2y, (3.33)

u2x = −v3y, (3.34)

u3x = −v4y, (3.35)

and the Stokes equations demand u0yy = u1yy = 0 so that

u0 = u00 + yu01, (3.36)

u1 = u10 + yu11, (3.37)

where it is to be understood that all coefficients uij are functions of x and t. From

the Stokes equations we also obtain

p0x = u0xx + u2yy, (3.38)

p1x = u1xx + u3yy, (3.39)

p2x = u2xx + u4yy, (3.40)

p3x = u3xx + u5yy, (3.41)
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and

p0y = v1yy, (3.42)

p1y = v0xx + v2yy, (3.43)

p2y = v1xx + v3yy, (3.44)

p3y = v2xx + v4yy − 1. (3.45)

Note that the last “-1” term in (3.45) is due to gravity, and we must carry the

present asymptotic analysis at least as far as this in order to capture the effect of

the gravitational driving force.

On the free surfaces y = h̄± h we have from (3.25)

u0y = 0, (3.46)

u1y + v0x = 0, (3.47)

(p0 − 2u0x)(h̄0x ± h0x) + u2y + v1x = 0, (3.48)

(p0 − 2u0x)(h̄1x ± h1x) + (p1 − 2u1x)(h̄0x ± h0x)

+u3y + v2x = 0, (3.49)

(p0 − 2u0x)(h̄2x ± h2x) + (p1 − 2u1x)(h̄1x ± h1x)

+(p2 − 2u2x)(h̄0x ± h0x) + u4y + v3x = 0, (3.50)

and from (3.26)

−p0 + 2v1y = 0, (3.51)

−p1 + 2v2y = 0, (3.52)

−p2 − (u2y + v1x)(h̄0x ± h0x) + 2v3y = 0, (3.53)

−p3 − (u2y + v1x)(h̄1x ± h1x)

+(u3y + v2x)(h̄0x ± h0x) + 2v4y = 0, (3.54)

and from the kinematic condition (3.27)

h̄1t ± h1t + u0(h̄0x ± h0x) = v1, (3.55)

h̄2t ± h2t + u0(h̄1x ± h1x) + u1(h̄0x ± h0x) = v2. (3.56)
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Now from (3.36) and (3.46) we must have u01 = 0 so that

u0 = u0(x, t). (3.57)

This, together with (3.32) leads to

v1 = −yu0x + v10, (3.58)

and on substituting for v1 in (3.51) we obtain

p0 = p0(x, t) = −2u0x (3.59)

which in combination with (3.38) gives

u2 = −
3

2
y2u0xx + yu21 + u20. (3.60)

Equations (3.33) and (3.37) give

v2 = −
1

2
y2u11x − yu10x + v20, (3.61)

and (3.47) and (3.37) tell us that u11 = −v0x.

We can now write the two free surface equations (3.48) as

−4u0x(h̄0x ± h0x)− 4u0xx(h̄0 ± h0) + u21 + v10x = 0, (3.62)

and when one is subtracted from the other we obtain

(h0u0x)x = 0. (3.63)

Then

h0u0x = f(t), (3.64)

u0 = f(t)
∫ x

−1

1

h0(ξ)
dξ, (3.65)

where f is some function of t, and we have used the wall boundary condition

u0(−1, t) = 0. Since we must also satisfy the other wall boundary condition
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u0(1, t) = 0, and h0(x) > 0 for −1 ≤ x ≤ 1, we must have f(t) = 0 and hence

u0(x, t) = 0. We finally have from (3.62) that

u21 = −v10x = −v1x. (3.66)

Substituting back u0 = 0 into our earlier working, we have in summary

u0 = 0,

v0 = v0(x, t),

h0 = h0(x),

h̄0t = v0,

p0 = 0,

u1 = −yv0x(x, t) + u10(x, t), (3.67)

v1 = v1(x, t),

h1 = h1(x),

h̄1t = v1,

u2 = −yv1x(x, t) + u20(x, t), and

v2 =
1

2
y2v0xx(x, t)− yu10x(x, t) + v20(x, t).

It is a simple matter to determine from (3.43) and (3.52) that

p1 = 2yv0xx − 2u10x, (3.68)

and from (3.34) that

v3 =
1

2
y2v1xx − yu20x + v30. (3.69)

Equations (3.39) and (3.35) give

u3 =
1

2
y3v0xxx −

3

2
y2u10xx + yu31 + u30, (3.70)

v4 = −
1

8
y4v0xxxx +

1

2
y3u10xxx −

1

2
y2u31x − yu30x + v40. (3.71)
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Next we can make the appropriate substitutions into (3.49) which must be satisfied

on y = h̄± h yielding

(h̄0h0v0xx − h0u10x)x = 0, (3.72)

and

u31 + v20x = −2(v0xx(h̄
2
0 + h20))x + 4(h̄0u10x)x. (3.73)

An equation for p2 can be obtained from (3.44) and (3.53)

p2 = 2yv1xx − 2u20x, (3.74)

and (3.40) then gives

u4 =
1

2
y3v1xxx −

3

2
y2u20xx + yu41 + u40. (3.75)

We now have sufficient information to solve (3.45) and so include gravity in our

solution. Substituting for v2xx and v4yy gives

p3y = −y2v0xxxx + 2yu10xxx + v20xx − u31x − 1 (3.76)

which we integrate yielding

p3 = −
1

3
y3v0xxxx + y2u10xxx + y(v20xx − u31x − 1) + p30. (3.77)

On the free surfaces we must satisfy (3.54), and, since u2y + v1x = 0 (refer (3.68)),

this becomes

p3 = (u3y + v2x)(h̄0x ± h0x) + 2v4y

= −(2y2v0xxx − 4yu10xx + u31 + v20x)(h̄0x ± h0x)

−y3v0xxxx + 3y2u10xxx − 2yu31x − 2u30x. (3.78)

Substituting y = h̄±h into (3.77) and (3.78) and equating gives two expressions for

p30

p30 = −
2

3
(h̄0 ± h0)

3v0xxxx + 2(h̄0 ± h0)
2u10xxx

−(h̄0 ± h0)(v20xx + u31x − 1)− 2u30x − 2(h̄0 ± h0)
2(h̄0x ± h0x)v0xxx

+4(h̄0 ± h0)(h̄0x ± h0x)u10xx − (h̄0x ± h0x)(v20x + u31). (3.79)
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Subtracting one from the other and using (3.73) gives

−h0 =
4

3
(h30v0xx)xx + 4(h0h̄0h̄0xv0xx)x − 4(h0h̄0xu10x)x. (3.80)

This can be even further simplified by using the relation given in (3.72) which can

be integrated to give

h0u10x = h0h̄0v0xx − f(t) (3.81)

for some function f of time t to be determined later. Then (3.80) can be written

−h0 =
4

3
(h3ov0xx)xx + 4h̄0xx(h0h̄0v0xx − h0u10x)

=
4

3
(h30v0xx)xx + 4h̄0xxf(t). (3.82)

If, at this stage, we use the initial conditions (3.19) and (3.20) we obtain at t = 0

−1 =
4

3
v0xxxx. (3.83)

This compares with the dimensional form of the leading-order equation for the initial

vertical velocity of a rectangular bridge obtained by Tuck et al. [93] from a similar

asymptotic expansion for the initial sagging problem only. If we remove gravity

from the problem by setting g = 0 then the left hand side of (3.82) becomes zero,

and, after substituting h̄0t for v0 (see equations (3.68)), we obtain a two-dimensional

form of the equation given by Howell [48] for transverse flow of a nearly-flat thin

viscous sheet in the absence of gravity. Thus (3.82) contains two special results that

have been derived elsewhere.

We can use the wall boundary conditions to determine the function f(t) as

follows. Designating v0 = V , u10 = U and h̄0 = H, we rewrite (3.81) as

Ux = HVxx −
f(t)

h0
, (3.84)

and the equation for u1 from (3.68) as

u1 = −yVx(x, t) + U(x, t). (3.85)
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Since u1(±1, y, t) = 0 for −1 ≤ y ≤ 1 and t ≥ 0, setting y = 0 and then y 6= 0 shows

that we must have

U(±1, t) = 0, and (3.86)

Vx(±1, t) = 0. (3.87)

Then

U =
∫ x

−1
HVxx dξ − f(t)

∫ x

−1

dξ

h0
(3.88)

satisfies U = 0 at x = −1, and satisfying U = 0 at x = 1 leads to

f(t) =
∫ 1

−1
HVxx dx/

∫ 1

−1

dx

h0
. (3.89)

Equations (3.82) and (3.89) give the leading-order flow over time of a thin nearly-

flat viscous bridge of arbitrary initial shape given by y = h̄(x, t)±h(x, t). To proceed

further we need to define this shape via some initial conditions. Since we wish to

consider an initially rectangular bridge, the appropriate initial conditions are given

in (3.19) and (3.20), and in addition we have established (from (3.31)) that h0 is

constant in time.

Firstly, setting h0 = 1 gives

f(t) =
1

2

∫ 1

−1
HVxx dx, (3.90)

and then substituting V = v0 = h̄0t = Ht from (3.68) gives

−1 =
4

3
Htxxxx + 2Hxx

∫ 1

−1
HHtxx dx. (3.91)

This fourth-order partial differential equation defines the leading-order centreline

profileH(x, t) and sagging velocityHt of a thin bridge with initial uniform thickness.

Although we obtain only a centreline profile, we can readily determine from this the

leading-order time evolution of top and bottom free surfaces using our knowledge

that the thickness h(x, t) is constant to leading order for all time (i.e. h0(x, t) = 1).

Of course, because of the assumptions we have made en route, (3.91) cannot be
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used once the sag exceeds a few bridge thicknesses and Hx becomes large so that

the bridge is no longer nearly flat.

For an initially rectangular bridge, we must next require that H = 0 at t = 0.

With this initial condition plus boundary conditions at the walls we can now solve

(3.91). By virtue of the derivation of this equation, all solutions H(x, t) will satisfy

the boundary condition of zero leading-order horizontal velocity at the walls at

y = 0. One solution that also satisfies the boundary condition of zero leading-order

vertical velocity at the walls, i.e. V = 0 at x = ±1, is readily obtained by separation

of variables:

H =
(

9t

32

)1/3

(x2 − 1). (3.92)

However this does not satisfy the additional boundary condition given by (3.87),

so that the horizontal velocity component is zero at the walls only at the centre

y = 0. This solution is, in fact, for a bending ‘beam’ pinned at (x, y) = (±1, 0) with

u1(±1, y) = −u1(±1,−y). Hence we look at obtaining a solution to (3.91) subject

to V = Ht = 0 and Vx = Htx = 0 at x = ±1. Using symmetry about x = 0 we can

limit our considerations to 0 ≤ x ≤ 1 and satisfy boundary conditions

Htx = Htxxx = 0 at x = 0, (3.93)

Ht = Htx = 0 at x = 1. (3.94)

We proceed as follows, first integrating (3.91) by parts

−1 =
4

3
Htxxxx − 2Hxx

∫ 1

−1
HxHtx dx

=
4

3
Htxxxx − 2Hxx

∫ 1

−1

1

2
(H2x)t dx

=
4

3
Htxxxx − 2Ḣ2xHxx (3.95)

where

Ḣ2x =
(

1

2

∫ 1

−1
H2x dx

)

t
=
(
∫ 1

0
H2x dx

)

t
. (3.96)
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Because we are only considering bridges that start nearly flat and remain so

during the sagging time period, Hx is small and H2x is even smaller. Thus the rate

of strain at time t is given by

T (t) =
(
∫ 1

0
1− (1 +H2x)

1/2dx
)

t
≈ −

(
∫ 1

0

1

2
H2xdx

)

t
= −

1

2
Ḣ2x (3.97)

where a Taylor expansion approximation for (1+H2x)
1/2 has been used. Multiplying

the rate of strain by the viscosity yields the tension in the sagging bridge, for which

reason we call the function T (t) in (3.97) the “tension” function.

Rearranging equation (3.95) we have

4

3
Htxxxx = −1 + 2Ḣ2xHxx, (3.98)

and integrating with respect to x gives

4

3
Htxxx = −x+ 2Ḣ2xHx + f1(t). (3.99)

Boundary conditions (3.93) dictate that f1(t) = 0. Integrating twice more with

respect to x gives

4

3
Htx = −

x3

6
+ 2Ḣ2x

∫ x

0
H dξ + x f2(t) + f3(t), (3.100)

and again boundary conditions (3.93) dictate that f3(t) = 0 while boundary condi-

tions (3.94) give

f2(t) =
1

6
− 2Ḣ2x

∫ 1

0
H dξ. (3.101)

Integrating once again gives

4

3
Ht = −

x4

24
+ 2Ḣ2x

∫ x

0

∫ η

0
H dξ dη +

x2

2
f2(t) + f4(t)

= −
x4

24
+ 2Ḣ2x

∫ x

0
(x− ξ)H dξ +

x2

2
f2(t) + f4(t). (3.102)

Finally boundary conditions (3.94) give

f4(t) =
1

24
−

1

2
f2(t)− 2Ḣ2x

∫ 1

0
(x− ξ)H dξ. (3.103)
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Defining

H =
∫ 1

0
H(ξ, t) dξ (3.104)

we have, after some manipulation,

4

3
Ht = −

1

24
(1− x2)2

−Ḣ2x

(

(1− x)2H + 2
∫ 1

x
(x− ξ)H(ξ, t) dξ

)

. (3.105)

At t = 0, H(x, 0) = 0 so that (3.105) becomes

V = Ht = −
1

32
(1− x2)2. (3.106)

This is exactly equivalent to the quadratic-squared thin-bridge initial-velocity limit,

obtained by the series-expansion technique of Section 3.2, and given in (3.9). Thus

our ad hoc derivation of that equation is confirmed.

Equation (3.105) is quite simply solved using finite-difference methods. We define

a one dimensional uniform grid on 0 ≤ x ≤ 1 such that

xj = j∆x, j = 0, 1, . . . , Nx (3.107)

with ∆x = 1/Nx, and also specify a time step ∆t so that

ti = i∆t, i = 0, 1, . . . . (3.108)

Then

Hi
j = H(xj, ti). (3.109)

Using Euler’s method to approximate time derivatives, and central differencing to

approximate spatial derivatives gives

(Ht)
i
j =
Hi

j −H
i−1
j

∆t
(3.110)

(Hx)
i
j =
Hi

j+1 −H
i
j−1

2∆x
. (3.111)
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With initial condition given by

H(x, 0) = 0, (3.112)

and using Htx = Hxt, the boundary conditions (3.93) and (3.94) can be expressed

as

(Hx)
i
0 = (Hxxx)

i
0 = 0 and (3.113)

(H)iNx
= (Hx)

i
Nx

= 0 (3.114)

for all i.

On using the trapezoidal rule to evaluate integrals, and the boundary condi-

tions (3.113) and (3.114) to eliminate some terms, a discretization of (3.105) is

4

3
(Hi

j −H
i−1
j ) = −

∆t

24
(1− x2j)

2

−Gi
j(∆x)

2
Nx−1
∑

k=1

(

(H2x)
i
k − (H2x)

i−1
k

)

(3.115)

with

Gi
j = (1− xj)

2

(

Hi
0

2
+

Nx−1
∑

k=1

Hi
k

)

+ 2
Nx−1
∑

k=j+1

(xj − xk)H
i
k. (3.116)

This system of equations is clearly non-linear and hence we modify it further to

render it more easily solvable.

An explicit finite-difference scheme is given by

4

3
(Hi

j −H
i−1
j ) = −

∆t

24
(1− x2j)

2

−Gi−1
j (∆x)2

Nx−1
∑

k=1

(

(H2x)
i−1
k − (H2x)

i−2
k

)

, (3.117)

and on using central differencing (3.111) to evaluate the x derivatives we finally have

4

3
Hi

j =
4

3
Hi−1

j −
∆t

24
(1− x2j)

2 −
1

4
Gi−1

j (F i−1 − F i−2) (3.118)

where

F i =
Nx−1
∑

k=1

(Hi
k+1 −H

i
k−1)

2. (3.119)
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For better accuracy we can use an iterative explicit finite-difference scheme

4

3

([

Hi
j

]n
−Hi−1

j

)

= −
∆t

24
(1− x2j)

2

−
[

Gi
j

]n−1
(∆x)2

Nx−1
∑

k=1

(

[

(H2x)
i
k

]n−1
− (H2x)

i−1
k

)

(3.120)

where the superscript n denotes the nth iterate, and

[

Hi
j

]0
= Hi−1

j and (3.121)
[

(H2x)
i
j

]0
= (H2x)

i−1
j . (3.122)

Iteration ceases when
[

Hi
j

]n
=
[

Hi
j

]n−1
to within some small tolerance for all j. This

scheme gives

4

3

[

Hi
j

]n
=

4

3
Hi−1

j −
∆t

24
(1− x2j)

2 −
1

4

[

Gi
j

]n−1
(

[

F i
]n−1
− F i−1

)

. (3.123)

To compare the results obtained by solving (3.118) and (3.123) let us compute

the “tension” function given by (3.97). In discretized form this becomes

−T i =
F i − F i−1

8∆t∆x
(3.124)

Let us also compare the sag H(0, t) computed by the two methods. Some results,

at dimensionless time t = 40 are given in Table 3.8, and show the explicit method

to be reasonably accurate. Three to four figures of accuracy is obtained with a grid

spacing of 0.02 and a time step of 0.1, which is satisfactory for our purposes. For

better accuracy a very much smaller time step must be used, which increases the

computational time considerably.

The explicit method becomes unstable for t > 89 when the bridge has sagged

just over 1.9 thicknesses, while the iterative explicit method fails to converge after

about t = 66.7 when the bridge has sagged about 1.59 thickness. Hence we try an

iterative implicit method given by substituting

[

F i
]n−1

≈
Nx−1
∑

k=1

([

Hi
k+1

]n
−
[

Hi
k−1

]n)
(

[

Hi
k+1

]n−1
−
[

Hi
k−1

]n−1
)

(3.125)
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Table 3.8: Sag of a thin bridge: a comparison of explicit and iterative explicit methods
at dimensionless time t = 40.

∆x ∆t Explicit Iterative Explicit
−H(0) T × 102 −H(0) T × 102

0.02 0.1 1.092159 2.896567 1.091500 2.893752
0.01 0.1 1.092069 2.898878 1.091410 2.896063
0.002 0.1 1.092040 2.899618 1.091381 2.896803
0.02 0.01 1.091742 2.895758 1.091654 2.891765
0.01 0.01 1.091652 2.898067 1.091564 2.894054
0.002 0.01 1.091623 2.898807
0.02 0.001 1.091700 2.895677
0.01 0.001 1.091610 2.897986

Table 3.9: Sag of a thin bridge by an iterative implicit method at dimensionless time
t = 40.

∆x ∆t −H(0) T × 102

0.02 0.1 1.091500 2.893353
0.01 0.1 1.091410 2.895661
0.02 0.01 1.091632 2.895925

in (3.123) so that we have

4

3

[

Hi
j

]n
+

1

4

[

Gi
j

]n
Nx−1
∑

k=2

[

Hi
k

]n
(

[

Hi
k

]n−1
−
[

Hi
k−2

]n−1
)

−
1

4

[

Gi
j

]n
Nx−2
∑

k=0

[

Hi
k

]n
(

[

Hi
k+2

]n−1
−
[

Hi
k

]n−1
)

=
4

3
Hi−1

j −
∆t

24
(1− x2j)

2 +
1

4

[

Gi
j

]n−1
F i−1. (3.126)

This method is considerably more expensive with regards to computing time, but

is more stable and permits computation out to large t. Some results at t = 40 are

given in Table 3.9 for comparison with those given for the two explicit methods in

Table 3.8.

The tension function is plotted against time in Figure 3.13 showing an initial
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Figure 3.13: Tension versus time for a sagging thin bridge.

rapid increase, with a maximum reached at about t = 70 followed by a slow decrease.

With the iterative implicit method we are able to compute the time taken to

sag one bridge thickness 2h0, not previously able to be determined by finite-element

methods, at about tV/h0 = 95.15 (where t is now a dimensional time, h0 = εw is

the initial half-thickness of the bridge, and we have returned to denoting dimension-

less variables by asterisks). This value was obtained from output of (t∗,H∗(0, t∗))

pairs with a time increment of ∆t∗ = 0.1, and using linear interpolation between

consecutive time points. For plotting on Figure 3.11 we must re-scale this result

using the time scale of the plot. Let us denote the velocity and times scales of these

thin-bridge calculations by V1 = ρgw4/(µh20) and T1 = h0/V1 respectively, while

the velocity and time scales appropriate to Figure 3.11 are V2 = ρgw4/(32µh20) and

T2 = 2h0/V2 respectively. Then the y-intercept on Figure 3.11, corresponding to

the time taken for an initially rectangular bridge of aspect ratio h/w → 0 to sag

one bridge thickness, is given by 95.15T1/T2 = 95.15/64 = 1.487. This result is
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Figure 3.14: The bridge centreline δ/h0 after sagging one bridge thickness for (a) h0/w →
0 by asymptotic analysis, (b) h0/w = 0.1 by finite-element methods and (c) h0/w = 0.2
also by finite-element methods.

completely consistent with our finite-element results, as seen in Figure 3.11.

Figure 3.14 shows the sag δ(x, t)/h0 profile across the width of the bridge as

determined to leading order by our thin-limit analysis, i.e. δ/h0 ≈ H
∗ = h̄0/h.

The curve given is for time tV/h0 = 95.2, when the bridge has sagged a distance

of just fractionally over one initial bridge thickness 2h0. The vertical length scale

used for the plot is the initial bridge half-thickness h0 = εw so that a sag of one

bridge thickness is given by δ(0, t)/h0 = 2. Also shown, for comparison, are the

centreline profiles for bridges of aspect ratios h0/w = 0.1 and h0/w = 0.2 after they

have sagged one initial thickness. These were obtained by fitting cubic-spline curves

to top and bottom surface nodes given as output from the finite-element program,

and then computing the average of the top and bottom free surfaces at positions

x/w across the bridge width. The vertical sag data δ̂ = δ(x, t)/w so obtained

has then been re-scaled to correspond to the vertical length scale of the plot, i.e.
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δ(x, t)/h0 = δ̂/(h0/w). From Figure 3.14 we see that the asymptotic method gives

a reasonable estimate of central sag even for a bridge of aspect ratio as large as

h0/w = 0.2, although the profile towards the edge varies somewhat. As aspect

ratio decreases the overall correspondence between the thin-limit and finite-element

calculations improves, with h0/w = 0.1 being much closer to the thin limit than

h0/w = 0.2.

In addition to giving thin-layer limit results such as we needed to complete

Figure 3.11, the asymptotic method is also very suitable for obtaining information

on how the bridge changes from a uniform thickness as sagging progresses. This

is of considerable importance in optical component manufacture. Already we have

(see equation (3.68)) that h∗0 and h∗1 do not vary in time, and the initial condition

h∗ = 1 then dictates that h∗0 = 1 and h∗1 = 0. Thus to leading order a thin bridge

maintains its initial thickness profile as it sags small distances of order O(h0). For

any change to the thickness of the bridge we must look at the next order term h∗2.

Satisfying the dimensionless kinematic condition (3.56) on the free surfaces leads to

h̄2t ± h2t + (−(H± 1)Vx + U)Hx

=
1

2
(H± 1)2Vxx− (H± 1)Ux + v20 (3.127)

where, as before, asterisks are omitted on dimensionless variables. This then gives

h̄2t =
1

2
(H2Vx + Vx)x − (HU)x + v20 and (3.128)

h2t = (HVx)x − Ux. (3.129)

After substituting for U and V in terms of H, (3.129) becomes

h2t =
1

2
(H2x)t −

1

2
Ḣ2x (3.130)

which gives, to a first approximation, the variation in the bridge half-thickness over

time. Integrating with respect to t and noting that h2 = 0 at t = 0 then gives

h2 =
1

2
H2x −

1

2
H2x . (3.131)



3. A Sagging Viscous Bridge 74

This equation for h2 is an ‘outer’ solution that is incorrect in a small boundary layer

at the walls, of thickness comparable with the bridge thickness. This becomes ap-

parent when it is observed that Hx = 0 for all time at x = ±1 (see equation (3.114))

so that (3.131) gives h2(±1, t) = −
1
2
H2x which is the strain in the bridge and is of

necessity non-zero for all t > 0. This result at x = ±1 is inconsistent with a truly

non-slip wall boundary which demands that h2(±1, t) = 0 for all time t. In fact, we

have not had cause to enforce the zero vertical slip condition at the walls excepting

at y = 0, and the method is permitting some vertical slip along the wall bound-

aries with the top and bottom free surface contact points sliding towards y = 0.

Nevertheless, (3.131) provides useful information over most of the bridge width.

Switching again to dimensional quantities, Figure 3.15 shows the change in the

bridge half-thickness ∆h/h0 = (h − h0)/h0 at tV/h0 = 95.2 when the bridge has

sagged just a little more than its initial thickness of 2h0 (compare Figure 3.14). In

the thin limit this is given to first order by (h0/w)
2(h2/h0). It is clear from this

that over time the bridge becomes thinner at its centre and towards its edges, while

increasing in thickness between 0.33 < x/w < 0.83. It attains maximum thickness

at about one fifth of its width from the wall. Bearing in mind that the thickness

cannot in reality change at the walls, the bridge will be thinnest at its centre.

We can compare this result with our finite-element calculations for bridges of non-

zero thickness, and obtain a better idea of thickness changes in close proximity to the

walls. Already we have computed the centrelines of bridges of aspect ratios h0/w =

0.1 and h0/w = 0.2 after sagging one bridge thickness, as shown in Figure 3.14. It

is then a very simple matter to compute the half-thickness ĥ = h/w of these bridges

at positions x/w across the bridge width at the time t when the sag is one bridge

thickness, and these results can be re-scaled to correspond to the asymptotic output,

i.e. ∆h/h0 = ĥ/(h0/w). This is shown for h0/w = 0.1 and h0/w = 0.2, together

with the thin-limit result, in Figure 3.15. As in Figure 3.14, we see the thin-limit

curve correctly predicting the general form of the thickness variation across the
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Figure 3.15: Change in bridge half-thickness after sagging one bridge thickness for (a)
h0/w → 0 by asymptotic analysis, (b) h0/w = 0.1 by finite-element methods and (c)
h0/w = 0.2 also by finite-element methods.

bridge width, with the agreement between the finite-element and thin-limit results

improving as aspect ratio h0/w decreases. We can also see, from the finite-element

result for h/w = 0.1, that in the region near the walls, ∆h/h0 returns rapidly to

zero rather than as given by the asymptotic method which allows slip tangential

to the wall. However, the boundary region in which this happens is small and the

thin-limit result is accurate over most of the bridge width, as we expected.

3.7 Final Remarks

In this chapter we have analysed a simple very viscous flow problem. The initial

motion was computed by finite-element methods, using the commercial CFD pack-

age Fastflo and a purpose-written program, and by a semi-analytic series expansion

method. Good agreement between all methods and programs has been demon-
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strated. For finite-element analysis the purpose-written code was finally preferred

as giving the best accuracy most efficiently, and this was the main tool for comput-

ing the motion at later times when the bridge geometry loses its initial rectangular

shape and becomes more complex. However for bridges of small aspect ratio h/w

a thin-limit asymptotic method is appropriate and yields some information not ob-

tainable by numerical methods. In particular, the thin-limit asymptotic analysis

enabled the completion of Figure 3.11 for the time taken to slump one bridge thick-

ness as h/w → 0, with a result that is consistent with, and indirectly validates, the

finite-element computations, yet which could not be obtained, or even inferred, from

the finite-element results. The thin-limit approximation was also found to be very

useful in revealing the magnitude and nature of thickness variation across the width

of the bridge, which could then be confirmed from the finite-element computations.

This last aspect of the flow is important when applying this type of sagging flow to

optical-component manufacture where the finished surface profile is critical.

Our treatment of this sagging flow has had considerable, though not total, em-

phasis on the validation of the purpose-written computer program. We shall further

consider applications of this and similar sagging flows, including the manufacture

of optical surfaces which is our main focus, in later chapters of this thesis. How-

ever, the finite-element program that has been developed is quite general and can

be readily employed in solving some very different very viscous flows. In the next

chapter we look at extensional flows such as exhibited by dripping honey.



Chapter 4

Dripping Honey

4.1 Introduction

Honey is a well-known fluid, and its high viscosity relative to that of water is obvious

to any who have watched it drip from a spoon onto a slice of bread or into a cup of

tea. Initially its motion is slow, but at an ever increasing rate the honey forms

itself into a drop which then falls quite quickly under gravity. If the honey is

sufficiently smooth and fluid, and perhaps depending on its specific composition,

the drop becomes largely detached from the spoon, but remains connected to it by

a thin and ever extending thread of honey (see [99, p. 224], [29, p. 988]). Figure 4.1

shows some frames from a simulation of this flow computed using the purpose-

written finite-element program; the full MPEG movie is available on the Web, see

[94].

The events so described and illustrated occur in a finite time. That time is

essentially independent of how far the drop is allowed to fall, the final free-fall time

being very short compared to the time during which viscous forces dominate while

the drop is being formed. We shall refer to this as the finite-time phenomenon, and

to the time at which fall occurs as the crisis time.

Dripping honey is just one commonly observed example of a class of motions

77
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Figure 4.1: Sequence in the fall of an axisymmetric honey drop from a spherical-cap
spoon. (a) t/T = 0, (b) t/T = 4, (c) t/T = 7, (d) t/T = 8, (e) t/T = 8.2, (f) t/T = 8.4.

which can be described as extensional flows [10]. Others include spinning and draw-

ing of polymer or glass fibres for use in textiles, glass reinforced plastics, or optical

fibres [28, 29, 30], and, on a similar note, web spinning by spiders and insects; contin-

uous drawing of sheet glass [30]; glass-blowing and blow-moulding in the manufac-

ture of containers, light bulbs, and glass tubing [30, 76]; rheological measurement by

fibre extension and fibre spinning for polymers and glasses [58, 86]; and in geophysics

there are examples in the areas of oil recovery (see [35]) and flows beneath the earth’s

crust that possibly lead to mountain formation and volcanic activity [16, 20, 47].

Not all exhibit the finite-time phenomenon described for the honey drop, and even

in cases where it is very likely to occur, it is not always noted, perhaps because the
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flow is modified in the end stages of the processes being considered.

There is a considerable amount of literature concerning the breaking of liquid

jets/filaments to form drops. Very viscous through to inviscid liquids have been

studied. Most of this work has focused on drop formation when the jet radius goes

to zero in a finite time as a result of surface tension. See for example [31, 66, 67].

In these papers, extension under gravity is not an issue, which it certainly is for the

case of dripping honey.

The gravity-driven slow dripping of a viscous fluid from a narrow vertical tube has

been considered by Wilson [101], both with and without surface tension effects, with

particular attention being given to the mass of the drops that form and break away.

The flow is modelled by a one-dimensional slender-drop theory utilising conservation

of mass, force balance on fluid particles, and the Trouton result [10, 92] relating

stress and rate of strain for extensional flows. A finite-time phenomenon and crisis

time is identified, similar to that for dripping honey, even with surface tension

neglected, when the cross-sectional area of the drop at some point becomes zero

so that it breaks. Because of the neglect of inertia, the model also indicates that

the drop length becomes infinite at this crisis time. Wilson notes that this physical

impossibility can be removed by including inertia in the equations; then the drop

length will tend to infinity and the cross-sectional area will tend to zero as the time

goes to infinity, with breaking of the drop being caused by mechanisms of instability.

These mechanisms, however, become important only at times very close to the crisis

time, and hence the model that gives this crisis time is suitable for determining drop

volume and the time of rupture.

Gravity-driven extensional flow has also been considered in a geophysical context

by Canright [16] and Houseman [47]. Analysis of the stability of a very viscous fluid

layer overlying a less dense and much less viscous fluid shows that, when perturbed,

vertical ‘fingers’ of the very viscous fluid grow and extend under gravity into the

lower less dense fluid. With the neglect of inertia, these fingers become infinite in
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length in a finite time. This type of flow may be a mechanism in the formation of

mountains as ‘drops’ of the earth’s lithosphere descend into the asthenosphere [47],

and could conceivably cause other catastrophic geological events.

Fibre spinning is well discussed in the literature (e.g [28, 78]). Typically, in

the manufacturing process, the molten fibre material leaving the spinnerette rapidly

solidifies and is taken up on a winder. Because the fibre is pulled at a constant rate,

and because of the solidifying of the fluid, the finite-time phenomenon cannot occur

[29]. Schultz and Davis [78] also consider a fibre stretching under its own weight,

and, although not discussed in that paper, this is an example where the finite-time

phenomenon will occur provided solidification does not happen too quickly. The

finite-time phenomenon for a one-dimensional viscous fibre stretching under gravity

and/or an applied force is mentioned by Kaye [49].

Drawing of viscous sheets, as in the manufacture of sheet glass [30], is quite

similar to fibre spinning, and has been modelled by Howell [48] using a slender

approximation to the Stokes equations. Again, a constant drawing velocity and

solidification preclude any finite-time phenomenon.

The “liquid bridge” [35] is a simplified extensional-flow model that is widely used

for flows such as have been mentioned. A cylindrical column of fluid attached at

its ends to two coaxial discs of equal radius is stretched by pulling the discs apart.

When the discs are pulled apart with a constant velocity [35], or with a velocity that

increases exponentially in time [86], the finite-time phenomenon will not occur, since

it will take an infinite time for the liquid bridge to reach infinite length (ignoring

other factors such as surface tension that cause it to break) [29]. If, on the other

hand, stretching is caused by gravity, say by attaching a falling weight to one disc

[58], then the finite-time phenomenon will occur. Much attention has been paid

to the mechanisms causing breaking of a liquid bridge and the influence of surface

tension, gravity and other factors [35]. As for the slowly-dripping fluid discussed

previously, it is likely that, for the types of extensional flow we are considering where



4. Dripping Honey 81

the finite-time phenomenon is a feature, these factors become important mainly at

or close to the crisis time.

A different extensional flow to those mentioned so far is pressure-driven flow of

high-viscosity thin films such as is used in glass-blowing and blow-moulding [30, 70,

76]. Stretching of a molten viscous material, such as glass or polymer, results from

applying a pressure difference across the thickness of the film to cause substantial

motion in this transverse direction. Where there is no mould interference, the finite-

time phenomenon is a feature of this flow, with the radius of the arc formed by the

film becoming infinite in a finite time [96]. The sagging very viscous bridge analysed

in Chapter 3, and revisited in an axisymmetric context in Chapter 5, is also a flow of

this type, although there we do not consider large deformations such as are typical

in blow forming, and which lead to significant extensional flow.

In this chapter, we solve for the time-dependent motion, shape, and length of

a finite mass of Newtonian fluid of large constant viscosity that is initially at rest

beneath and in contact with a solid boundary. A substantial portion of this is also

presented in a paper by Stokes, Tuck, and Schwartz [89].

The most straightforward procedure for solving this problem is to use standard

computational fluid-dynamic tools such as the finite-element method to solve the

three-dimensional equations of motion, subject to no-slip boundary conditions on

the solid boundary and zero-stress conditions on the free surface. In this way we can

study drops of arbitrary initial shape. The finite-element method is the preferred

method for the numerical modelling of a variety of forming processes [70]. It has

been used to simulate liquid bridges [82], although the use there of a mesh with fixed

axial length requires that the simulation be restricted to to low-rate and small-

deformation experiments. In our dripping-honey example, once the drop begins

to move it quickly elongates in the direction of gravity. The Lagrangian method

of time advancing with a moving mesh (see Chapter 2) enables us to cope with

these large elongations, and, in addition to publications arising from the present
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research [93, 88], has been applied to the modelling of blow moulding of containers

[14, 38, 100]. In a very similar manner to the present work, a creeping-flow model

and finite-element method with a moving mesh has also been used in numerical

analyses of the growth of ‘fingers’ in the earth’s lithosphere discussed earlier [47].

However, because of the large elongations seen in the types of flow we are con-

sidering, a slenderness assumption is also possible, leading to an approximate one-

dimensional theory, cf. [29, 49, 78]. This slenderness assumption may also be valid

initially, and it is assumed in constructing the approximation that our interest in

the flow begins at a time when this is so. The resulting one-dimensional flow can be

described either by Lagrangian or Eulerian methods, and equivalence between these

two viewpoints is demonstrated in this chapter. Comparison with the exact finite-

element computations helps to clarify the regime where the slender-drop theory is

valid.

As discussed in Chapter 2, solutions are obtained with neglect of inertia on the

basis that the viscosity is large; the flow is thus creeping or Stokes flow and formally

has accelerations that are very small compared to the acceleration of gravity. The

most important theoretical conclusion from these solutions is that the drop length

eventually increases rapidly, and becomes infinite at a finite crisis time. This was

also noted by Wilson [101] and Canright [16], and is an inevitable and explicit

property of the model in that work as well as the approximate theory for slender

drops employed here. It is also confirmed by the exact finite-element computations.

The latter computations must eventually fail when the computational grid becomes

unreasonably stretched and the velocities very large. Nevertheless, when applied

to drops that are initially sufficiently slender, they predict drop lengths that are

increasing extremely rapidly near to finite crisis times and that are in close agreement

with the approximate theory.

In the real world, drop lengths cannot become infinite, although the honey exam-

ple shows that the overall length of the drop plus its connecting filament can indeed
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become very large compared to the initial drop length. Meanwhile, however, the

main falling head of the drop develops an acceleration comparable to that of grav-

ity, as the remaining ever-thinning filament connection loses its ability to restrain

the main drop’s transition into free fall. In that phase of the motion, but only at

times that are very close to the predicted crisis time, the assumption of neglect of

inertia loses its validity. However, as discussed in [101], for fluids of large viscosity,

it may be expected that the present results will provide good approximations until

quite close to the crisis time, and in particular will provide a useful prediction of

the actual value of the crisis or filament-breaking time, and of the break point or

fraction of the initial drop that falls.

Although a simulation that applies the creeping-flow model developed in Chap-

ter 2, has already been shown in Figure 4.1, let us pause to validate the assumptions

behind the model before we progress any further in applying it. While there are

many fluids to which our extensional flow model can be applied, it is the dripping

of honey that motivates this chapter, and hence we consider honey as a typical very

viscous fluid.

4.2 Properties of Honey

In general, studies have shown (uncrystallized) honeys to be true liquids that are

Newtonian, though some notable exceptions include heather honey which is thixo-

tropic (viscosity decreases with shearing e.g. brought about by stirring) and some

eucalyptus honeys which are dilatant (viscosity increases with increasing rate of

shear) [73]. Thus the Newtonian assumption that we have made in developing our

viscous-flow model is generally appropriate for honeys, and is, in any case, a good

place to start. Incompressibility is not specifically noted in the literature that has

been reviewed, but this assumption seems quite reasonable for the types of flow

under consideration since honey primarily consists of sugar with a water content of
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some 10 to 20 percent.

Next we have to justify the exclusion of the inertial terms from the Navier-Stokes

equation on the basis of the Reynolds number given in (2.6) being sufficiently small.

To compute this, let us equate the characteristic length L with the initial length of

the drop; then we require values for the density and viscosity of honeys.

The true specific gravity of honeys at 20◦C is tabulated in [99, p. 218], and varies

from 1.4457 at 13 percent water content to 1.3950 at 21 percent water content. This

variation is quite small in the context of determining the Reynolds number applicable

to the flow, and it is sufficient to take an average value of 1.42, i.e. a density of

1420kg/m3. In accordance with our expectation of incompressibility, and in the

absence of any information to the contrary, we shall assume that density does not

vary significantly over a reasonable temperature range (say 5 to 50◦C).

Viscosity, on the other hand, does vary considerably with both water content and

temperature, as well as the content of protein and other constituents that depend

on the floral source from which the honey is derived [73]. It is also an important

property for honey, influencing its ease of extraction from the honey comb and sub-

sequent processing, and, consequently, its determination has received considerable

attention over the years. A thorough review of work carried out to 1953 is found in

[73], and this is still considered to be ‘state of the art’ knowledge since subsequent

work has not contributed anything of much significance to the field [99]. Hence the

following discussion is largely based on information taken from that review.

In any general treatment of the rheology of honey, it is necessary that attention

be limited to those components with which direct correlation can be made, of which

water (or moisture) content seems to be the primary one. The other major parameter

to which the viscosity of honey is highly sensitive, is temperature. Viscosity data is

tabulated in [73, p. 157] for Newtonian honeys of different water content at different

temperatures and some of this data is reproduced here in Table 4.1.

Now we require that the Reynolds number given by (2.6) be much less than one.
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Table 4.1: Relationship between temperature, water content and viscosity of honey.

14.2% H2O 16.1% H2O 18.6% H2O 24.0% H2O
White Clover Sweet Clover Sage White Clover
◦C Poise ◦C Poise ◦C Poise ◦C Poise

21.7 417.6 15.7 422.4 6.8 400.8
29.5 151.2 22.0 156.0 14.0 148.0
32.0 112.8 24.1 121.2 16.2 105.6 3.4 108.8
49.7 14.7 43.3 16.3 36.2 15.6 18.2 15.6

If we take an initial drop length of the order of one centimetre, and a viscosity of

the order of 100 poise = 10 Pa · s then the Reynolds number is about 0.2 which we

accept as sufficiently small. From Table 4.1 honeys of 14.2 percent water content up

to a temperature of 32◦C, or of 16.1 percent water content up to 24◦C, or of 18.6

percent water content up to 16◦C, can be satisfactorily modelled using our creeping-

flow model. Honeys of higher water content are probably not sufficiently viscous in

normal temperature ranges.

Note that the Reynolds number increases like the cube of the drop length. Thus

as the drop elongates, the Reynolds number increases quite rapidly (along with

the flow velocities) until the neglect of inertia is no longer valid. However, as we

have already discussed, this occurs only in the final stages of the flow, just prior to

breaking.

One further model assumption that needs to be justified is the neglect of surface

tension. The only surface tension data that we have come across is for 25 percent

honey solutions, and this indicates a surface tension from 0.047 to 0.06 N/m at

20◦C, with the value increasing for filtered solutions [99]. Since the value for pure

honey will be larger than for honey solutions, it is safe to adopt a surface tension

of γ = 0.06N/m. As before we take a density of 1420kg/m3 and a drop length of

one centimetre. The capillary number given by (2.14) is then about 23 so that the

surface tension terms on the right hand side of (2.13) are of size 0.04 compared to
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terms of order one on the left hand side. Thus our neglect of surface tension is

reasonable.

This brief review of the properties of honeys indicates that the creeping-flow

model developed in Chapter 2 is suitable for modelling dripping honey up until times

quite close to the crisis time when the drop length increases rapidly and neglect of

inertia is no longer valid.

4.3 Mathematical Formulation

Let the x-axis be directed vertically downwards, and suppose that at any time the

fluid mass lies in the region 0 < x < L(t), |y| < f(x, z, t) and is an incompressible

Newtonian viscous fluid of density ρ and viscosity µ, in a gravity field g acting in the

x direction. Given suitable initial conditions L(0) and f(x, z, 0) defining the initial

flow domain geometry, our task is to solve (2.2) and (2.7) (with the x direction

being equivalent to the −x2 direction of Section 2.1), subject to no-slip boundary

conditions (2.11) at the wall, which is assumed to lie in or close to the plane x = 0,

and no-stress free-boundary conditions (2.15) at the side boundary y = f(x, z, t).

We must also satisfy a kinematic boundary condition (2.18) on the side boundary, or

equivalently the Lagrangian equation (2.19). If the drop has a rectangularly cut-off

bottom, i.e. if f(x, z, t) is not zero at x = L(t), similar free-boundary conditions

must also be satisfied on the bottom surface. The flow domains that we shall consider

are symmetrical about the x-axis, so that we may solve over one half of the flow

domain and satisfy (2.15) and (2.16) on this symmetry boundary.

We shall solve for this flow numerically in both two and three dimensions by

finite-element methods using the purpose-written computer program, but first let

us consider an approximate one-dimensional solution.
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4.4 Slender-drop Theory

It is possible to provide an approximate solution of the creeping-flow equations for

slender drops, i.e. those drops such that the free-surface slope fx in the vertical

direction is everywhere small. The net effect of such an approximation will be that

the flow is determined largely one-dimensionally, the key variables being a measure

u(x, t) (averaged over a cross-section at fixed x) of the downward vertical velocity,

and the net cross-sectional area

A(x, t) = 2
∫

f(x, z, t)dz (4.1)

of the drop at station x.

Derivation of appropriate equations to determine u and A can be done in one of

two ways. The simplest way is to convert to a Lagrangian specification x = X(ξ, t),

in which u = Xt. The label variable ξ is such that x = ξ at t = 0. The area A is

then to be determined as a function of ξ and t, subject to an initial value A = A0(ξ)

at t = 0.

Consider a small piece of the drop between ξ and ξ+∆ξ, deforming to lie between

x and x+∆x, where ∆x = Xξ∆ξ. Mass conservation implies that A∆x = A0∆ξ is

time-independent, or AXξ = A0. Hence the rate of strain of this piece is

E =
1

∆x

∂

∂t
∆x = −

1

A

∂

∂t
A. (4.2)

The stress acting on this piece due to gravity is S = W/A where

W = W0 = ρg
∫ L0

ξ
A0(ξ1)dξ1 (4.3)

is the (time-independent) weight of fluid beneath station ξ. We can now invoke a

one-dimensional constitutive equation of the form

S = µ̂E (4.4)
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where µ̂ is the so-called “Trouton viscosity” ([92], [10, p. 30]), which is related to

the actual viscosity µ by µ̂ = 3µ in three dimensions, and µ̂ = 4µ in two dimensions.

Thus W0 = −µ̂At, which integrates with respect to time to give

A(ξ, t) = A0(ξ)−
ρgt

µ̂

∫ L0

ξ
A0(ξ1)dξ1 . (4.5)

Meanwhile the mass conservation result integrates to give

X(ξ, t) =
∫ ξ

0

A0(ξ1)

A(ξ1, t)
dξ1 , (4.6)

and a combination of the last two equations yields, via two quadratures, all required

information about the flow, given any specification A0(ξ) of the initial shape. In

particular, if required, the velocity u can then be obtained by time differentiation,

and the length L(t) of the drop at any time is just given by L(t) = X(L0, t).

This type of Lagrangian approach is also employed in [49] for similar types of

problem. In particular, the extension of a thin fibre of initially constant cross-

section A0 held vertically and fixed at the top, due to gravity and an applied force

F0, is considered. With F0 = 0 the solution obtained [49, p. 67, equation (4.1.17)]

is identical to that given by (4.5) and (4.6) above. This particular case will be

considered further below.

An alternative derivation of these results proceeds via a formal asymptotic ex-

pansion with respect to a small parameter ε = w0/L0, where w0/2 is the maximum

value of f(x, z, t). The details are essentially given later in another context with

gravity g acting in the −x direction (see Section 5.3), and hence are omitted here.

Eventually the procedure leads to Eulerian equations for the one-dimensional de-

pendent variables u(x, t) and A(x, t), namely

∂

∂x

[

A
∂u

∂x

]

+
ρg

µ̂
A = 0 (4.7)

involving the Trouton viscosity µ̂ again, and

∂A

∂t
+

∂

∂x
[uA] = 0, (4.8)
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cf. equations (5.17) and (5.18). Equation (4.7) has previously been derived (e.g.

[29, 48]) in the absence of gravity, when its solution is immediate. With the gravity

term present, the best procedure to solve (4.7) coupled with (4.8) is in fact to revert

to the Lagrangian representation.

Recognising (4.8) as a one-dimensional continuity equation, it is not difficult to

make the appropriate changes of variable to retrieve the Lagrangian-representation

solutions above. Integrating (4.7) with respect to x and satisfying the boundary

condition ux = 0 at x = L(t), gives −Aux in terms of the weight W , and this

quantity is seen to be equal to the time derivative of A following a fluid particle (i.e.

the material time derivative) on writing (4.8)

dA

dt
=
∂A

∂t
+ u

∂A

∂x
= −A

∂u

∂x
. (4.9)

Hence (4.5) follows by time integration.

The boundary condition ux = 0 at x = L(t) is equivalent to a condition of zero

stress as will be seen from the formal asymptotic Eulerian expansion of Chapter 5

(see p. 118). However this boundary condition is implied by (4.9) together with the

fact, already known from (4.5), that the cross-sectional area at x = L(t) is constant

and possibly non-zero for all time .

The general case of the above approximate solution (4.5) and (4.6) will be dis-

cussed later, but for now let us simply observe the simple special case in which

A0(x) =constant. This applies both in two dimensions to an initially rectangular

slab, and in three dimensions to an initially cylindrical drop of a general (constant)

cross-section. Then we find a length given by

L(t)

L0
= −

t̂

t
log

(

1−
t

t̂

)

(4.10)

where

t̂ =
µ̂

ρgL0
. (4.11)

Thus it is explicit that the solution “blows up”, with L(t) → ∞ at the finite crisis

time t = t̂. It is also clear by substitution into (4.5) that the area at ξ = 0 goes to
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zero at this crisis time t̂ which can be equated with the fluid breaking away from

the wall, cf. [101].

4.5 Finite Element Procedure and Convergence

Tests

The problem as formulated in Section 4.3 is suitable for immediate solution using

the finite-element method. With the purpose-written computer program we may

solve two-dimensional and axisymmetric cases, although in principle the general

three-dimensional equations can be solved as easily. The solution procedure does

not differ from that already described previously, excepting in two respects. First,

for a fixed time step, node displacements become large in the later stages of the flow

as velocities increase, and there is a loss of solution accuracy readily identified by

non-conservation of flow-domain area (i.e. mass). Because of this the displacement

of any node is limited to some maximum value as described below. Second, the large

extensions of the flow-domain at times just prior to the crisis time cause considerable

distortion of mesh elements resulting in a loss of solution accuracy. When this occurs

it is necessary to stop computing and remesh before proceeding further. Eventually

a time is reached when there is an extremely rapid distortion of the mesh, a time

beyond which computations cannot be continued even with remeshing. This time

will be identified with the “crisis time” predicted by the slender-drop theory.

To test convergence of the numerical methods, let us first take an initially rect-

angular two-dimensional slab with an initial width/length ratio of w0/L0 = 0.2,

attached to a plane no-slip wall x = 0. We use a non-dimensional formulation, with

a length scale of L = L0 and a time scale of T = µ̂/(ρgL0). This means that the

slender-drop approximation to the crisis time for this particular initial drop shape

is t̂/T = 1. We exploit the lateral symmetry of the problem to reduce computations

to half of the rectangular domain, and test convergence with respect to both mesh
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Table 4.2: Initial rate of extension of a hanging rectangular slab.

Ne L′ · (t̂/L0)

66 0.029911
146 0.029923
235 0.029926
315 0.029925
409 0.029929
501 0.029929

and time-step sizes.

The local corner flow analysis conducted in Chapter 3 for the sagging viscous

bridge is applicable to this problem also, and again there is a mild pressure singu-

larity in the corner where the free surface attaches to the top wall. Consequently

non-uniform meshes with elements concentrated at the contact corners give faster

convergence than meshes of uniformly distributed elements. They are also preferred

because mesh elements are clustered in the area which will see most distortion

as time progresses. Convergence with increasing numbers Ne of mesh elements is

therefore demonstrated for non-uniform meshes. As a first test, we evaluate the

impulsively developed velocities at the initial instant of time t = 0+, and exam-

ine convergence of the computed value of the maximum velocity, which occurs at

(x/L0, y/L0) = (x∗, y∗) = (0, 1) and is the initial rate of extension L′(0+), the prime

denoting time differentiation. The results are given in Table 4.2, from which it can

be concluded that a mesh of about 150 elements (in one half of the domain) is

suitable for this geometry, and gives about three figures of accuracy.

With respect to convergence with decreasing time step, let us consider both the

drop length L(t) and rate of extension L′(t). The Runge-Kutta method has been

found to give excellent accuracy at times not too close to the crisis time, even for

quite large time steps. Accuracy decreases as the crisis time is approached and

mesh movements become large, and is clearly identified by non-conservation of flow-
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domain area (equivalent to non-conservation of mass). Because of this, it is a good

idea to prescribe a maximum allowable (dimensionless) node displacement |∆r̃| in

a single scaled time step ∆t∗, and require that the displacements of all nodes i

predicted from the known dimensionless velocities (u∗, v∗)i using the Euler method

are no larger than this maximum, i.e.

|∆r̃| ≥ |(u∗, v∗)i| ·∆t
∗ for all i (4.12)

where the modulus denotes the usual length of a vector. If the maximum displace-

ment over all nodes occurs at node j and exceeds the maximum allowed displace-

ment, then the time step is reduced using

∆t∗ =
|∆r̃|

|(u∗, v∗)j|
. (4.13)

Because the Euler method is used to predict node displacements and compute the

new size of the time-step, while the Runge-Kutta method is used to calculate final

node displacements, the actual maximum node displacement may still exceed the

nominated allowed value. However the differences are quite small and of no concern.

Imposing this restriction on node displacements has the effect of clustering time steps

near the crisis time, when there is most action.

Table 4.3 gives some results at t/t̂ = 1, which is very near the crisis time for

our test geometry, for different values of maximum time step 4t∗ and maximum

displacement |4r̃|. The actual number of time steps Nt is also given. A non-uniform

mesh of 146 elements was used. In fact, t/t̂ = 1 is the non-dimensional crisis time

in the slender-drop limit, and the effect of thickness is just to increase this time

slightly. Considering the extreme proximity of crisis, where numerical inaccuracy

is to be expected, these results are extremely good. There is good conservation of

mass (dimensionless area) with six figure accuracy for 4t∗ = 0.05 and |4r̃| = 0.10.

The corresponding values for L and L′ show convergence to seven and five figures

respectively.
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Table 4.3: Length and rate of extension of an initially rectangular hanging slab at t/t̂ = 1.

4t∗ |4r̃| Nt L/L0 L′ · (t̂/L0) Area

0.25 0.50 5 3.019435 0.772955 0.2001449
0.05 0.50 20 3.017544 0.773823 0.2000013
0.25 0.10 20 3.017533 0.773826 0.2000010
0.05 0.10 27 3.017522 0.773827 0.2000001
0.25 0.05 41 3.017522 0.773829 0.2000000
0.05 0.05 43 3.017522 0.773829 0.2000000

Obviously, we are unable to compute at exactly the crisis time, and can only

hope to approach it as closely as possible. Not unexpectedly, as we approach closer

to this crisis time, some of the mesh elements become very distorted due to the large

elongation and pinching-in near the wall, resulting in numerical error. Remeshing

the flow domain before the elements become too distorted and too much numerical

error results, enables us to compute closer to the crisis time, until again the mesh

elements become excessively distorted. Eventually a point is reached where no

further computation is possible, even with remeshing. To obtain an estimate for the

crisis time itself, we can plot L−2 versus time t, and extrapolate to L−2 = 0. In

Figure 4.2 such a plot is given for the end stages of the flow of a rectangular slab of

aspect ratio w0/L0 = 0.2. Curves obtained with and without remeshing are given

to show the loss of accuracy with excessive mesh distortion. All further plots are

with remeshing close to the crisis time.

It is instructive to further treat the case of a rectangular initial drop shape,

but now with varying aspect ratio (w0/L0). As already indicated, there are no

extra computational difficulties associated with the axisymmetric equivalent of the

two-dimensional problem, namely an initially cylindrical drop, and the results are

qualitatively similar. Furthermore, as previously indicated (Section 4.4), in the

slender-drop limit the two and three-dimensional crisis times differ only by a factor

of three quarters — the ratio of Trouton viscosities. Since the finite-element compu-
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Figure 4.2: Length versus time for a rectangular slab of w0/L0 = 0.2 (a) with remeshing
at t/t̂ = 0.95, and (b) without remeshing.
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Figure 4.3: Length versus time for rectangular slabs of various aspect ratios.
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tations are consistently non-dimensionalized with respect to a time scale involving

the Trouton viscosity, the non-dimensional slender-body estimate of the crisis time

remains at t̂/T = 1 in both three and two dimensions.

We first consider initially-rectangular two-dimensional slabs with aspect ratios

between 0.1 and 0.4, and with meshes of between 155 and 175 elements over the

half-domain. Figure 4.3 gives L−2 versus t for the different aspect ratios considered.

For comparison, the curve obtained from the slender-drop theory is also given. An

advantage of plotting L−2 is that the small-time behaviour predicted by the slender-

drop theory is a straight line passing exactly through the crisis point; the actual

curve is then just a small upward deviation from this line. The slender-drop theory

is the small-aspect-ratio limit, and the agreement between the slender-drop and

finite-element computations is good for the lower aspect ratios, as expected.

Figures 4.4 and 4.5 show in parts (a) the evolution of the shape of the drop of

initial aspect ratio 0.2, as given by the finite-element method, at times t/t̂ = 0.75

and t/t̂ = 0.95 respectively. The slender-drop approximate profiles are also given for

comparison in parts (b) of these figures, the (uncorrected) profiles being the lower of

the two curves in each case. There are two types of apparent difference between the

exact finite-element computations and the slender-drop theory, namely an upward

shift of the profile and a modified profile near the wall. The main effect of finite width

is related to what happens at the wall, which then affects the time scale, so that the

actual drops fall slightly slower than the slender-drop theory predicts. Otherwise,

the exact (finite-difference) and approximate (slender-drop) profile shapes are very

close if corrected to compensate for this small time difference, except for the region

near the wall, which is now discussed.
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Figure 4.4: Initially-rectangular profile, at t/t̂ = 0.75. (a) Finite-element method.
(b) Slender-drop theory, with and without wall correction.
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Figure 4.5: Initially-rectangular profile, at t/t̂ = 0.95. (a) Finite-element method.
(b) Slender-drop theory, with and without wall correction.
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4.6 Wall Corrections

Because of the second-order character of the partial differential equation (4.7) given

by the slender-drop theory only two boundary conditions have been needed for

its solution; we required that there be no normal velocity component at the wall,

i.e. u = 0 at x = 0, and a zero velocity gradient at the free end of the drop

corresponding to a condition of zero normal stress at the bottom, i.e. ux = 0 at

x = L(t). Thus the slender-drop theory permits slip along the wall boundary, which

the finite-element calculations do not, as is clear from Figures 4.4 and 4.5. The

slender-drop solution is, in fact, an outer solution that is valid to within about one

drop width of the ends, where inner solutions are required to give boundary-layer

corrections [78]. These inner solutions are given by the higher-order terms in the

slender-drop expansion and require extensive numerical analysis (ibid.), so that in

one sense the finite-element method is the better way to obtaining the near-wall

profile.

It is, however, possible to give an empirical discussion of the inner flow near

the wall boundary based on the “squeeze bearing” problem [15, p. 392] of lubrica-

tion theory. The details are given in [89], and finally yield a composite empirical

expression for the Trouton viscosity, which in two-dimensions is

µ̂ = 4µ

[

1 +
1

16

(

w0
x

)2
]

, (4.14)

and for the axisymmetric problem is

µ̂ = 3µ

[

1 +
1

32

(

w0
x

)2
]

. (4.15)

These expressions agree with the Trouton result, µ̂ = 4µ in two dimensions and

µ̂ = 3µ in three dimensions, for large x. They also have the property that µ̂ → ∞

as x → 0, thereby enforcing the pinning of the contact points at y = ±w0/2 by

solidifying the fluid there.

For the two-dimensional initially rectangular drops of length L0 and width w0

already considered, the shape evolution x = X(ξ, t) given by the slender-drop theory
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employing the above expression (4.14) for the viscosity is the solution of the linear

first-order ordinary differential equation

dξ

dx
= 1−

ρgL0t

4µ

1− ξ/L0
1 + w20/(16x

2)
(4.16)

which may be integrated in closed form. As an example we show, as the upper

curves of parts (b) of Figures 4.4 and 4.5, the corrected shape of the drop with

w0/L0 = 0.2 at times t/t̂ = 0.75 and t/t̂ = 0.95. These corrections were obtained

by integrating (4.16) and substituting the result for ξ = ξ(x) in (4.5). Although

there is some indication that this present theory may slightly over-correct, when

compared with the (essentially exact) finite-element solution shown in parts (a) of

these figures a significantly improved agreement is clearly achieved by inclusion of

this wall correction in the slender-drop theory.

4.7 Break Points

According to the slender-drop theory for a general initial drop shape A0(ξ), the crisis

time occurs when the drop’s cross-sectional area A(ξ, t) as given by (4.5) vanishes

at some station ξ. Since both A0(ξ) and its integral

V (ξ) =
∫ L0

ξ
A0(ξ1)dξ1 (4.17)

(the volume lying below station ξ) are positive quantities, this must always happen

at some sufficiently large time t. From (4.5), it will happen first at the station ξ = ξ̂

where V (ξ)/A0(ξ) takes its maximum value L̂, and then the crisis time will be

t̂ =
µ̂

ρgL̂
. (4.18)

The drop will then break at that station ξ̂, with the portion 0 < ξ < ξ̂ of the original

drop remaining attached to the wall, and the portion ξ̂ < ξ < L0 going into free fall

for t > t̂. Whenever the crisis time is given by (4.18), it is convenient to refer to the

quantity L̂ as the “effective length” of the drop.
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The break point, effective length and crisis time given in this simple manner by

the slender-drop theory, will be correct even though we ignore the wall correction,

provided only that the break point does not fall within the near-wall region which

has a thickness of the same order as the drop width. Should this occur, then the

breaking behaviour will vary somewhat from this prediction.

In many cases, the quantity V (ξ)/A0(ξ) is monotone decreasing, with its max-

imum at the wall ξ = 0. Hence in such cases, the slender-drop theory predicts

breakage at the wall (cf. [49]), with the whole initial mass going into free fall. For

example, the family

A0(ξ) = A0(0)

[

1−
ξ

L0

]n

(4.19)

for any power n > −1, has

V (ξ)

A0(ξ)
=
L0 − ξ

n+ 1
. (4.20)

Hence ξ̂ = 0 and the effective length is L̂ = L0/(n + 1). Note that n = 0 is the

rectangular or cylindrical case considered earlier where the effective length is equal

to the actual initial length; n = 1 for the axisymmetric case is a paraboloidal initial

drop of a quite sensible form. Figure 4.6 shows profiles for this paraboloidal initial

drop. These profiles are at a scaled time interval of 0.05 where T = µ̂/(ρgL0),

the last profile shown being at t/T = 1.95, compared to a crisis time of t̂/T = 2.

Note that, in this case, we no longer have T = t̂ as in the initially rectangular or

cylindrical cases because L̂ 6= L0.

When ξ̂ = 0, the break point is formally at the wall itself according to the

slender-drop theory, and hence it lies inside the near-wall region. Therefore, the

finite-element and slender-drop solutions will differ, as we have already seen for

rectangular slabs. Actual breaking occurs at a point which has an initial distance

from the wall comparable with the thickness of the near-wall region, with some

material in that region being left behind. However, this distance is formally of

the same size as the drop width, and hence small relative to the drop length, with
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Figure 4.6: Extension of an initially-
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Figure 4.7: Extension of drop with σ =
1.34016, such that half of the volume falls.

the volume left behind being of the order of ε2, which is small compared to the

total order-ε volume of the drop. Hence formally we can consider that the drop

does indeed break at the wall as indicated by the slender-drop theory, although the

actual crisis time is a little longer. The finite-element computations confirm this

description.

On the other hand, it is possible for the predicted break point to occur at a non-

trivial station ξ̂ > 0, so long as V (ξ)/A0(ξ) has an interior maximum. For example,

consider an axisymmetric family of drops with initial area profiles given by

A0(ξ) = A0(0)

(

1−
ξ

L0

)

exp(Y 2 − σ2) (4.21)

where Y = σ(1 − ξ/L0) and σ is a given parameter. If σ = 0, we retrieve the

paraboloidal drop n = 1 discussed above. We find

V (ξ)

A0(ξ)
=
(

L0
2σ

)

1− e−Y 2

Y
(4.22)
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which has a maximum of magnitude L̂ = 0.3191L0/σ at Y = 1.1209. Hence if σ >

1.1209 and the drop is sufficiently slender, breakage occurs at ξ/L0 = 1− 1.1209/σ,

with the above effective length L̂ and hence a crisis time t̂ given by (4.18). For

example, if σ = 1.34016, the break point ξ/L0 = 0.1636 is such that exactly half of

the volume of the original drop falls, with L̂ = 0.2381L0. Figure 4.7 shows profiles

for this case, at a scaled time interval of 0.1, the last profile shown being at a time

t/T = 4.1 close to the crisis time t̂/T = 4.200. These results were computed from

the slender-drop theory without any correction for no-slip on the wall.

The same initial drop was also used as input to the finite-element code. A near-

crisis profile at t = 4.0 is shown in Figure 4.8(a), where a drop initial half-width

of 0.05L0 has been chosen such that the break point falls outside of the near-wall

region. The resemblance of the near-crisis profile to the slender-drop solution at

t = 4.0 in Figure 4.7 (the corresponding profile being the “next-to-end” one in that

Figure) is very good; note the agreement for the length L/L0 ≈ 8.3 which shows that

the break point and crisis time are independent of the no-slip wall condition. To

emphasize this feature, an artificial “slip” wall condition has also been implemented

in the finite-element program, yielding the profile at t = 4.0 shown in Figure 4.8(b).

The profiles for the slip and no-slip walls are remarkably similar to each other at

t = 4.0, and this similarity continues for times closer to the crisis time t ≈ 4.2.

As the drop half-width is increased from 0.05L0, so increasing the vertical extent

of the near-wall region, a point is reached where the predicted break point falls

within this region. When this happens, the wall boundary conditions do affect the

final outcome, and the finite-element solution cannot be expected to compare as

well with the slender-drop theory, for either crisis time or break point. The further

the break point falls inside the near-wall region, the greater the difference between

the two results. For a drop half-width of 0.1L0, the break point is only just within

this region, and the solution at t = 4.0 is quite similar to those in Figure 4.8. For

times closer to crisis, however, a marked difference between a slip and no-slip wall
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Figure 4.8: Finite-element solution of drop with σ = 1.34016 at t = 4.0. (a) No-slip wall
boundary, (b) Slip wall boundary.

boundary develops, showing the importance of the wall boundary condition in this

case.

4.8 The Honey Drop Again

We began this chapter with a description of dripping honey, but have digressed from

this to consider slender drops which can be modelled using an analytic slender-drop

approximation as well as finite-elements. The emphasis has been on the finite-

time phenomenon explicitly predicted by the slender-drop theory. This theory is

equivalent to one-dimensional theories of both Lagrangian and Eulerian character

that have been used extensively in the literature, though the connection is not

always easy to see, and enables determination of crisis times, profiles and break-
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points in terms of simple quadratures. Because the near-wall region is not modelled

by the usual slender-drop approximation, its importance is not always appreciated.

A method has been developed for correcting the slender-drop theory for this region,

through a modified non-constant expression for the Trouton viscosity.

The results of the slender-drop approximation have been verified by finite-element

solutions of the the unapproximated Stokes-flow problem, both in two and three (axi-

symmetric) dimensions. While the slender-drop approximation is better suited to

predicting crisis times and break-points, the finite-element method gives more ac-

curate drop profiles, particularly in the region near the wall. It is also immediately

applicable to drops whose initial profile is not slender.

The dripping honey example of Figure 4.1 is, at least in its initial stages, such

a non-slender case. The computations were for an axisymmetric geometry, with the

“honey” being initially held in a “spoon” consisting of a shallow spherical cap having

a depth equal to half the radius R of the rim of the spoon. The free surface of the

honey is also assumed to have an initial spherical shape rising a distance R/10 above

the rim of the spoon. Times (in Figure 4.1) are scaled using the usual T = µ̂/(ρgL0)

with L0 = 0.6R, the initial maximum depth of honey. As for slender geometries,

there is an apparent crisis time, which occurs at about t̂/T = 8.6. This corresponds

to an effective length of about L̂ = 0.07R which is a little less that the maximum

initial height of the honey above the rim of the spoon. It is an interesting topic

for further research to consider the way in which the effective length L̂ depends on

actual initial drop size and shape for arbitrary non-slender drops.



Chapter 5

Slumping Glass

5.1 Introduction

Having demonstrated the wide application of the purpose-written finite-element

computer program by solving for two quite different very viscous flows in Chap-

ters 3 and 4, we return to a consideration of sagging flows further to the sagging

bridge analysed in Chapter 3. Specifically, for the remainder of this thesis we shall

be primarily concerned with the slumping of molten glass.

Numerous objects of practical and artistic value are formed from molten glass,

which is another very viscous fluid. Glass “slumping”, sometimes referred to as

sagging or bending, is a forming process whereby a piece of sheet glass suitably

supported, usually around its perimeter, is placed into an initially ‘cold’ oven and

heated until it is sufficiently fluid to sag under its own weight. Sometimes the glass

sags into a mould, as in the production of some optical components [84] and orna-

mental items [30, p. 277], and this process will be considered in detail in Chapters 6

to 8. If, however, the item is sufficiently simple, no mould is needed and the glass is

allowed to sag until the desired shape is attained. Such slumping is used industrially

in the fabrication of windshields and other vehicle components [25, 36, 61], and has

been investigated as a means of determining molten glass viscosities [42].

104
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Glass blowing [30] is probably the most well-known glass forming process. The

manual procedure involves gathering a quantity of molten glass on a blow pipe

through which air is blown. The increased pressure in the interior region results

first in the formation of a bubble inside the glass, and subsequently in the expansion

and stretching of the glass film similar to the blowing up of a balloon. Throughout

this procedure various tools may be used to shape the glass. The similarity between

this pressure-driven flow of glass and slumping is easily appreciated, although the

deformation resulting from blowing is generally much greater than in slumping with

the glass finishing much thinner. Glass blowing is used in the production of a variety

of artistic glass items. The process has also been mechanised for the industrial-scale

manufacture of glass hollow-ware including containers, tubing [30], and light bulbs

[76]. Numerous plastic items are also manufactured by means of blowing [68]. In

many cases, the molten glass or plastic is blown into a mould, and the process is

then commonly called blow moulding (as in [68]).

Gerhardt [36] comments on the difficulty experienced by the glass industry in

manufacturing parts to exacting specifications, particularly in comparison to plastic

injection moulding. The problems are more related to the processes than the exact

material from which the parts are formed, so that the comment applies also to plastic

items manufactured in similar ways. In order to better understand the forming

processes and the problems they present, considerable effort has gone into developing

models and numerical simulations, much of which is not reported in the published

literature because of commercial sensitivity. This thesis is the direct outcome of a

desire to better understand slumping as used in the manufacture of optical surfaces

which must be accurate to within some reasonably fine tolerances. In blow moulding

the major concern seems to be achieving a uniform wall thickness appropriate to

the purpose of the item. Excessive thinning in some places with the consequent

reduction in strength, or extra thickness with the consequent cost implications are

to be avoided (see for example [76]).



5. Slumping Glass 106

Blow moulding of thin viscous films has been the subject of considerable investi-

gation using finite-element methods, with particular application to the manufacture

of axisymmetric containers [14, 21, 38, 100]. A slow-flow approximation to the

Navier-Stokes equations by dropping the advective terms is used in [14, 38]. Our

simplification to the creeping-flow or Stokes equations represents an additional sim-

plification, since, not only the advective terms, but also the partial time derivative

have been discarded. This is possible because the time rate of change of velocity as

well as the spatial gradient is small. An important consequence of this removal of

time from the flow equations, additional to those discussed in Chapter 2, is that tem-

poral changes in viscosity can be accommodated fully within our constant-viscosity

model by a change to the time scale. This will be explained in detail later in this

chapter (see Section 5.4). A slow-flow approximation, which in neglecting time

derivatives is quite similar to that used here, is used in [21, 100], but instead of the

Newtonian-fluid assumption inherent in a model based on the Navier-Stokes equa-

tions, a viscous Maxwell-fluid model is used. The subject of glass properties will

be addressed in the next section, but for now we simply note that in more recent

work it is accepted that a Newtonian-fluid assumption is adequate. In all of this

previous finite-element modelling, only one or two layers of mesh elements were used

across the thickness of the film, which is quite thin. We do not limit our considera-

tions to thin films, and additionally want the greater accuracy given by much finer

meshes, especially when modelling the slumping of optical components. As a result

the meshes here used are generally similar to that shown in Figure 3.4.

For thin viscous films a thin-layer approximation to the Stokes creeping-flow

equations is also valid, and has been used in [48, 96] for analysing pressure driven

flows such as blowing, as well as for the stretching of nearly-flat sheets. Indeed,

we have already used a similar method for the thin limit of the sagging bridge in

Chapter 3. A more intuitive thin-layer analysis based on mechanical principles, and

analogous to the Lagrangian derivation of the extensional flow model in Chapter 4, is
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given in [68, Ch. 20] for the manufacture of simply shaped items by blow moulding

and another process known as thermoforming. In thermoforming a flat sheet is

clamped around its edges to a mould, and some combination of vacuum on the

mould side, positive air pressure on the opposite side to the mould, and a plunger,

forces the sheet into the mould. In the absence of a plunger, the similarity with

both blow moulding and slumping is apparent.

In this chapter we shall consider the simple slumping of molten glass supported

around its perimeter, in the absence of a mould. A two-dimensional example of

this is the sagging bridge of Chapter 3. Here we look at axisymmetric flows in the

context of disc viscometry and disc sagging.

To this stage we have been assuming a fluid viscosity that is constant in both

time and space. However, as we shall see in the next section, the viscosity of glass

is very temperature-sensitive so that, in modelling the slumping of glass as it is

heated, we must allow for a changing viscosity. In an ideal slumping environment the

temperature will vary in time, but, at any point in time, will be spatially constant.

Thus in this chapter it is assumed that conditions are “isothermal” at any point in

time, with the viscosity being a function of time only through its dependence on the

temperature. The importance of spatial viscosity variations, that are more likely

to arise when slumping into a mould, will be investigated in a later chapter. The

isothermal assumption permits us to continue using the constant-viscosity model,

since no time history is included in the creeping-flow model, which is solved for a

point in time when the viscosity is spatially constant. This will be discussed further

in Section 5.4, but next we justify the other model approximations for flows of

molten glass through a consideration of glass properties.
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5.2 Glass Properties

Strictly speaking glasses are any substances that behave as rigid solids, but are

like liquids in having no crystalline structure. They are therefore known as both

undercooled liquids and amorphous solids [59]. The undercooling of a liquid to form

a glass requires that the liquid be very viscous at its freezing point. This high

viscosity is a consequence of considerable resistance to atomic rearrangement such

as crystallization which normally occurs when a liquid freezes. Most substances are

too fluid at their freezing points to prevent crystallization, but a few are sufficiently

viscous that the crystallization rate is very slow and cooling can be continued below

the freezing point at a sufficiently fast rate that crystallization does not occur.

The viscosity continues to rise with decreasing temperature, and at about 1012 to

1013 Pa · s the substance becomes a glass with mechanical properties similar to an

ideal elastic solid [74]. Inorganic mixtures containing a large silica component are

notable examples of substances which form glasses, and in this thesis the word

“glass” refers to these in accordance with common usage. It is also common to use

the word glass to refer to a glass-forming substance in its molten form as well as

its ‘solid’ state, and although this is not in strict accordance with the definition, we

have adopted this somewhat loose use of the term in referring to “molten glass”.

From this discussion it will already be appreciated that molten glass is a very vis-

cous fluid that might be modelled using the creeping-flow approximation described

in Chapter 2. However let us formally validate the model assumptions, and examine

the subject of glass viscosity in more detail.

It is generally assumed that molten glass is an incompressible fluid. While this

is not strictly true, it is considered to be sufficiently accurate for practical purposes,

and in any case is an assumption made in all current methods for determining molten

glass viscosities [42]. Furthermore, while a Maxwell-fluid model was used in some

early glass modelling work [21, 100], it is now generally accepted that molten glasses,

with but few exceptions, are Newtonian fluids [77], and this assumption has been
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Table 5.1: ASTM reference viscosities for glass.

Reference µ (Poise) Description

Strain point 1014.5 (approx.) Temperature at which the inter-
nal stresses in glass are reduced
to low values in 4 hours.

Annealing point 1013 (approx.) Temperature at which the inter-
nal strains in glass are reduced to
an acceptable commercial limit in
15 minutes.

Softening point 107.6 (approx.) Temperature at which glass will
deform under its own weight.

Working point 104 (exact)
Melting point 102 (exact) Temperature at which the ingre-

dients of the glass are heated dur-
ing glass manufacture.

adopted in more recent work [14, 38, 48, 93, 96]. Thus, we shall assume that molten

glass is an incompressible Newtonian fluid.

In the following discussion we shall refer to a number of reference viscosities

established by the American Society for Testing Materials (ASTM) [4, 44, 77, 81].

These are defined in Table 5.1. Glass viscosities are usually given in “poise” where

1 poise = 0.1Pa · s.

Glass properties, including viscosity, are very sensitive to chemical composition

and temperature. Most commercial glasses fall into one of three main categories as

follows [46].

1. Soda-lime-silica. The largest group, used for plate glass (as in windows), most

bottles and jars, and electric lamp bulbs.

2. Borosilicate. Also known as ‘pyrex’. Used for domestic ovenware and labora-

tory glassware.

3. Lead silicate. Used for decorative, high quality tableware (crystal), glass to

metal seals in electrical components, and radiation shields.
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Table 5.2: Temperatures in ◦C at which reference viscosities are achieved for some typical
glasses.

Glass Strain Annealing Softening Working
Point Point Point Point

1014.5 poise 1013.4 poise 107.6 poise 104 poise

Silica ∼1000 1100 1600 -
Soda-lime-silica 470 510 700 1000
Borosilicate 520 565 820 1220
Lead silicate 390 430 620 970

Each of these categories includes many different glasses having different additives

which result in varying properties, and the compositions of a few are given in

[46, 59, 74]. Typical reference viscosities for each of these categories are given in [46]

some of which are reproduced in Table 5.2. These show both the large change in vis-

cosity for relatively small change in temperature, and also the significant variation

in viscosity resulting from different composition. This behaviour is typical of other

glass properties also. A comparison of the data for pure-silica glass (see Table 5.2)

with that for the other glass types, clearly shows the marked effect that additives

have on glass properties such as the temperature and viscosity at which the glass

must be worked. No working point is given for silica because increasing the temper-

ature produces other effects so that its viscosity cannot be reduced below about 107

poise [46]. Consequently, while silica glass has many excellent qualities, the high

temperatures and viscosities at which it must be worked make it impractical for

most commercial applications. Soda-lime-silica glasses are used for the applications

that we consider.

The relationship between temperature and viscosity must be the most important

physical consideration in modelling of glass forming processes, and two complex

issues arise in connection with this relationship. We have already touched on one of

these, namely the high sensitivity of the viscosity of a molten glass to temperature.

In addition, there is the phenomenon of relaxation and equilibrium viscosity.
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At large viscosity a change in temperature takes a finite time to be reflected in

the corresponding change in viscosity, with this time increasing as viscosity increases

(and temperature decreases). Experimental work by Lille published in 1933 is much

quoted by way of illustration of this property [77, 59, 74]. It is known as “relaxation”,

and the final viscosity reached is called the “equilibrium viscosity”. With viscosity

(µ) measured in decipascal seconds (or poise), Scholze and Kreidl [77] give L =

log10 µ = 10 as the point at which viscosity lags by some seconds behind a fast

cooling rate, and 13 ≤ L ≤ 14.5 as the glass transition in which lag time varies from

around 15 minutes to 4 hours and properties are most definitely time dependent.

In the numerical modelling of slumping, we are concerned with the change in glass

viscosity as it is heated at the commencement of the slumping process, when viscosity

is potentially higher than equilibrium. From the author’s practical experience (see

Chapter 8, Section 8.3) slumping will occur, given sufficient time, at viscosities as

high as L = 11, which is just on the fringes of the time-dependent property region

given in [77]. Practically however, very little slumping would occur at such high

viscosities, since oven temperatures are quickly increased to bring the viscosity down

into the region 7 ≤ L ≤ 8 where slumping occurs at a faster and more acceptable

rate and time dependence of the viscosity is not an issue. Furthermore any lag of

the viscosity behind the temperature in the time-dependent region will only serve

to further prevent slumping at this stage. Thus it is here assumed that relaxation

will not significantly affect slumping, and that computation based on equilibrium

viscosities will be adequate. In any case, any time lag in the viscosity can be easily

corrected by adjusting the time scale as will be shown.

It is generally accepted that the relationship between temperature (T ) and vis-

cosity (µ) in a glass is reasonably represented by the Vogel-Fulcher-Tammann (VFT)

empirically derived equation (also referred to as the Fulcher equation), dating back

to the 1920’s [74, 77, 81],

log10 µ = −A+
B

T − T0
, (5.1)
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where base 10 logarithms are used because of the large numbers involved. It involves

three constants, A, B and T0, that are determined for a particular glass from three

known temperature-viscosity points spanning a temperature range that is not too

extreme. If necessary, a temperature range can be subdivided into smaller intervals

and the constants computed for each interval. The temperature range of interest

in slumping is sufficiently small to permit a single VFT equation to apply with

reasonable accuracy. A two-parameter Walther equation [65] has been found to

successfully fit some glass data, and used because it has no singularity at a finite

temperature such as in the VFT equation at T = T0 [43]. This singularity does not,

however, cause any problem in our work since T0 is below the temperature range in

which slumping can be considered to take place, and hence we stay with the VFT

equation.

The density of glass does not vary much with temperature, but can vary sub-

stantially with composition. Shand [81] quotes relative densities for silica of 2.203,

for a borosilicate glass of 2.13, and for soda-lime-silica glasses of around 2.5, while

a high lead glass can have a relative density as great as 6. Morey [59, Table X.3]

gives the relative densities of a large number of different glasses ranging from around

1.9 for some borosilicate glasses to around 3 for glasses with a high lead content of

around 28 percent. Most glasses, including soda-lime-silica glasses have a relative

density of between 2.4 and 2.6.

We have sufficient information at this stage to determine the size of the Reynolds

number given by (2.6) for slumping glass flows. For the applications that we consider,

data for soda-lime-silica glasses is appropriate. Slumping is usually carried out with

the glass at or below its softening point, where the viscosity is of order 106 Pa · s

(107 poise). Let us take an average density of 2500 kg/m3, and a length scale of

order 10−1 metres. This then gives a Reynolds number of order O(10−7) which is

very small and clearly justifies the Stokes creeping-flow approximation.

We must also justify the neglect of surface-tension effects, and hence look at
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the capillary number given by (2.14). The surface tension (γ) of glasses decreases

with increasing temperature. For a soda-lime-silica glass Shand [81] gives a value of

γ = 0.336N/m when the viscosity is in the range 104 to 105 poise. The viscosity, and

hence the surface tension, would typically be higher than this for slumping. Data in

[59] suggests a surface tension between 0.4 and 0.5 N/m over a temperature range

from 1200 to 700◦C. Since most slumping occurs at around the softening point, which

for soda-lime-silica glasses is about 700◦C, a value of γ = 0.5 is appropriate giving

a capillary number of about 490. Then the surface tension terms in (2.13) are of

order O(10−3) which is certainly small relative to the other order one terms. Locally

at corners, where the length scale is small, the capillary number will be smaller and

surface tension will be more important, but this will not affect the overall results.

This completes our consideration of glass properties for the time being, and

validates the model assumptions so that we can now proceed to utilize it to consider

glass slumping. Before doing this however, we digress to consider a widely circulated,

but erroneous, belief that derives from the knowledge that solid glass has properties

of a liquid, and seems to have gained currency with many.

5.3 Do Glass Windowpanes Flow?

It is widely reported that apparently solid glass at normal ambient-air temperatures

is in fact a liquid, and a common ‘proof’ advanced for this is that centuries-old glass

windowpanes often have greater thickness at the bottom than the top. This is said

to be due to the very slow downwards flow of the glass under the influence of gravity,

so that over many hundreds of years an initially flat glass windowpane will increase

in thickness at the bottom [13, p. 206].

The classification of glass as a solid or a liquid is an issue that has received

much discussion over many years, and for which there is no definitive answer [37,

59]. However it is certain that, while glass at normal ambient temperatures has



5. Slumping Glass 114

a molecular structure continuous with its liquid state, it behaves for all practical

purposes as a solid and does not flow, so that the variation seen in the thickness

of old windowpanes cannot be attributed to gravitational effects over long periods

of time. Most arguments that we have encountered to refute this myth, show that

thickness variations in windowpanes are a direct result of the processes used to

manufacture plate glass prior to the relatively recent introduction of the float glass

process in 1959 (e.g. [71, 97]). Of these the “crown” process is most commonly cited

as the method of manufacture of most old windowpanes in existence today, and from

the description given by Plumb [71] and Morey [59, p. 25] it is easy to appreciate

that there would be a general, although small, decrease in thickness from the centre

to the edge of the circular “table”. It is suggested [71] that, for structural reasons,

the panes cut from the “table” were usually mounted with any thicker edge at the

bottom. Recently a paper appeared by Zanotto [103] in which relaxation times are

shown to be in excess of 1032 years for typical medieval glasses, from which it is

concluded that “medieval and contemporary window glasses cannot flow at room

temperature in human time scales!”

The fallacy of this myth is here shown in a different manner. Supposing that

window glass is an extremely viscous liquid that will flow, we use some mathematics

to determine the time that must transpire before any appreciable thickening at the

base of the windowpane is seen.

The ‘flow’ of glass in a windowpane may be readily examined by a slender ap-

proximation to the creeping-flow model, in a very similar manner to the nearly-plane

bridge considered in Section 3.6. The details given here are also directly applicable

to the slender drops of Chapter 4, with the simple reversal of the direction in which

gravity acts.

Consider a glass window that is thin relative to both its breadth and height.

Its large breadth enables us to simplify the problem to two dimensions. Let the x

direction be vertically up, with gravity acting vertically down, i.e. the x direction
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is equivalent to x2 of Chapter 2. So as to keep the notation of Section 3.6, let the

height of the windowpane be given by L(t), and its faces be given by y = ±h(x, t),

with initial conditions L(0) = w and h(x, 0) = εw where ε is a very small number.

Since a windowframe does not prevent small movement in a direction parallel to

the y-axis (as witnessed by the fact that a window will rattle in a reasonably high

wind), the windowframe is assumed to provide a slip boundary support at x = 0 that

prevents vertical ‘flow’ of the glass but allows horizontal ‘flow’. All other boundaries

are considered to be free surfaces.

With the window oriented along the x-axis in this manner, the equations to be

solved will be, with just a few exceptions, identical to those given for the nearly-

plane sagging bridge in Section 3.6. Dimensionless variables are defined as in (3.18),

and h̄ = 0. However the definition of dimensionless time t∗ is more appropriately

given by

t = wt∗/V . (5.2)

This scale is suggested by the fact that the velocity component in the y direction (v)

can be expected to be of order εV , where V is a measure of the velocity component

in the x direction (u) to be specified later. Then changes in window thickness can

be expected to occur in times of order εw/(εV), which leads directly to (5.2). Let

us also define

L∗(t) = L(t)/w (5.3)

so that L∗(0) = 1. The flow domain of this problem is, at t∗ = 0, 0 ≤ x∗ ≤ 1,

|y∗| ≤ 1.

Because gravity is acting in the −x direction (rather than the −y direction as

in Section 3.6), this must be shown in the Stokes equations, which now become (on

dropping asterisks)

ε2px = ε2uxx + uyy − ε
2ρgw

2

µV
and (5.4)

εpy = ε2vxx + vyy. (5.5)
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At this point let us choose the velocity scale V = ρgw2/µ; then the last term on the

right of (5.4) becomes −ε2. The continuity equation remains unchanged as

εux + vy = 0, (5.6)

but the changed time scale results in the new kinematic condition on y = ±h

±ε(ht + uhx) = v, (5.7)

which replaces (3.27). The zero-stress conditions on y = ±h become, on setting

h̄ = 0,

uy + εvx = ∓ε2(p− 2ux)hx, (5.8)

−εp+ 2vy = ±ε(uy + εvx)hx. (5.9)

Finally the wall condition at x = 0 is just u = 0.

This problem is considerably simpler than the sagging thin bridge of Section 3.6

for two main reasons. First, because of our definition of V , we do not need to use as

many of the terms in the power-series expansions in ε to solve for the leading-order

terms. In addition, symmetry requirements about y = 0 in the current problem

demand that u and p are even functions of y, while v is odd. Thus, using a Taylor

expansion about y = 0, we can replace equations (3.28) with

u(x, y, t) = u0(x, t) + ε2y2u2(x, t) + . . . ,

v(x, y, t) = εyv1(x, t) + ε3y3v3(x, t) + . . . ,

p(x, y, t) = p0(x, t) + ε2y2p2(x, t) + . . . ,

h(x, t) = h0(x, t) + εh1(x, t) + . . . ,

(5.10)

where again the asterisks are omitted on dimensionless variables.

Continuity (5.6) immediately requires that

v1 = −u0x, (5.11)

and the free-surface condition (5.9) shows that

p0 = 2v1 = −2u0x. (5.12)
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From the Stokes equation (5.4) we have

p0x = u0xx + 2u2 − 1, (5.13)

from which we can determine that

2u2 = 1− 3u0xx. (5.14)

Satisfying the free-surface condition (5.8) on y = ±h yields

±h0(2u2 + v1x) = ∓(p0 − 2u0x)h0x (5.15)

while the kinematic condition (5.7) yields

h0v1 = h0t + u0h0x. (5.16)

On substituting the above expressions for p0, v1 and u2 and rearranging (5.15) and

(5.16) we have finally

h0 = 4(h0u0x)x , (5.17)

h0t = −(u0h0)x , (5.18)

which compare with the (dimensional) equations (4.7) and (4.8) given for the ex-

tensional flow of Chapter 4 with the direction of gravity reversed.

Thus, the ‘flow’ and changing shape of the window glass, is to leading order

obtained by solving the coupled equations (5.17) and (5.18) for u0(x, t) and h0(x, t)

subject to suitable boundary conditions. One of these is u0 = 0 at x = 0. We need

one further condition, and this is obtained from the zero stress conditions that must

be satisfied on the horizontal boundary at x = L(t):

−εp+ 2vy = 0, (5.19)

uy + εvx = 0. (5.20)
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From these we have

−p0 + 2v1 = 0, (5.21)

u0y = 0, (5.22)

y(2u2 + v1x) = 0. (5.23)

With the exception of (5.23), these have been satisfied in our derivation of (5.17)

and (5.18), so that the second boundary condition comes from (5.23) which must

be true for all |y| ≤ 1 and hence can be simplified to 2u2+ v1x = 0. Substituting for

u2 and v1x and rearranging finally gives

u0xx =
1

4
(5.24)

which can in turn be substituted into (5.17) to give

h0xu0x = 0 (5.25)

on x = L(t). This shows that the zero-vertical-velocity-gradient boundary condition

on x = L(t) used in the extensional-flow problem of Chapter 4 (see p. 89) is equiv-

alent to a zero-stress condition as claimed. We are also justified in using this same

condition, i.e.

u0x = 0, (5.26)

for this problem, since there is no mechanism for a change of cross-sectional area at

x = L(t). Thus, as previously (p. 89), we may write (5.18) in terms of the material

derivative of h0, which leads directly to (5.26).

With a difference only in the direction of gravity, the problem defined by equa-

tions (5.17) and (5.18) with boundary conditions u0 = 0 at x = 0 and u0x = 0

at x = L(t), and an initial rectangular profile, is identical to that defined for the

extending rectangular slab in Chapter 4, and we can immediately adapt (4.5) and
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(4.6) to write down the dimensionless solution in terms of the dimensionless label

variable ξ where 0 ≤ ξ ≤ 1, and x = ξ at t = 0:

h0(ξ, t) = 1 +
t

4
(1− ξ), (5.27)

x(ξ, t) =
∫ ξ

0

1

h0(ξ1, t)
dξ1

= −
4

t

(

log
[

1 +
t

4
(1− ξ)

]

− log
(

1 +
t

4

))

. (5.28)

From these last two equations we have immediately that the glass thickness at

the top of the window is independent of time, i.e. h0 = 1 at ξ = 1 ≡ x = L(t),

and that, for all time t > 0, the window thickness is a strictly monotone-decreasing

function of ξ with maximum thickness at its base ξ = x = 0 being given by 2h0(0, t)

where

h0(0, t) = 1 +
t

4
. (5.29)

The height of the window L(t) is given by substituting ξ = 1 into (5.28):

L(t) = x(1, t) =
4

t
log

(

1 +
t

4

)

. (5.30)

The result (5.29) can also be obtained in the following simple manner. Since the

time scale is very large (∼ µ), the life span of even quite old window glass will be, in

terms of dimensionless time, relatively short. Hence, we are justified in considering

the solution at (dimensionless) time t = 0+ when for all practical purposes h0 = 1

and L = 1. Then integrating (5.24) and using the specified boundary conditions to

solve for constants we obtain

u0xx =
1

4
, (5.31)

u0x =
1

4
(x− 1), (5.32)

u0 =
1

8
x(x− 2). (5.33)

From (5.18) we thus have

h0t = −u0x =
1

4
(1− x), (5.34)
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and on integrating with respect to time t and setting x = 0 we obtain (5.29).

Thus an increase in thickness of q percent occurs in a time of t∗ = 4q/100, where

we have again introduced asterisks to denote dimensionless variables. In dimensional

terms this is a time of

t =
w

V
t∗ =

µ

ρgw

4q

100
. (5.35)

Now glass becomes substantially rigid at the strain point where the viscosity is

of order 1014.5 poise (see Section 5.2). For soda-lime glasses from which windows

are usually made, the strain point would be reached at a temperature of about

500◦C, and as the temperature decreases, the viscosity increases enormously. At

normal room temperatures, we can expect the viscosity to be around 1020 poise, i.e.

O(1019) Pa · s, or even higher. With the density of glass at about 2500 kg/m3, the

time taken for a windowpane with an initial height of (say) 250mm to increase just

five percent in thickness is at least

4× 0.05
µ

ρgw
= 0.2×

1019

2500× 10× 0.25

= 3.2× 1014seconds (5.36)

≈ 107years.

Thus, we must wait some 10 million years (!) and not centuries for a windowpane

with initial height and thickness of 250mm×5mm to thicken by just 0.25mm at the

bottom, and even modern windows with heights of a few metres will require around

one million years for this magnitude of increase in thickness. Clearly the story of

viscous-flow of old glass windowpanes resulting in greater thickness at the bottom

than the top, is false.

5.4 Temporal Viscosity Changes

We now return to the subject of glass slumping with which we began this chapter.

From the earlier description of slumping, as well as the discussion of glass properties
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and the sensitivity of viscosity to temperature in particular, it is apparent that we

need to include a time-varying viscosity in the model since some slumping may,

and in all probability will, occur during the oven heating and cooling stages at

temperatures lower than the maximum reached by oven and glass. Following on

from the foregoing analysis of the ‘flowing’ windowpane we could even consider that

slumping commences, albeit very slowly, when the glass is still cold and the oven

temperature has only just started to increase. This is of course unnecessary, and

we rather consider that slumping occurs over a limited temperature range when the

glass is sufficiently fluid for sensible slumping to occur.

It is also possible that spatial temperature and viscosity variations will arise dur-

ing the heating of the glass due to non-uniformity of oven temperature, supporting

of the glass, heat transfer from oven to glass, and other factors. However it seems

reasonable for the simple slumping presently being considered, to assume that these

will be small, and that at any instant in time conditions are isothermal, i.e. tem-

perature and viscosity throughout the glass are constant. Spatial viscosity variation

will be considered later along with slumping into a mould where non-isothermal

conditions seem more likely.

As already briefly mentioned in Section 5.1, with the isothermal assumption, tem-

poral viscosity changes can be accommodated within the current constant-viscosity

model. This is an important consequence of the neglect of the time derivatives in

the field equations (2.7). To see how we can handle temporal viscosity changes let

us first consider a viscosity that is everywhere and forever constant, and look again

at the dimensionless form of the field equations (2.2) and (2.7). The solution of

these equations for flow velocity and pressure is influenced only by the flow-domain

geometry at the time of solution, and not by the time itself. The finite-element

mesh is then adjusted to reflect the distortion caused by flow over a dimensionless

time step ∆t∗, and the velocity and pressure fields are recomputed over this new

geometry. After a dimensionless time t∗ there is only one possible geometrical out-
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come from this process (ignoring numerical error caused by discrete approximation).

The dimensionless time t∗ over which this happens represents a real time given by

t∗T , where the time scale T = L/U is dependent on the constant viscosity through

U = ρgL2/µ as defined in (2.5). Different values of the viscosity µ mean different

real slump times, but the same final outcome. Thus, the model tells us that, given

identical initial geometries, we can obtain the same item by slumping at a high

viscosity for a long time, or a lower viscosity for a shorter time.

Next let viscosity µ(t) be given as a function of time, and let us define a time

scale that is also a function of time

T (t) =
L

U(t)
=
µ(t)

ρgL
. (5.37)

In any very small real-time interval dt the viscosity is constant, and the correspond-

ing dimensionless-time interval is given by dt∗ = dt/T (t). Then a slumping time

period of length tf during which the viscosity is given as a function of time by µ(t)

is obtained in dimensionless terms by summing over all very small intervals dt:

t∗ =
∫ tf

0
T (t)−1dt = ρgL

∫ tf

0
µ(t)−1dt . (5.38)

For constant viscosity, (5.38) reduces to t∗ = tf/T , as indeed it should.

Now it is evident from (5.38) that a particular value of t∗ can be obtained from

a host of different choices of tf and µ(t) (keeping ρ, g and L constant), including

constant µ, and the finite-element program will for some initial geometry compute

a single slumped shape for this dimensionless time. Another look at (5.38) shows

that, provided there is equal area under each curve of inverse viscosity µ−1(t), from

the time at which slumping starts to the time at which it ends (see Figure 5.1), the

final product resulting from some initial geometry will be identical. This means that

the dimensionless problem (for constant µ = 1) can be solved once to give the shape

of the slumping item over dimensionless time. The outcome for different viscosity

(i.e. temperature) profiles and real times can then be determined by computing

the equivalent dimensionless time as a post-processing operation, and selecting the
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slumped shape corresponding to this time. We will make use of this methodology

as necessary throughout the remainder of this chapter.
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Figure 5.1: Equivalent Viscosity Curves.

5.5 Disc-Bending Viscometry

The rate of flow of a very viscous fluid, such as molten glass, under its own weight

or an applied load is obviously highly dependent on the viscosity of the fluid, and

this fact is used in a number of methods of viscosity measurement such as fibre-

elongation, beam-bending [44], and disc-bending viscometry [42]. Fibre elongation

is an extensional flow problem to which the work of Chapter 4 is relevant, while disc

bending is a three-dimensional (axisymmetric) flow similar to the two-dimensional

sagging problem of Chapter 3.

In 1974 an investigation was made by Corning Glass Works (now Corning Incor-

porated) into disc bending as a method for determining glass viscosities, as reported

in a published paper [42] and an internal Corning report [40]. The detailed results

of this work, including the raw experimental data, have been made available to us,

and with the aid of these results, we here consider the use of the creeping-flow finite-

element program as a viscometry tool. In so doing we compare some finite-element

simulations with real and independent experimental data, a necessary step in the

development of any numerical tool for simulating industrial processes.

A thin glass disc of radius a and thickness h is supported around its perimeter



5. Slumping Glass 124

6

-
r

z

s

-¾ 2a

-¾ 2b

6

?
h

¡¡¡¡ @@@@

Figure 5.2: Initial setup used in disc bending viscometry.

on a small ledge as in Figure 5.2, and heated in an oven so that it sags under its own

weight. Gulati et al. [42, 40] use a viscoelastic analogy to derive equations relating

sag δ and rate of sag δ̇ to viscosity µ from the equations for the elastic bending

of a disc. The temperature T versus viscosity relationship of a particular glass in

the temperature range covering the strain and softening points is then obtained

from these equations and experimental measurements of δ and δ̇. The calculated

viscosities are shown to be in reasonable agreement with the curve obtained using

the generally accepted beam-bending and parallel-plate methods [44].

The gravity-driven creeping-flow model of Chapter 2 can also be applied to disc-

bending viscometry. For any particular disc, we are able to compute the relationship

between sag and rate of sag. The rate of sag at some point in time is dependent

only on the physical geometry (determined by the initial disc dimensions and the

subsequent amount of sag) and the viscosity at that time so that we can use the

Corning experimental data together with the finite-element computations to derive

our own µ versus T relationship which we can compare with that given in [42].

The problem is axisymmetric, and hence the axisymmetric continuity and Stokes

equations of Section 2.5 are applicable. Symmetry in r = 0 means that, as previously,

the computational flow domain may be halved to 0 ≤ r ≤ a by satisfying boundary

conditions (2.15) and (2.16) on r = 0. On the ledge support, the no-slip conditions

(2.11) apply and on all other boundaries the free-surface conditions (2.15) must be

satisfied. Let us non-dimensionalize using the radius a as the characteristic length

L so that 0 ≤ r∗ ≤ 1. Let us also define sag δ to be the magnitude of the vertical
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displacement of the point at the centre of the lower surface from its position at time

t = 0, and rate of sag δ̇ to be the magnitude of the velocity at the same point, with

corresponding non-dimensional quantities

δ∗ = δ/a, and δ̇∗ = δ̇/U . (5.39)

Note that U is the characteristic velocity that depends on µ and possibly varies in

time. However at any given time at which δ and δ̇ are measured, it is a fixed though

unknown value. It is only a matter of computation to obtain a plot of δ̇∗ versus δ∗

for a disc of aspect ratio h/a from the finite-element program.

Now, given the triplet (T, δ, δ̇) of experimental data for some disc of radius a

and thickness h, we compute the equivalent non-dimensional sag δ∗ = δ/a. For

the slumped geometry indicated by this sag there is only one possible value for the

rate of sag δ̇∗ which we obtain from the finite-element program output. Then the

velocity scale can be calculated from the actual experimental rate of sag δ̇ and this

dimensionless value δ̇∗ as U = δ̇/δ̇∗, or alternatively, since U = ρga2/µ, we can use

the known values of ρ, g, and a to determine the unknown viscosity µ at temperature

T :

µ = ρga2
δ̇∗

δ̇
. (5.40)

If the temperature (and hence the viscosity) varies in time as the disc sags, and we

are given experimental data triplets (T, δ, δ̇) over a range of temperatures, we can

use this method to calculate the viscosity at each temperature, and plot viscosity

versus temperature for a particular glass.

5.6 The Viscoelastic Analogue Equations

The creeping-flow model of disc-bending viscometry can be compared with the Gu-

lati et al. viscoelastic model [42]. This latter model is derived from the elastic
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bending of a thin disc with a free but immovable edge support through a viscoelas-

tic analogy whereby the elastic-bending equations are differentiated with respect to

time, and the Young’s modulus E replaced by 2(1 + σ)µ where σ is Poisson’s ratio

for glass. According to [42] incompressibility of glass is assumed, so that σ = 0.5

and E is replaced by 3µ (the Trouton result [92]). However, the internal Corning

report [40] differs from the published paper [42] and indicates that a value of σ = 0.3

may have been used. This will be commented on further as we proceed, but it need

not be of major concern since we can readily compute our own results from the

incompressible viscoelastic equations (i.e. with σ = 0.5) and experimental data,

and compare these with the results from the creeping-flow model which definitely

assumes incompressibility.

The equations given in the published paper [42] for determining µ from rate of

sag δ̇ and cumulative sag δ, assuming glass to be an incompressible fluid, are as

follows:

µ =
11

64

ρga4

δ̇h2
for δ ≤ h/2, (5.41)

µ =
11

64

ρga4

[1 + 7.35(δ/h)2]δ̇h2
forh/2 < δ ≤ h, (5.42)

µ = 0.023
ρga4

δ̇δ2
for δ > h. (5.43)

However, on examination of the Corning report [40] it is evident that equation (5.42)

has been obtained from a disc-bending equation for a material with σ = 0.3 by writ-

ing the right-hand side only (not the left) in terms of a general σ, time-differentiating

and replacing the Young’s modulus by 2(1 + σ), and then substituting σ = 0.5 for

an incompressible fluid. According to the Corning report no disc-bending equation

for general σ was available at the time of writing, forcing the use of the σ = 0.3

equation, and in fact this report gives, in place of (5.42), an equation derived from

the disc-bending equation with a consistent use of σ = 0.3. The published paper

contradicts the report in giving a disc-bending equation in terms of a general σ, but

we are not certain of the correctness of this equation, since setting σ = 0.3 does not
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yield the disc-bending equation quoted in the report, from which (5.42) has been

clearly derived. Hence we continue to use (5.42), but noting that it is not strictly

valid for either a compressible fluid with σ = 0.3 or an incompressible fluid with

σ = 0.5. Equations (5.41) and (5.43) are for an incompressible fluid with σ = 0.5.

We need at this stage to clarify the definition of a. For the creeping-flow model

this is the radius of the disc. In (5.41) to (5.43) it is also the disc radius since the

equations are for a knife-edge perimeter support. However, in reality, the support

was a very small ledge as shown in Figure 5.2, which was equated with a knife-edge

support, so that for calculations in [42] the free-span radius of the disc b (i.e. the

disc radius minus the support-ledge width) is actually used for a in place of the disc

radius. Because the ledge width is very small, this approximation makes very little

difference to the results, and it is ignored here with a always taken to be the disc

radius.

Equations (5.41) to (5.43) can be written in terms of non-dimensional quantities

δ∗ and δ̇∗, and aspect ratio H = h/a

δ̇∗ =
11

64

(

1

H

)2

for δ∗ ≤ H/2, (5.44)

δ̇∗ =
11

64

1

[1 + 7.35(δ∗/H)2]H2
forH/2 < δ∗ ≤ H, (5.45)

δ̇∗ = 0.023
1

(δ∗)2
, for δ∗ > H. (5.46)

For a given aspect ratio h/a, the relationship between δ̇∗ and δ∗ so defined, can be

readily compared with corresponding output from the creeping-flow model.

5.7 Viscosity Calculations

The disc-bending viscometry experiments conducted by Corning Glass Works were

for glass discs of 70mm diameter and 1.53mm thickness, i.e. with an aspect ratio

h/a = 0.153/3.5 = 0.0437. The glass had strain, annealing and softening points of
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447, 484, and 645◦C respectively, and the temperature range considered was 550–

640◦C. The dimensions and properties used for computations are given as

ρ = 2.356 g/cm3,

g = 980 cm/s2,

a = 3.4925 cm,

h = 0.153 cm.

(5.47)

Note that the value of a above is the free-span radius of the disc, giving a support

ledge width of 3.5− 3.4925 = 0.0075 cm.

The method used to obtain measurements of sag during slumping required that

a conducting gold film be painted on the bottom of the disc in a small circular area

at the centre, around the circumference of the disc and along a radial line connecting

the two [42, 40]. This increased the rigidity of the glass and also seemed to affect

heat transfer so that sag was impeded in the painted areas and the sag measurements

recorded (for the bottom centre of the disc) were less than would have been without

the gold-film paint. Despite this error results were considered to be quite good.

Figure 5.3 shows δ̇∗ as a function of δ∗ for this disc as given by the creeping-flow

finite-element program, and also the viscoelastic analogue equations (5.44) to (5.46).

We see that the viscoelastic analogue equations considerably over-estimate the rate

of sag in the early stages of slumping when δ < h/2 (i.e. δ∗ < H/2), and under-

estimate for larger sag (δ∗ > H/2), in comparison with the essentially exact creeping-

flow model. Equation (5.40) then indicates that, compared with the creeping-flow

model, the viscosity predicted by the viscoelastic model from experimental data

(δ, δ̇) will be too large while δ < h/2 and too small for larger sag.

The raw experimental data for this slumping case, supplied by Corning, shows

the temperature T and sag δ at discrete points in time during slumping, with rate of

sag δ̇ being computed from sag measurements at two consecutive time points t1 and

t2 by simple Euler differencing, i.e. (δ2−δ1)/(t2−t1). This sag rate is considered to be

applicable at a temperature which is the average of the temperatures recorded at t1
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Figure 5.3: Rate of sag versus sag of an initially-flat disc as given by (a) the creeping-flow
model, and (b) the viscoelastic analogue equations.

and t2. Consistent with this, we take the corresponding sag to be the average of the

recorded sags at times t1 and t2. Non-dimensionalizing the sag data by dividing by

the disc radius a, we can then determine the dimensionless sag rate from the finite-

element output (see Figure 5.3), and with this and the experimentally measured sag

rate calculate the viscosity from (5.40). Some results of this process are shown in

Table 5.3.

Also shown in Table 5.3 are viscosities calculated using the viscoelastic analogue

equations (5.41) to (5.43). These have been recalculated in preference to using the

Corning results since, while the specific equations obtained by substituting all known

parameters into (5.41) to (5.43) for the glass disc under consideration are correctly

given in the published paper [42] for the incompressible fluid assumption (except of

course for (5.42) where both σ = 0.3 and σ = 0.5 have been used as already noted),
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Table 5.3: Viscosity from sag and rate of sag of a glass disc, using the creeping-flow (CF)
and viscoelastic-analogy (VEA) models.

T δ δ̇ δ∗ δ̇∗ log10 µ
◦C cm cm/min CF VEA

552.5 0.0095 0.002857 2.714× 10−3 46.68 10.44 10.73
560.0 0.017 0.004286 4.857× 10−3 49.28 10.29 10.55
571.0 0.0375 0.0100 1.071× 10−2 56.33 9.98 10.18
580.0 0.070 0.019355 2.000× 10−2 64.99 9.76 9.90
592.0 0.155 0.035294 4.429× 10−2 58.58 9.45 8.75
601.0 0.250 0.031034 7.143× 10−2 24.87 9.13 8.39
609.5 0.310 0.023377 8.857× 10−2 13.49 8.99 8.33
614.5 0.340 0.020225 9.714× 10−2 9.73 8.91 8.31
622.5 0.385 0.021429 1.100× 10−1 6.72 8.73 8.18
629.5 0.435 0.021818 1.243× 10−1 4.60 8.55 8.06
635.0 0.480 0.016216 1.371× 10−1 3.51 8.57 8.11

the internal Corning report [40] categorically states that Poisson’s ratio σ = 0.3 was

used, and certainly derives one of the three viscoelastic analogue equations on this

basis, as has already been mentioned. In addition, the final equations given in the

report [40], obtained by substituting values for all known parameters, could not be

verified with either σ = 0.3 or σ = 0.5.

The viscosities calculated from experimental sag and rate-of-sag data using the

creeping-flow and viscoelastic-analogy models compare quite well as seen in Ta-

ble 5.3. Consistent with an earlier comment, the viscoelastic analogy equations give

higher viscosities than those based on the creeping-flow finite-element computations

while the sag is less than half of the initial disc thickness (δ < 0.0765), after which

the situation is reversed. Agreement between the two methods is best for sags of

less than half the initial disc thickness.

In Figure 5.4 is shown, as the solid curve, a relationship between temperature and

viscosity for the glass used in the sag experiments, taken from [42]. It was calculated

from beam-bending and parallel-plate experimental measurements, methods that are
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Figure 5.4: The viscosity-temperature relationship given by (a) beam-bending and
parallel-plate methods, (b) disc bending with the creeping-flow model, and (c) disc bending
with the viscoelastic-analogy model.

generally accepted as reliable within the glass industry. Beam bending is used for

high viscosities of 108 to 1015 poise, while compression between two parallel plates

is used at lower viscosities of 104 to 109 poise [44]. We shall refer to this curve as

the “accepted” curve. Also plotted are the results, tabulated in Table 5.3, given by

disc bending methods and both the creeping-flow and viscoelastic models.

A comparison of this figure with the similar plot given in [42] shows some dif-

ference between the viscosities computed here using the viscoelastic equations and

those computed by Gulati et al., particularly for T < 580◦C. This may be due to

differences in the value of Poisson’s ratio. The sudden jump in viscosity given by the

viscoelastic equations from T = 580◦C to T = 590◦C is due to the sag exceeding half

the initial disc thickness and the consequent change of equation used for computing

the viscosity.
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This jump is not seen in the viscosities calculated by means of the creeping-flow

finite-element computations, which are also more accurate for sags of less than h/2.

In fact, in the very early stages of slumping at a temperature of about 550◦C the

viscosity given by the creeping-flow model is very close to the accepted viscosity-

temperature curve, but as the temperature increases the difference also increases.

This can be understood when it is remembered that the gold-film paint used on the

bottom of the disc at the centre resulted in the disc sagging less than it otherwise

would have, and the rigidity imparted by the paint can be expected to have a greater

effect as sag increases. Thus the rates of sag computed from the sag measurements

should be corrected upwards, and the correction should increase with increasing sag.

Equation (5.40) shows that this would result in reducing the viscosities calculated,

so bringing our results closer to the accepted curve.

From these results, it is concluded that disc-bending experiments in conjunc-

tion with creeping-flow finite-element computations can be used to determine the

temperature-viscosity relationship of a glass. However a different sag measuring

method, perhaps optical, that does not impede sag would be a highly desirable

improvement. In fact, the results based on the finite-element computations are es-

sentially more accurate than those given by the viscoelastic analogy equations; the

apparent accuracy of the viscoelastic model at temperatures higher than 590◦C is

probably somewhat fortuitous, and more accurate measurements of sag and rate of

sag can be expected to drop these results below the accepted viscosity-temperature

curve.

Gulati et al. [42] suggest that the discrepancy between their results and the ac-

cepted viscosity-temperature curve is in part due to the assumption of incompress-

ibility, and that using σ = 0.3 instead of 0.5 may eliminate some of this, particularly

when nonlinear disc bending theory is being employed. This does not seem likely for

a number of reasons. Firstly it seems highly probable from a reading of the internal

Corning report [40] that a value of σ = 0.3 was used. Secondly, as commented in
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[42], the assumption of incompressibility is common to all glass viscometry methods

so that the accepted curve is also obtained with this assumption. Finally, the results

obtained with the creeping-flow model (with the assumption of incompressibility)

and finite-element program are such that we can expect better agreement with the

accepted curve should more accurate sag and rate-of-sag measurements be available.

In concluding this consideration of disc-bending viscometry, it is reasonable to

say that the comparison of creeping-flow finite-element computations with com-

pletely independent experimental data is very good allowing for the known inaccu-

racies in the data, and gives confidence in our use of the creeping-flow model for

analysis of molten glass flows.

5.8 Disc Sagging

In disc-bending viscometry the unknown viscosity-temperature relationship of a very

viscous fluid such as molten glass is determined from experimental measurements

of temperature and sag. In glass forming by slumping we are, of course, interested

in the inverse problem of determining how the disc will sag for a given temperature

profile where the viscosity-temperature relationship of the fluid is known.

Following on from their work on disc-bending viscometry Gulati et al., [41] inves-

tigated the development of sagging schedules for circular glass lens blanks using vis-

coelastic analogy equations similar to those for disc-bending viscometry. This work

was never published, but has been made available to us by Corning and gives useful

experimental results for comparison with our creeping-flow finite-element model.

Circular glass discs of radius 35mm and thickness 1.5m were clamped about

their perimeter in a mould such that their radial span was a = 32.77mm. The

glass was the same as used for the disc-bending experiments with density as given

in (5.47), and in this case incompressibility of the molten glass fluid was clearly

assumed. The viscosity-temperature relationship for this glass was approximated
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by the VFT equation (5.1) with constants

A = 1.018, B = 3303, and T0 = 263. (5.48)

The glass discs were heated at oven rate to some temperature which was held for

a period of time before the oven was turned off and allowed to cool naturally. The

glass was considered to be sufficiently fluid to sag at temperatures in excess of 560◦C,

but the oven temperature was recorded every half minute while in excess of 540◦C.

Eight separate experiments were conducted for hold temperatures of 587 to 632◦C

and hold times of 2 to 30 minutes. It appears that sag measurements are of the top

disc surface, rather than the bottom as for the disc-bending viscometry experiments.

Note that there was no requirement for any part of the glass to be coated with a

gold paint as in the disc viscometry experiments.

Gulati et al. [41] consider the clamped edge support to permit radial slip up

to a temperature of 603◦C, after which the glass sticks to the mould and the edge

becomes immovable. We shall not make this distinction in our model, but assume

a no-slip wall condition at a = 32.77mm throughout the whole slumping process.

Thus we have the axisymmetric version of the slumping viscous bridge problem of

Chapter 3 (see Figure 3.1). As in the computations for disc-bending viscometry, let

us non-dimensionalize using the radial span a and make use of symmetry in r = 0

so that the dimensionless flow domain is 0 ≤ r∗ ≤ 1, 0 ≤ z∗ ≤ h/a, where h/a is

the aspect ratio and the axes are directed as in Figure 5.2.

This problem is one in which we can make use of the method described in Sec-

tion 5.4 for temporally varying viscosity. For each case the experimental data con-

sists of a record of temperature at half-minute intervals, and the sag of the top

glass surface at the end of the slump. The temperature is considered to be constant

in each half-minute interval after which it jumps to the next recorded value. The

ith 30-second interval during which the temperature is Ti is then equivalent to a

dimensionless time t∗i that is determined by the glass viscosity µi given by the VFT
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Table 5.4: Temperature versus time during a slumping experiment of 6 minutes at 585.9◦C
[41].

t T t T t T
min. ◦C min. ◦C min. ◦C

0.0 540.1 7.5 585.0 15.0 577.1
0.5 545.7 8.0 585.8 15.5 575.0
1.0 550.5 8.5 585.9 16.0 572.8
1.5 554.9 9.0 585.9 16.5 570.1
2.0 558.7 9.5 585.8 17.0 567.1
2.5 562.0 10.0 585.9 17.5 564.4
3.0 565.2 10.5 586.2 18.0 561.5
3.5 568.0 11.0 586.6 18.5 558.7
4.0 570.8 11.5 586.6 19.0 555.7
4.5 573.2 12.0 586.5 19.5 552.7
5.0 575.6 12.5 585.9 20.0 549.7
5.5 577.8 13.0 584.8 20.5 547.0
6.0 580.0 13.5 583.2 21.0 543.9
6.5 581.9 14.0 581.4 21.5 541.0
7.0 583.7 14.5 579.5 22.0 538.1

equation for that interval, and equation (5.38) giving the dimensionless slump time

t∗ reduces to the sum of all these t∗i . Thus

t∗ =
∑

i

t∗i =
∑

i

30
ρga

µi

. (5.49)

Table 5.4 contains one set of Corning temperature data for a slump in which the

temperature was held at around 585.9◦C for 6 minutes. The dimensionless slump

time given by (5.49) for this case is t∗ = 0.0032188.

Next the finite-element program is run for a disc of aspect ratio h/a = 1.5/32.77 =

0.0458 for a dimensionless time period that covers all the cases that we wish to con-

sider. From this we obtain the dimensionless top-surface sag δ∗ at dimensionless

times t∗ as shown in Figure 5.5, from which we can find the sag δ = aδ∗ predicted

by the creeping-flow model for each of the experimental slump cases described in

[41].
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Figure 5.5: Sag versus time for an initially flat disc of aspect ratio h/a = 0.0458.

The results are given in Table 5.5 along with the actual measured sag δM and

the sag δG computed by Gulati et al. [41] using viscoelastic analogy equations. The

last column contains the differences between the experimental sag and that given

by the creeping-flow simulation δM − δ. These show the creeping-flow finite-element

simulation to be giving excellent results in all but the first and third cases. There is

no obvious explanation for the magnitude of difference seen in these two cases, and

it is attributed to fortuitous variations in experimental conditions. It seems unlikely

to be a result of slip at the edge support while the temperature was below 603◦C,

which was not permitted in the creeping-flow simulation, since we would then expect

to see similar differences in some of the other cases (e.g. the second to last case). In

general, the agreement between the creeping-flow simulation and the experiments is

as good as or better than that achieved by Gulati et al., which is very satisfying.
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Table 5.5: Top-surface sag of a circular glass disc; computed and experimental values.

Case
δM t∗

Creeping flow δG δM − δ

(cm) δ∗ δ (cm) (cm) (cm)
16 min.
594.3◦C

0.406 9.24897× 10−3 0.0856 0.281 0.365 0.125

17 min.
618.7◦C

0.617 6.59802× 10−2 0.1844 0.604 0.564 0.013

25 min.
602.4◦C

0.583 2.66751× 10−2 0.1313 0.430 0.412 0.153

30 min.
592.5◦C

0.392 1.61873× 10−2 0.1082 0.355 0.477 0.037

2 min.
623.1◦C

0.471 2.84330× 10−2 0.1345 0.441 0.412 0.030

24 min.
604.2◦C

0.432 2.75517× 10−2 0.1329 0.435 0.408 -0.003

6 min.
585.9◦C

0.230 3.12880× 10−3 0.0488 0.160 0.185 0.070

7 min.
628.8◦C

0.566 5.29428× 10−2 0.1697 0.556 0.516 0.010

5.9 Sensitivity of Sag to Viscosity

Figure 5.6 compares the viscosity-temperature relationship for the glass used in

the Corning disc-bending and sagging experiments as given by the VFT approxi-

mate equation, with constants (5.48), and the generally accepted beam-bending and

parallel-plate experimental methods. While the two curves are close in this temper-

ature range of interest, they do differ in some places by 10 to 20 percent. In using a

VFT approximation to calculate sag of a disc as above, we raise the question of the

sensitivity of slumping to accurate viscosity data and whether the small differences

between computational and experimental results could be attributed to differences

between the computational and true viscosities.

Accurate determination of the viscosity of molten glass is notably difficult, not

least because of its large magnitude and the high temperatures at which measure-
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Figure 5.6: Dependence of viscosity on temperature for the glass used in the Corning
experiments as given by (a) accepted methods, and (b) the VFT approximate equation
with constants (5.48).

ments must be made. Then there are complications caused by time dependence and

the consequent need to hold the glass at a temperature for a sufficiently long time

period for it to reach equilibrium. Furthermore the large range through which the

viscosity varies requires that different methods of measurement must be employed

in different viscosity ranges, which do not give identical results in regions of overlap.

Glasses with which we have been concerned have viscosities ranging between 104

and 1014.5 poise, i.e. over 10 orders of magnitude, for temperatures between 1000

and 500◦C. It is also known that the assumption of incompressibility always used

in calculating viscosity from measured data, results in viscosities around 20 percent

lower than the true values [42], an error that is considered to be insignificant relative

to the large magnitude of the viscosity.

Errors of 20 percent or greater are then quite possible in the viscosity data used

for numerical simulation, and, since a primary application of the present work is
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to the manufacture of optical surfaces, it is of considerable interest to determine

the importance of even small inaccuracy in viscosity data. Also, because glass

viscosity is a highly temperature-dependent property, an analysis of the sensitivity

of slumping to viscosity will give some idea of the possible effects of inaccurate

oven temperature. Practical difficulties in obtaining accurate oven temperatures are

common in this type of process. By way of example, a temperature that is 10◦C

lower than expected can result in an 80 percent higher viscosity at temperatures

around the softening point which are usual for slumping. For all of these reasons it

is desirable to have some knowledge of the sensitivity of sag to viscosity.

It is clear from the preceding discussion of temporal viscosity changes in Sec-

tion 5.4 that, provided the assumption of isothermal conditions is reasonable, any

error in the viscosity data being used or the oven temperature will modify the time

scale of the slumping problem, so that the required product can still be obtained by

adjusting the real slump time.

To investigate the sensitivity of sag to viscosity, we again consider the initially

flat circular glass disc of aspect ratio h/a = 0.0458 with a no-slip-wall edge support

of the previous section. From the finite-element simulation of the sagging of this disc

we have the (dimensionless) sag δ∗ versus time t∗ relationship shown in Figure 5.5.

Now, suppose that we let a disc slump for a time ts while the fluid has viscosity µ1,

and another similar disc slump for the same period of time with the fluid viscosity

being µ2. Then, we have non-dimensional slump times of t∗1 and t∗2 respectively,

where

t∗i =
ρga

µi

ts, (5.50)

and for each of these times, we may find from the finite-element output the corre-

sponding value of sag δ∗i . A comparison of these gives the effect of viscosity upon

the total sag of the disc for a fixed real slump time of ts.

This effect is clearly shown by graphing δ∗ versus log10 t
∗ as in Figure 5.7 and
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Figure 5.7: Sag versus the logarithm of time for an initially flat disc of aspect ratio
h/a = 0.0458.

noting that the relation between µ and t∗ may be written

log10 µ = log10(ρgats)− log10 t
∗. (5.51)

Thus log10 t
∗ is in fact a scaled form of log10 µ, with an order of magnitude decrease

in µ being equivalent to an order of magnitude increase in t∗, and Figure 5.7 im-

mediately shows the change in sag resulting from a change in the viscosity. For the

disc of aspect ratio h/a = 0.0458 under investigation, this is particularly significant

in the region log10 t
∗ > −3 which at normal slumping viscosities of 108 to 109 poise

represents real slumping times in excess of 13 seconds to 2.2 minutes.

Now consider viscosity values that are about 20 percent too small compared with

the true values, as is anticipated from the assumption of incompressibility. This

represents an increase in log10 µ or a decrease in log10 t
∗ of 0.08. Then a 2.2 minute

slump at an apparent viscosity of 108 poise (equivalent to log10 t
∗ = −2) is in reality a

2.2 minute slump at a true viscosity of 1.2×108 poise (equivalent to log10 t
∗ = −2.08),
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and from Figure 5.5 this represents a decrease in sag of about 0.007 × 3.277 =

0.023 cm. The order of magnitude of this error is comparable to the differences in

computational and experimental sags seen in Table 5.5, from which it is evident

that even apparently small and acceptable errors in supplied viscosity data, or small

inaccuracies in oven temperatures, can account for at least some of the observed

variation between experiment and computational simulations. This variation does

not seem to be particularly large, but could still be significant depending on the

application of the slumped component, especially when it is appreciated that an

error of less than one percent of the disc radius is more than 15 percent of the disc

thickness.

Instead of finding the difference in sag for a fixed real slump time with a change

in the viscosity, we can determine the required real slump time for fluids of dif-

ferent viscosity in order that some required sag be attained. For this sag δ∗ the

finite-element program gives the required dimensionless slump time t∗ and we then

compute the real times t1 and t2 taken for fluids of viscosity µ1 and µ2:

ti =
µi

ρga
t∗. (5.52)

So if the fluid viscosity is in reality 20 percent greater than the supplied viscosity

data used in our computations then we must increase our slump times by 20 percent,

which is really quite substantial, especially for slump times around one hour in

duration. The effect of inaccuracies in oven temperatures can also be ascertained

and compensation made by adjusting the slump time.

5.10 Conclusion

In this chapter the creeping-flow finite-element program has been applied to the

axisymmetric slumping of molten glass. Comparison of numerical simulations with

results of experiments conducted during 1974 and 1975 at Corning Glass Works, in

relation to disc-bending viscometry and the development of disc-sagging schedules,
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show excellent agreement. In addition we have seen that differences between exper-

iment and computation can probably be largely attributed to known inaccuracy in

glass viscosity data, and this knowledge will prove useful later on in Chapter 8 of

this thesis.

In the following chapters we continue with our analysis of glass slumping, but

consider the process of slumping into a mould. This gives more control of the shape

of the item, and enables the forming of more complicated parts that cannot be

obtained with the type of free slumping we have so far considered.

5.11 A Note on Quadrature Rules for Axisym-

metric Finite-Element Problems

The choice of quadrature rules for numerical evaluation of finite-element integrals

was discussed in Chapter 2 (p. 27), with particular attention given to axisymmetric

problems. These involve evaluation of a term u1w1/x1 which will cause a divide-by-

zero error should any of the quadrature points at which it is evaluated fall on the

symmetry axis r = x1 = 0. For this reason a (four-point) quadrature rule with all

quadrature points in the interior of the element has been used in all axisymmetric

computations in this and following chapters. However, r = 0 is a symmetry bound-

ary and all fluid particles lying on it have a zero horizontal velocity component

(u1 = 0) so that it is possible, but not obvious, that the terms u1w1/x1 will also be

zero. The intriguing question of the value of this term at r = x1 = 0 is mentioned,

though not resolved, in [38], but an indication of the answer may be easily obtained

by some simple numerical tests. As promised in Chapter 2, the results of these tests

are given here as an aside.

The three-point rule given in Table 2.1 has all quadrature points lying on the

element boundaries, but, because the integrands are cubic, does not preserve the

order of convergence of the finite-element method as does the four-point rule. Hence
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Table 5.6: Seven-point quadrature constants for triangular elements.

Order Error ζ1 ζ2 ζ3 Wi

Cubic O(`4) 1 0 0 1/40
1/2 1/2 0 1/15
0 1 0 1/40
0 1/2 1/2 1/15
0 0 1 1/40

1/2 0 1/2 1/15
1/3 1/3 1/3 9/40

Quintic O(`6) 0.333333 0.333333 0.333333 0.112500
0.797427 0.101287 0.101287 0.062970
0.101287 0.797427 0.101287 0.062970
0.101287 0.101287 0.797427 0.062970
0.059716 0.470142 0.470142 0.066197
0.470142 0.059716 0.470142 0.066197
0.470142 0.470142 0.059716 0.066197

for a proper test we require a quadrature rule having points lying on the element

boundaries of an order the same as, or higher than, the four-point rule. One that

fits the bill, of the same order as the four-point rule, is a seven-point rule given in

[1, p. 893], where there is also a seven-point rule of higher order (quintic) having

only interior quadrature points. Since the four-point rule is sufficient to preserve

the order of convergence of the finite-element method, this quintic rule should give

a similar result despite its higher order. The quadrature points and weights for the

two seven-point rules are given in Table 5.6.

To assess the different quadrature rules we consider only the initial vertical ve-

locity and pressure at the centre of the top surface of a disc of aspect ratio h/a = 0.2

with a no-slip-wall support around its circumference. The computational results are

shown in Table 5.7, where the quadratic three-point rule has also been included to

show the loss of accuracy on using a rule of a lower degree than the integrands.

Clearly we have the same order of accuracy from the four and seven-point rules
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Table 5.7: Effects of different quadratures for axisymmetric problems shown by
computing the initial velocity and pressure of a slumping glass disc.

Order n −v/V p/P

Quadratic 3 0.522032 0.921454
Cubic 4 0.521911 0.949024
Cubic 7 0.521909 0.948881
Quintic 7 0.521910 0.948955

(five figures for velocity and three for pressure), including the seven-point cubic rule

where the terms u1w1/x1 were assumed to be zero on the axis r = x1 = 0 and hence

ignored. By contrast the quadratic three-point rule has reduced accuracy (three

figures for velocity and only one for pressure), as expected. Note that the quintic

rule gave no better accuracy than the cubic rules, as also expected.

From these computational results we can conclude that the troublesome terms

u1w1/x1 in axisymmetric problems do indeed have a zero and not some other finite

value on the axis, and this knowledge enables the use of quadrature rules having

quadrature points that lie on element boundaries. For the present work, however,

the four-point rule is still an obvious choice because it requires less computation and

the three-point rule does not preserve the order of convergence of the finite-element

method.



Chapter 6

Mould Contact and Replication

6.1 Thermal Replication

Thermal replication is an industrial process used in the manufacture of aspheric

optical surfaces. At present accuracy limitations restrict its application to products

requiring no more than ophthalmic-optics quality [72] such as mirrors, and oph-

thalmic lenses and lens moulds [84]. The process is described by Smith et al. [84].

Once the required optical surface has been mathematically defined it is machined

into a cast ceramic block which becomes the mould for the thermal-replication pro-

cess. A glass workpiece, typically but not necessarily flat, having a well polished

upper surface is placed on this ceramic mould, and the combination heated in an

oven so that the glass softens and slumps into the mould replicating the mould sur-

face on its upper free surface. This part of the process is illustrated in Figure 6.1.

The upper surface of the glass that does not contact the mould is the critical optical

surface. Unlike the lower surface which is affected by the roughness of the ceramic

mould, it is very smooth and requires no polishing — a difficult and costly process

for complicated aspheric surfaces. After cooling and annealing, the lower surface of

the glass is finished according to its intended use. Sometimes the lower surface must

be ground and polished, say if the component is to be used as a lens, but the re-

145
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Figure 6.1: Thermal replication (after Smith et al. [84])

quired lower-surface shape will be simple (e.g. spherical or flat) so that polishing to

give fine texture is not nearly as difficult or costly as for the complex upper surface.

The idea behind this manufacturing process is to replicate the macro-surface of

the ceramic mould on the upper glass surface as nearly as possible, while smoothing

out any small-scale imperfections in the mould surface. The upper glass surface does

not, however, exactly replicate the mould surface, and consequently the design of

the optical surface and its associated ceramic mould, involves an iterative process of

slumping, measuring the resultant glass surface, and correcting the mould in order

to achieve the desired optical surface at the required accuracy. The specification

of the optical surface may also be adjusted based on the experimental results, to

render it more easily formable. This iterative process consumes considerable time

and resources. The investigations reported in this thesis have been largely directed

towards developing a numerical modelling tool for the slumping process that gives a

better understanding of the glass flow, and with the aim of greatly reducing, if not

eliminating, the experimental iteration currently required during this design stage.

It has already been established in Chapter 5 that molten glass at normal slump-

ing temperatures is a very viscous fluid that can be modelled by the creeping-flow
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equations. At this stage we continue to assume isothermal conditions within the

glass at any instant in time, which has proved to be reasonable in analyses per-

formed so far. This is, however, now more subject to questioning, since the contact

between molten glass and a mould that now occurs leads to an increased likelihood of

spatial temperature (and hence viscosity) variation, due to differing thermal prop-

erties of glass and ceramic. Certainly for the similar processes of blow moulding

[21, 68] and thermoforming [68], as well as the stamping of an initial parison for

subsequent use in blow moulding [21, 83], in all of which a hot viscous film is forced

against a comparatively cold mould, spatial temperature variations are likely to be

quite important, and thermal modelling should be coupled with fluid-flow modelling

[14, 21, 83, 100]. In slumping however, both mould and glass are heated together

from room temperature, so that spatial temperature variations will be considerably

less than for these other processes. Thus the isothermal assumption may well be

quite adequate, and its retention is justified, at least for an initial investigation of

slumping into a mould. On the other hand, with the accuracy required for optical-

quality surfaces such spatial variations as do exist might still be of some importance,

and we shall look at relaxing the isothermal assumption in Chapter 7.

In considering the slumping of a glass workpiece into a mould, our particular

interest is in the manufacture of glass moulds which are then used in the casting

of plastic ophthalmic lenses, specifically lenses of continuously varying focal length,

commonly known as “multifocal” or “progressive-power” lenses [84]. A slumped

glass mould having a complex surface of varying curvature (or “power”) is used

as one half of the mould for a plastic lens. Another glass mould of simple shape,

made by conventional grind-and-polish processes, is positioned close to the slumped

mould so that there is a small gap between them, and the edge is sealed by means

of a rubber gasket or similar. Liquid polymer is then injected into this gap and

solidifies to form the lens. The slumped half of the mould gives the complex varying

curvature (usually) to the outside surface of the lens, while the other lens surface
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(usually) nearest to the wearer’s face is determined by the simple portion of the

mould. The complex surfaces of progressive-power lenses are typically described

three dimensionally. However axisymmetric progressive-power lenses are also possi-

ble, and axisymmetric modelling is also useful for gaining an understanding of the

glass flow in fully three-dimensional situations. Thus, we continue to consider ax-

isymmetric slumping problems. Fully three-dimensional problems are, in principle,

handled as easily, once the more difficult issues of of mesh generation for both glass

workpiece and ceramic mould have been resolved.

In the initial stages, the slumping flows now under consideration and those con-

sidered in Chapter 5 are essentially identical, save only for possible differences in

edge support conditions. The major difference arises when the lower surface of the

slumping glass contacts the mould, and to model this requires a modification to the

finite-element program. The method employed, as explained in the next section,

is fundamentally the same as that used in [14, 21, 38, 100] for modelling contact

in blow-moulding problems. We have already noted in Chapter 5 the similarity

between slumping into a mould (as here in thermal replication) and blow moulding.

In this chapter, in addition to a consideration of this contact problem, interest

in the slumping of ophthalmic-lens moulds, for which the curvature of the surface

is the critical measure, leads to another interesting computational problem. In

order to determine surface curvature, derivatives must be calculated from non-exact

numerical data. This is an area of on-going research, e.g. by Anderssen and de

Hoog [2] using finite-difference methods. In Section 6.4 we shall consider some other

methods more easily applied to non-uniformly spaced data, such as the coordinates

of all nodes lying on the top glass surface from which surface curvature must be

determined.

A considerable portion of the work detailed in this chapter has been summarized

in a publication [88].
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6.2 Mould Contact

In order to keep computations relatively simple and fast, we shall follow previous

work on finite-element simulation of blow moulding [14, 21, 38, 100] in representing

a mould surface quite simply as a set of points connected by straight lines. The

accuracy of the mould representation can be improved by increasing the number of

points, and by increasing the density of points along segments of rapid change in

the mould shape.

When slumping into a mould, the lower free surface of the glass contacts the

mould surface as the flow progresses, but cannot, of course, pass through it. Up until

the first contact occurs, the time-evolution of the flow geometry may be determined

as previously by solving the slumping dynamics equations (2.19) at each node using

the known velocity field and the fourth-order Runge-Kutta method (2.53) to give

the new node position. The mesh is then adjusted by moving each node to its new

position. Eventually, however, the point is reached where one or more nodes will

cross the mould boundary. This is illustrated for node n in Figure 6.2, which for

the specified time step ∆t will move along the vector ∆x̃n and so ‘pass through’ the

mould surface.

The obvious method for preventing nodes from passing through the mould sur-

face, and which is quite typical in modelling a variety of forming processes [14,

21, 38, 100, 104], is to reduce the time step as necessary so that the node(s) that

would otherwise first cross the boundary will just reach it. When a node reaches

the mould boundary, it is fixed there for all future time. However, use of the Runge-

Kutta method for time advancing the mesh, because it requires velocity compu-

tations after a node has moved from its current position, prevents exact a priori

determination of the new position of a node for any given time step. Thus it is not

known for certain whether, or by how much, a node will cross the mould boundary

in the next time step ∆t, and hence whether, or by how much, to reduce the time

step. A similar, though not identical, problem is encountered in modelling of blow
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Figure 6.2: Contacting a mould.

moulding by Burley and Graham [14] and Graham et al.[38], in which the partial

time-derivative term (∂ui/∂t) from the Navier-Stokes equations is included in the

slow-flow equations used, and the chosen method of solution requires that velocities

at both the ith and (i+1)th time steps be first calculated in order to determine the

node positions at the (i+1)th time step. The method described in [14] to overcome

this difficulty suggests a possible method for handling the current problem, which

is also hinted at in [104], a paper describing numerical methods for a general range

of forming processes, not specifically aimed at glass.

First, compute the coordinates of the point I (refer Figure 6.2) at which node n

will contact the mould if it travels with the known velocity ũn, obtained from the

finite-element solution of the creeping-flow equations, for a sufficiently long period

of time. From this obtain the vector ∆x̃nI , the maximum permissible displacement

of the node. Then estimate the size of the time step ∆tn that will take node n along

vector ∆x̃nI to the point of intersection with the mould surface I, using the Euler

equation (2.51) thus:

∆tn = |∆x̃nI |/|ũn|, (6.1)

where the modulus denotes the usual length of a vector. Compute this ∆tn for each

node n = 1, 2, . . . , N , where N is the total number of nodes not already fixed on

the mould, and use the minimum of ∆t and all these ∆tn as the time step with

which to compute node displacements by the Runge-Kutta method. Return any

node that still crosses the mould boundary to the point at which its path intersects

that boundary. Once a node reaches the boundary fix it there for all future time.
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This method results in some small material loss, caused by returning nodes to

the mould boundary. There is also some computational overhead in checking for and

computing intersection points of nodes crossing the boundary, not once but twice.

However, the major disadvantage in the method is that the value of the Runge-Kutta

method in giving excellent accuracy with quite large time steps, as demonstrated

earlier in a comparison with the Euler method for the sagging bridge of Chapter 3

(see Table 3.7), is largely lost because of the need to reduce the time step to prevent

material loss through the mould. With small time steps and using the Runge-Kutta

method, the computational time becomes enormous, and this reduces the intended

benefit of the finite-element program as a fast predictive tool for industry.

Because of the large increase in computational time brought about by the in-

troduction of mould contact into the model, the alternative Euler method (2.51) is

adopted for sagging problems involving mould contact. In addition, this method is

quite typical for problems similar to the present one [21, 100, 104]. Although there

is some loss of accuracy in the initial stages of the flow prior to mould contact, by

comparison with the Runge-Kutta method, the amount of free sag is usually small,

of the order of the glass thickness, so that the error is less than shown for the sagging

bridge example in Table 3.7 where the two methods were compared after a much

larger sag allowing much more accumulation of error. Of course, a sufficiently small

time step must be used so that the flow domain area (i.e. mass) is reasonably-well

conserved. Once the lower surface of the glass begins to contact the mould this time

step becomes an upper limit on the size of the time step, which is reduced as nec-

essary. Decreasing the time step acts to increase the accuracy of the Euler method.

Note that, while not included in the above discussion, the time step is also reduced

as necessary to keep the displacement of all nodes at, or below, a prescribed limit,

as explained in Section 4.5 of Chapter 4.

Another positive benefit of the Euler method is that (6.1) gives the actual time

step required to take node n to the mould boundary, rather than just an estimate,
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and hence we no longer have the problem, associated with the Runge-Kutta method,

of being unable to predict exact node displacements. Because of this there is no

need to check for nodes crossing the mould boundary, or to move them back to the

boundary, which further increases computational speed.

Thus the algorithm is as follows . First solve for the velocity and pressure fields

in the current geometrical configuration of the flow domain using our finite-element

program. Set the time step ∆t to the maximum acceptable value, and also specify

some maximum allowable displacement |∆x̃|max. Then, for each node n = 1, 2, . . . , N

not already fixed on the mould surface

1. compute the time ∆tn in which node n will move a distance |∆x̃|max using an

equation similar to (6.1);

2. ∆t = min{∆t,∆tn}, so restricting the displacement of any node to the maxi-

mum allowed;

3. determine if the path of node n will intersect with the mould boundary in

time ∆t; if no intersection, increment n and go to step 1 otherwise find the

intersection point I;

4. compute the distance ∆x̃nI (see Figure 6.2) to the mould boundary;

5. compute ∆tn from (6.1);

6. ∆t = min{∆t,∆tn}, so reducing the time step if necessary.

After this loop the value of ∆t is the maximum time step possible such that no node

will cross the mould boundary, but at best just reach it. The displacements of all

nodes in this time step is then computed, and their positions adjusted. Any node

that contacts the mould is fixed on the mould by changing its boundary specification

to that of the mould, i.e. a no-slip wall. Note that nodes can be prevented from

crossing symmetry boundaries in a similar manner.
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This algorithm gives a fast and effective method for time advancing the flow

domain geometry in problems involving contact with a mould. A change to the

computationally costly, but probably more accurate, Runge-Kutta method can be

easily made in the future should that be desirable, requiring only a minor modifi-

cation to the program. Albeit, it is worth mentioning that any apparent increase

in accuracy is not necessarily very meaningful in the context of other sources of

error in the results. We have already considered the effect that small errors in

viscosity data relative to the overall magnitude of the viscosity could contribute.

Another more important point, that we shall consider in some detail a little later,

concerns the measurement of curvature. For lens moulds, it is not the amount of

sag that is critical, but the curvature profile of the upper glass surface. Thus, in

optical applications, the benefit of the model and simulations is finally determined

by the accuracy with which curvature can be computed using the non-exact discrete

surface-coordinate data provided by the finite-element program. This is a difficult

task which is as yet subject to inaccuracies that far outweigh the error introduced

by use of the Euler method in place of the Runge-Kutta method.

6.3 Numerical Slumping: An Example

In this section the method outlined above is illustrated by taking an axisymmetric

arrangement of an initially-flat glass disc supported on a concave mould as shown

in Figure 6.3. For clarity the vertical scale is twice the horizontal scale. The mould

surface may have an aspheric profile, though for present purposes it has been chosen

to be spherical in order to more clearly show the differences that slumping produces

in the top free surface of the glass compared with the mould surface. This problem

is non-dimensionalized using the disc radius a in the usual way. The disc has an

aspect ratio of h/(2a) = 0.0667 where h is its thickness. The radius of curvature R

of the mould surface is R/a = 5.3293 giving an initial clearance l between mould
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Figure 6.3: Geometry prior to slumping (t = 0).

and glass at the centre of l/a = 0.0947. The dimensions of this particular problem

are based on the slumping of real optical components. Symmetry about the axis

r = 0 limits the computational domain to a radial cross section of the disc, over

which a mesh of 1494 nodes and 695 quadratic triangular elements is defined.

The initial stages of the flow prior to mould contact proceed quite rapidly (though

in real terms it may take in excess of one hour), and in order to capture the disc

geometry at, or soon after, first mould contact a maximum dimensionless time step

of ∆t∗ = 0.001 was first used. Then we see contact occurring first at the mould

centre at a time of about t = 0.014T , as shown in Figure 6.4. As in previous

problems the time scale is T = µ/(ρga).

Mould contact greatly reduces the rate of flow, and hence to compute the disc

geometry at much later times the program was run again using a larger maximum

time step of ∆t∗ = 0.005, out to a time of t = 0.15T . Although this time represents

30 steps of ∆t∗ = 0.005, because of the reduction of the time step for handling mould

contact, in actual fact 110 steps were taken of size ∆t∗ ≤ 0.005. Note also that at

a time of t = 0.015T , when the first run was stopped, the disc sags given by both

runs agree to three figures, or four decimal places. Full mould contact is achieved,
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Figure 6.5: Full mould contact at t = 0.075T .
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as shown in Figure 6.5, at a time of about t = 0.075T . The first stage of the flow,

when there is most slumping action up to initial contact with the mould, takes place

in less than 20 percent of the time taken to establish full mould contact. After full

mould contact slumping effectively ceases, with further flow taking many hours or

even days. Computation time for this run was about 40 minutes using a single 167

MHz processor on a Sun Ultra Sparc 170 computer having 256MB of RAM. Full

mould contact was established when the run was about 60 percent complete.

Having computed the slumping of a glass disc into a mould up to full mould

contact, we now wish to determine how well, or poorly, the mould surface has

been replicated on the top glass surface. It is not possible to determine this at all

adequately from Figure 6.5, and hence, for this purpose, we next look at determining

the curvature profile of this surface. Surface curvature is a critical measure for

optical surfaces, and must meet the specification to within some tolerance which is

governed by the product application. In computing curvature, or indeed any other

quantity, from numerical data it must be borne in mind that this data cannot be

accepted as exact, but is subject to error due to the discretization methods used

and a computer’s inability to store real numbers to infinite precision.

6.4 Calculating Curvature

The fundamental definition of curvature is [33, p. 553] κ = dθ/ds where s denotes

distance along the curve, and θ is the angle made by the tangent to the curve at

point s and the x-axis. For the axisymmetrical slumping example just considered,

the curve of interest is the top glass surface defined by vertical height z = f(r) where

f is an (unknown) function of radial position r. Then the equation for curvature

becomes

κ =
f ′′

(1 + f ′2)3/2
(6.2)
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where primes denote differentiation with respect to r. As output from the finite-

element program we obtain (r, z) coordinates of nodes located on, or (allowing for

numerical error) close to, this surface, and from these discrete and non-exact data

points we need to compute the first and second derivatives of f with respect to r

to give curvature, and so obtain a quantitative measure of small-scale changes in

surface shape.

The plainly difficult task of accurately differentiating non-exact data, such as is

obtained from any discretized computation process, is an area of current research.

Finite-difference methods for numerical differentiation have received considerable

attention over many years, and this is still an area of active investigation [2, 3]. Such

methods, however, generally require that the available data is uniformly spaced, a

condition that is typically not satisfied in our problems. As an alternative to finite-

difference techniques, splines may be fitted to the (r, z) data, which give the value

of the function f as well as its derivatives at positions r [26, 63]. The degree of

the splines chosen will determine the extent of continuity and hence the order of

derivatives that may be obtained. While interpolating splines may be used, for data

that is known to be non-exact it may be preferable to perform a least-squares fit,

and so smooth the data. Least-squares B-spline approximations are recommended

by de Boor [26, p. 249] as “very effective” for filtering noise from non-exact data.

A very heuristic approach has been taken here to the subject of curvature cal-

culation, with a number of different methods tried to see what ‘works’ best. Before

attempting to compute surface curvature for the slumping example of the previous

section, let us consider computing the curvature of a surface such as we might expect

from that slump, namely, a spherical cap of (dimensionless) unit radius and with

radius of curvature R = 5 centred at (r, z) = (0, R). This axisymmetric surface has

constant curvature of κ = 0.2. Let us define this surface by 51 equally spaced points

along the radial arc length [0, 1], or 101 equally spaced points across the diameter

[−1, 1]. Coordinates calculated in double precision are close to exact, and hence are



6. Mould Contact and Replication 158

0.199

0.1992

0.1994

0.1996

0.1998

0.2

0.2002

0.2004

0.2006

0.2008

0 0.2 0.4 0.6 0.8 1

PSfrag replacements

κ

r

Figure 6.6: Curvature of a spherical cap with κ = 0.2 found by computing arcs through
sets of three consecutive data points, with non-exact single precision data.

refered to as exact data points, although this is not strictly accurate terminology.

Coordinates calculated in single precision are then non-exact, relative to the double-

precision data. Note that the data is not uniformly spaced with respect to the r

coordinate.

Probably the most intuitive method of calculating curvature, especially for this

type of test data, is to find the radius R of the arc that passes through three

consecutive data points, and then let κ = 1/R at the central point of the three. The

curvature profile for the spherical cap obtained using this method with exact (i.e.

double precision) coordinate data is very accurate, but with non-exact (i.e. single

precision) coordinate data the result is quite unstable as shown in Figure 6.6. From

this it is clear that the method is quite sensitive to small errors in the data, as is

to be expected because of the extremely localized nature of the data used in the

computations.
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Figure 6.7: Curvature of the spherical cap computed using a finite-difference method and
sets of three consecutive data points, with (a) exact and (b) non-exact data.

Next we consider a simple method based on finite differences, again using three

consecutive data points. Because the data is not uniformly spaced in r the usual

centred difference formulae cannot be used. Instead let us derive some formulae as

follows. Let the three data points be denoted (ri, zi), i = 1, 2, 3, and let them be

ordered such that ri < ri+1. Let us define ∆r1 = r2 − r1 and ∆r2 = r3 − r2. Then

Taylor expansions about r2 give two equations in the two unknowns z ′2 and z
′′
2 , where

primes denote differentiation with respect to r,

z1 = z2 −∆r1z
′
2 +

∆r21
2
z′′2 −O(∆r31) and (6.3)

z3 = z2 +∆r2z
′
2 +

∆r22
2
z′′2 +O(∆r32). (6.4)

Combining (6.3) and (6.4) to eliminate z ′2 gives

z′′2 ≈
2

∆r1 +∆r2

(

z3 − z2
∆r2

−
z2 − z1
∆r1

)

, (6.5)
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which substituted into (6.3) gives

z′2 ≈
1

∆r1 +∆r2

(

∆r2
∆r1

(z2 − z1) +
∆r1
∆r2

(z3 − z2)
)

. (6.6)

Now with these expressions for the first and second derivatives at r2 we can compute

curvature at r2 from equation (6.2). A plot of the result for the spherical cap with

exact and non-exact coordinate data is given in Figure 6.7. Again the method is

sensitive to small errors in the initial coordinate data. It is surmised that the curve

for the exact data bends upwards due to increasing inaccuracy in calculating the

second derivative (f ′′(r)) as it increases more rapidly towards the edge of the cap,

indicating that this method is not particularly appropriate for this type of data, no

matter how close to exact the data is.

Aside from the obvious problem we see on calculating derivatives with this finite-

difference method and our particular data, it is a known fact that standard centred

difference formulae are generally too unstable for computing second and higher order

derivatives of non-exact data, even when that data is quite precise [3]. Thus the

unstable oscillatory behaviour that we see in the curvature (which is basically the

second derivative) computed using single precision data, is to be expected. Because

of this instability, Anderssen, de Hoog and Hegland [3] have developed a finite-

difference method for higher-order differentiation that effectively gives derivatives

of averaged data. This is, however, for data that is uniformly spaced (in r), and

cannot be directly used with non-uniform data. Some work has been undertaken by

Hegland [45] to adapt the method for our type of data, but for this thesis a different

method, namely least-squares fitting of B-splines [26, Ch. 14] to the data, has been

used. By using a least-squares approximation instead of interpolation, non-exact

data is also averaged.

The construction of B-splines for a given data set is described in [26], and only a

brief summary is given here of the method employed. Suppose we have a curve (or

axisymmetric surface) defined by N discrete data points (ri, zi), i = 1, 2, . . . , N that

we wish to represent by a degree-k B-spline. We define a set of points, or “knots”,
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{ti, i = 1, 2, . . . ,M} on the interval [r1, rN ] such that

r1 = t1 = . . . = tk+1 < . . . < tj < tj+1 < . . . < tM−k = . . . = tM = rN .

The degree-k B-spline is defined on these knots by the recurrence relation

Bk
i (r) =

(

r − ti
ti+k − ti

)

Bk−1
i (r) +

(

ti+k+1 − r

ti+k+1 − ti+1

)

Bk−1
i+1 (r) (6.7)

for i = 1, 2, . . . , (M − k − 1) and k ≥ 1, with

B0i =











1 ti ≤ r < ti+1

0 otherwise
. (6.8)

Then, the curve is approximated by

z = Bk(r) =
Df
∑

i=1

αiB
k
i (r), (6.9)

where the αi are coefficients to be determined and Df = M − k − 1 is the number

of degrees of freedom, i.e. the number of coefficients to be determined. Substituting

the N discrete data points (ri, zi) in (6.9) gives N equations in the Df unknown

αi, and, assuming for the moment that these N equations are linearly independent,

they can be solved if N ≥ Df . If we have N = Df then there is a unique solution

that interpolates the data. If we have N > Df then we solve using the method of

least squares to get the spline of best fit. Choosing the (internal) knots such that

ti ≤ ri < ti+k for all i = 1, 2, . . . , N ensures linear independence of the N equations

[26, pp. 200, 254], although this is allowed to ‘come out in the wash’ and knots are

not specifically selected to satisfy this condition. Note that B-spline fitting to data

is very similar to the finite-element method in one-dimensional space.

From this description it is apparent that, even for interpolation, there is not a

unique B-spline for a particular set of (r, z) data, since the knots ti can be chosen

in many different ways, although a B-spline with M knots does not change much

with small changes in the knot placements [26, p. 126]. It is common to choose the

M −2k−2 interior knots ti, i = k+2, . . . ,M −k−1, to coincide with r-coordinates
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of data points, as does the NAG library routine (E02BEF) which computes a cubic

B-spline for a supplied set of data points. Even then, for k > 1 there is some choice

concerning which ri should be coincident with knots, since the number of interior

data points N−2 always exceeds the number of interior knotsM−2k−2 ≤ N−k−1,

the maximum number (N−k−1) of knots being required by an interpolating spline.

For example, a cubic (k = 3) interpolating spline requires N − 4 of the N − 2

interior data-point r-coordinates, so that two of these must be omitted from the

knot sequence. The NAG routine omits the first and last of the interior ri.

Now, the position of knots affects the continuity of the B-spline approximation.

Specifically, if there are n knots at coordinate r, then there are k+1−n conditions

of continuity there, for a spline of degree-k. That is, the function value and its

first k − n derivatives exist and are continuous [26, p. 114]1. At the end points

of the curve we have n = k + 1 knots, and hence no conditions of continuity, but

this is of no consequence provided that we compute over the complete curve and

make no use of symmetries. However, in the interior of the curve we require that

the curvature be continuous, that is a continuous second derivative. Therefore in

this region we require a minimum of three conditions of continuity, i.e. that the

function value z = Bk(r) and its first two derivatives be continuous. Preferably, the

curvature should be smooth and differentiable, in which case we must also require

that the third derivative be continuous. Since, for the B-spline method employed,

multiple knots are not permitted in the interior of the curve, n = 0 or 1 on the

interval (r1, rN ) and there will be adequate continuity for all splines of degree k ≥ 3.

For a cubic spline (with k = 3) the second derivative will be continuous but not

differentiable at knot locations, so that, while we can compute curvature, the profile

obtained will not be smooth, i.e. differentiable, at knots. Using splines of higher

degree (> 3) ensures a smooth and differentiable curvature profile. Splines of degree

2 or less cannot be used.

1Note that k in [26] is equivalent to k + 1 in our terminology
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Let us now compute the curvature of the spherical cap used earlier, using B-

spline fitting. We first try the NAG library routine (E02BEF), already mentioned

in the above discussion, which computes a cubic B-spline for an arbitrary set of data

points. In line with the above comments on continuity, we must fit our B-spline over

the full diameter [−1, 1] of the cap, defined by 101 data points spaced so that there

is an equal arc length between any two consecutive points. It is possible to assign

different weights to the data points, but all are given an equal unit weight. The value

of a positive parameter s, known as the smoothing factor, controls the smoothness

of the spline and its closeness of fit to the data, with a zero value specifying that

the spline interpolate the data. The knots of the spline are located automatically,

but are always some subset of the set of r-coordinates of the data points. The

smoothing factor s also influences the number of degrees of freedom Df in the B-

spline approximation, with Df = 4 being the minimum possible for a cubic spline

corresponding to no interior knots, and Df > 4 implying interior knots. When s = 0

then Df = N and the data is interpolated, and as s increases Df decreases until

Df = 4 and there are knots at the end points only. In this case, the spline is simply

a cubic polynomial, with four continuity conditions everywhere in the interior of

the cap so that the curvature profile is smooth. For the spherical cap, it was found

necessary to choose s < 10−6 for Df > 4. Having solved for the coefficients αi,

another NAG routine (E02BCF) evaluates the spline and its first three derivatives at

given points r along the curve, from which results curvature can be computed. The

result for the spherical cap given in this manner is shown in Figure 6.8 for different

values of s (and numbers of degrees of freedom Df ). Exact (double precision) data

was used for these computations, and we see the curvature profile approaching the

known straight line solution κ = 0.2 as Df becomes larger and the interpolation

B-spline result approached. Note the lack of differentiability at knot points. For

non-exact data, the curvature profiles obtained with small Df (≤ 12) are virtually

identical to those ((a) to (d) in Figure 6.8) for the exact data. However, when Df
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Figure 6.8: Curvature of the spherical cap found using NAG routines. Exact coordinate
data was used with (a) s ≤ 10−6, Df = 4, (b) s = 10−7, Df = 5, (c) s = 10−9, Df = 8, (d)
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Figure 6.9: Curvature of the spherical cap found using NAG routines. Non-exact data
was used with (a) s = 10−13, Df = 12 and (b) s = 10−13, Df = 76.
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becomes large, approaching interpolation, the curvature profile for the non-exact

data becomes substantially affected by the error in the data and fluctuates greatly,

as shown in Figure 6.9. From this we can expect there to be some optimum number

of degrees of freedom, between 12 and 76, that gives enough averaging of non-exact

data for a satisfactory determination of curvature. With less than this optimum,

there would be too much averaging and the loss of surface features. With more,

there would be insufficient averaging with the curvature computations being too

much influenced by inaccuracies in the data.

In order to consider higher degree splines, and have more control over the number

of degrees of freedom in the spline approximation, a B-spline routine was written.

For the spherical cap it seems reasonable to use uniformly spaced interior knots in

the interval (-1,1) over which the curve is defined. Df is varied to obtain splines with

more or less averaging of the data, including interpolating splines with no averaging.

By increasing the Df and comparing the curvature profiles for exact and non-exact

data the value of Df is found above which error in the data starts to substantially

affect our computations. Let us consider this value to be the optimum number of

degrees of freedom. A similar methodology for determining an appropriate level

of averaging of the data, using many fewer degrees of freedom than there are data

points, is described by de Boor [26, Ch. 14].

Figure 6.10 shows this process for cubic (degree-3) B-splines. For clarity the plot

is limited to the interval [0, 1]. Because of symmetry in r = 0, the interval [−1, 0]

is virtually a mirror image of this, as is seen in earlier plots. The curves for exact

and non-exact data are virtually identical for Df = 14, vary a little for Df = 19,

and are quite different for Df = 24 with the error in the data beginning to have a

substantial affect. From this it may be considered that around 19 degrees of freedom

is optimum.

We now consider higher degree quartic (k = 4) and quintic (k = 5) B-splines.

These show the same type of behaviour as the cubic splines, but the curves are
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Figure 6.10: Curvature of the spherical cap found using a cubic B-spline fit with (a) 14,
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Figure 6.11: Curvature of the spherical cap found using B-spline fits of degree (a) 5, (b)
4, and (c) 3, with optimum degrees of freedom. In each case the curve denoted ‘E’ is for
exact data and that denoted ‘N’ is for non-exact data.
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smoother due to the fact that the second derivative is not only continuous but

also differentiable. On repeating the above described process for determining an

appropriate number of degrees of freedom, for quartic and quintic B-spline approx-

imations, 8–9 degrees of freedom is found to be around the optimum. Figure 6.11

shows a comparison of the curvature profiles obtained using cubic, quartic and quin-

tic B-splines, with 19, 9, and 8 degrees of freedom respectively. Approximating the

data by a quartic or quintic B-spline clearly gives a better result than a cubic spline.

The quintic spline appears to be a little better than the quartic spline, but in view

of the stretched vertical scale used to show the variations in these curvature profiles,

there is really very little difference between them and both are very acceptable.

Thus, with appropriate choice of parameters, we have been able to quite ac-

curately compute the constant curvature of a spherical surface from least-squares

B-spline fitting to the surface coordinate data, even when that data is non-exact.

We next proceed to use this method to find the curvature of the slumped surface

from the finite-element computations of the previous section.

6.5 Numerical Slumping: Surface Curvature

In order to compute the curvature of the upper surface of the numerically-slumped

glass disc of Section 6.3 at some point in time, we take the node coordinate data

of the slumped glass disc at that time as given by the finite-element program and

extract from this the coordinates of nodes located on the upper surface. To this

discrete and non-exact data we fit a least-squares B-spline of at least degree 4, to

ensure adequate continuity of the second derivative, as described in the previous

section. If we keep the proportion of degrees of freedom to data points about the

same as in those computations, then we might expect to need as few degrees of

freedom as one tenth of the number of data points. However, this can also be

expected to depend on the shape of the surface, which is not necessarily spherical,
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Figure 6.12: Determining surface curvature of the slumped disc of Figure 6.5 using quartic
B-spline approximations. (a) Df = 15, (b) Df = 25, and (c) 35 ≤ Df ≤ 65.

so that, as in our earlier curvature computations, Df needs to be determined by

experimenting with this particular coordinate-data set. As a first try we space

internal knots uniformly across the diameter of the component.

Firstly let us compute the curvature profile of the slumped disc at time t =

0.075T , after it has attained full contact with the mould as shown in Figure 6.5.

This glass disc has 157 nodes on its upper surface, and hence we begin with Df = 14

and increase this number watching for instability in the curvature profile due to error

in the coordinate data. The process is illustrated for quartic splines in Figure 6.12.

For 35 ≤ Df ≤ 65 the curvature profile barely changes, and further this same

profile is also obtained with B-spline approximations of degrees 5 and 6. The plot of

curvature shown in Figure 6.13, and at a larger scale in Figure 6.14, may therefore

be accepted as correct for this data set. On increasing the number of degrees of

freedom above 65, there are increasing fluctuations in the curvature profile due to

error in the data. Although the vertical scale of the plot is considerably smaller

than those used for plots of curvature of the spherical cap in the previous section,
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Figure 6.13: Surface curvature of the slumped disc Figure 6.5 computed using a quintic
B-spline approximation.
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Figure 6.14: As above but at a larger scale.
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instability due to error in the data does not become obvious, even at much larger

scales, until many degrees of freedom (> 65 compared with ∼ 10 for the spherical

cap) are used, leading to the conclusion that the numerical data is smoother than the

single-precision discretization of the spherical cap. This does not however prove the

result to be correct for this slumping case, since the curvature profile is dependent

on the space and time discretizations used in the finite-element simulation.

Having computed the curvature profile Figure 6.13 for the slumped glass disc,

we can now see that it is considerably different from the constant mould curvature

aκ = 0.1876 that we are trying to replicate. It also shows regions along the radial

span of the disc of rapid change in curvature. It is possible that we might compute

curvature more efficiently with a non-uniform distribution of the internal knots such

that there is a greater knot density in regions of rapid change in curvature, but

we can be satisfied with the accuracy of the results with uniformly spaced knots

since they remain basically unchanged on increasing the number of degrees of free-

dom of the B-spline approximations and hence the density of knots. Furthermore

the curvature profile of Figure 6.13 is also obtained on using a quartic B-spline

approximation with 30 degrees of freedom and Chebyshev knot spacing with the

knot density increasing towards the edge of the disc where curvature changes most

rapidly. However, in general Chebyshev knot spacing is not appropriate for this

data, leading to problems with matrix invertibility. By contrast uniform spacing is

very reliable in giving a solvable problem, and the price of any lack in computational

efficiency is small, especially when compared with the computational time that can

be spent in searching for some better knot distribution.

To give some idea of the dependence of curvature profile on the discretization

used in the finite-element computations, and hence determine how accurately it

represents the true curvature for this slumping case, two further simulations were

run. For one of these a coarser mesh was used over the glass disc of 329 elements

instead of 695, giving a top surface defined by 105 data points instead of 157. For
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Figure 6.15: Curvature computed from numerical simulations using meshes of (a) 695,
(b) 329, and (c) 880 triangular elements.

the other a finer mesh was used of 880 elements with elements concentrated at

approximate locations of change in curvature, r/a = 0.1 and r/a = 0.7 on the

top surface. This last simulation gave a top surface defined by 229 data points.

Figure 6.15 compares the curvature profile at t = 0.075T for all of the simulations.

The coarse mesh differs a little from the previously computed curve, which is not

unexpected, but the finest mesh agrees with it very closely and indicates that the

first discretization is sufficient to give a quite accurate result.

Next we see in Figure 6.16 the progression of the curvature profile as slumping

proceeds up to full mould contact at t = 0.075T . It is evident from this plot and

Figures 6.3 to 6.5 that once the glass contacts the mould the curvature reaches a

stable value and subsequently changes very little. Thus the changes to the curvature

profile are seen more and more toward the edge of the disc as time proceeds. After

full mould contact, the curvature at the disc edge continues to change for a while

as shown in Figure 6.17, and it appears that a ‘limit state’ will be attained after

a sufficiently long period of time. This is not strictly correct, but slumping after
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Figure 6.16: Curvature of the slumping disc at (a) t = 0.014T (initial mould contact),
(b) t = 0.015T , (c) t = 0.020T , (d) t = 0.025T , (e) t = 0.035T , (f) t = 0.050T , and (g)
t = 0.075T (full mould contact).
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Figure 6.17: Curvature of the slumping disc after full mould contact. (a) t = 0.075T (full
mould contact), (b) t = 0.100T , (c) t = 0.125T , and (d) t = 0.150T .
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this settling stage proceeds so very slowly, that it is a good approximation to the

truth. Even, the settling stage of the slumping process, from full mould contact to

the limit state, takes as much time again as slumping from commencement up to

full mould contact, so that it may be desirable to stop the slump before arriving at

the limit state.

6.6 Effect of Initial Geometry on Surface Repli-

cation

Pearson [68, p. 244] in discussing the extrusion of polymers comments on the im-

portance of geometry above all other factors in determining flow fields and process

behaviour. In slumping of optical surfaces, geometry is also very important, and in

this section we look at the slumping of a glass disc into a spherical mould and how

initial geometry affects final free-surface curvature.

It is obvious that the replication of the mould surface on the upper surface of

the slumping glass disc will be greatly affected by the initial thickness h of the glass

disc relative to the size of the cavity into which it slumps. Possibly the initial shape

of the disc, e.g. flat or spherical, will also be of significance. Initially the radius a of

the mould cavity, which is also the radius of the glass disc, will be the only cavity-

size parameter, but as the flow progresses and the lower surface of the disc contacts

the mould, the depth δ of the cavity can also be expected to have an influence.

Now, for a disc of very small aspect ratio h/(2a) → 0, the mould curvature κM

must be exactly replicated on the upper free-surface of the glass regardless of initial

geometry, i.e. κ → κM , where κ is the curvature of the free surface. However, for

the thick-disc limit h/(2a) → ∞ the upper disc surface will not see the mould at

all and will retain its initial shape, i.e. κ→ κ0 where κ0 is the initial upper-surface

curvature at time t = 0. For 0 < h/(2a) < ∞ the final upper-surface curvature

of the disc will vary, in some manner depending on the disc and mould geometries,
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from κ = κM to κ = κ0. It is desirable to obtain a better understanding of how

this surface varies with geometry so that in specific industrial applications of the

thermal-replication process, appropriate choices to yield the required product can

be more easily identified.

We first consider flat glass discs of varying aspect ratio h/(2a) slumping into a

spherical mould with a maximum cavity depth of δ = 0.1a. For each aspect ratio

computed, a finite-element numerical simulation is run until full contact between

the mould and the lower disc surface is established, and we are close to the limiting

curvature profile (see previous section) for the upper free surface. Then as h/(2a)→

0 we have κ → 1/(5.05a) ≈ 0.1980/a, while as h/(2a) → ∞ we have κ → 0.

Figure 6.18 shows results for a number of different disc aspect ratios. The vertical

axis gives κ/κM so that a unit value represents a free-surface curvature equal to the

mould curvature. As expected the curvature profile for h/(2a) = 0.025 is close to

the constant mould curvature (κ/κM = 1) everywhere, excepting at the disc edge

where ‘edge effects’ can be anticipated. These edge effects have an increasing radial

extent as the disc aspect ratio increases until there is a definite change in the nature

of the curvature profile as seen in the curve for h/(2a) = 0.2.

In the range of disc aspect ratios h/(2a) ≤ 0.2 the free-surface curvature is, if

we ignore the edge effects, larger than the mould surface curvature, i.e. κ > κM ,

and κ increases with aspect ratio. This suggests that, to a first approximation, the

glass forms a layer of uniform thickness over the mould, so that if RM = 1/κM

is the radius of curvature of the mould then the curvature of the free surface is

approximated by κ = 1/(RM − h), which exceeds that of the mould in keeping with

the computations. Of course, the computations show curvature to be non-constant,

and in addition, at the very centre of the discs, the curvature is significantly larger

than this explanation alone would permit, clearly indicating that this approximation

is still significantly lacking in accuracy.

Above h/(2a) = 0.2 there exists an aspect ratio for which the curvature at the
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Figure 6.18: Curvature after full mould contact of an initially flat slumping disc of aspect
ratio (a) h/(2a) = 0.025, (b) h/(2a) = 0.05, (c) h/(2a) = 0.1, (d) h/(2a) = 0.2, and (e)
h/(2a) = 0.3. The mould cavity is spherical with κM = 0.1980/a.
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Figure 6.19: Curvature after full mould contact of an initially flat slumping disc of aspect
ratio (a) h/(2a) = 0.025, (b) h/(2a) = 0.05, and (c) h/(2a) = 0.1. The mould cavity is
spherical with κM = 0.0998/a.
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disc centre reaches a maximum, and on further increasing the aspect ratio above this

value, κ decreases with increasing h/(2a) and the curvature profile becomes flatter

as it approaches the thick-disc limit κ = 0. In Figure 6.18 this behaviour is evident

at h/(2a) = 0.3.

The type of behaviour illustrated in Figure 6.18 is typical for spherical mould

cavities of other depths δ, although the precise curvature profiles do change a little.

On halving the cavity depth to δ = 0.05a, i.e. κM = 0.0998/a results are obtained

as shown in Figure 6.19. A comparison of Figures 6.18 and 6.19 shows less variation

in the scaled-curvature profile as aspect ratio increases. For example the curves for

h/(2a) = 0.1 are quite similar, and this similarity can be expected to continue for

larger aspect ratio as the effect of the mould is lost on the free surface and κ→ 0.

So far we have considered only the slumping of initially flat discs. Spherical

discs of some initial curvature κ0 can also be readily obtained, and it is of interest

to consider how using such discs might influence the final free-surface curvature.

We consider discs of horizontal radius a having the same initial curvature on both

top and bottom surfaces. Thickness h is measured vertically. Note that for regions

having curved surfaces, as for the present problem, curvature calculation is sensitive

to the accuracy of boundary representation, meshes generated by Fastflo must be

processed to improve this accuracy. A more detailed description of this fact and the

method of mesh improvement is given further on in Chapter 8.

Figure 6.20 shows some results for discs of initial curvature κ0 = 0.0998/a slump-

ing into a mould with κM = 0.1980/a. Then, while the cavity depth is 0.1a, the

distance between the lower surface of the disc and the mould is half of this, i.e.

0.05a. For ease of comparison, the vertical scale is as before in Figures 6.18 and

6.19. Clearly, while the general behaviour with increasing aspect ratio is similar to

that seen with flat discs, the final free-surface curvature is considerably closer to the

mould curvature that we are trying to replicate. It is perhaps almost obvious that

an initially spherical disc would replicate a spherical mould better than an initially
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Figure 6.20: Curvature after full mould contact of an initially spherical (κ0 = 0.0998/a)
slumping disc of aspect ratio (a) h/(2a) = 0.025, (b) h/(2a) = 0.05, (c) h/(2a) = 0.1, and
(d) h/(2a) = 0.2. The mould cavity is spherical with κM = 0.1980/a.

flat disc, but this test case does illustrate how that, in addition to thickness, the

initial shape of the glass disc influences the final product.

For practical applications, where the mould and desired final surface are typically

of general non-spherical shape, numerical computations such as these, could assist

considerably in determining the best initial shape and thickness of the glass disc,

and the shape of the mould cavity.

A feature of all of the slumping problems that we have considered that warrants

comment is the increasing time taken to achieve full contact between the lower disc

surface and the mould with increasing aspect ratio. We take by way of example the

first slump case considered in this section, namely a flat glass disc slumping into a

spherical mould of curvature κM = 0.1980. For small aspect ratios slumping occurs

relatively quickly, with a disc of h/(2a) = 0.025 achieving full mould contact in a

time of about 0.01T , where T = µ/(ρga). For a disc of h/(2a) = 0.3 the total
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slumping time increases more than 20 fold to 0.22T . This can be explained by

considering the way in which the lower disc surface contacts the mould, and with

reference to results for the sagging viscous bridge of Chapter 3.

For small aspect ratio (h/(2a) ≤ 0.025) the disc slumps rapidly, contacting the

mould first at the centre, after which the slump rate slows considerably. For larger

aspect ratio (h/(2a) = 0.2) there is first contact in a band at the edge of the mould

cavity, then at the centre, and lastly along the intermediate radial region. For

sufficiently large aspect ratio (h/(2a) = 0.3) contact begins at the cavity edge and

proceeds radially inwards with contact at the centre coming last.

Consider for a moment Figure 3.7 in Chapter 3 showing the relationship between

aspect ratio and initial centroid velocity scaled with respect to V = ρgw2/(2µ) for a

sagging viscous bridge of width 2w and thickness 2h. Ignoring constant multipliers,

the velocity scale of this figure and that used in our present problem V = ρga2/µ are

equivalent. Furthermore, as h/(2a) → 0 the present flow becomes equivalent to an

axisymmetric form of the sagging viscous bridge with no-slip wall supports, while

as h/(2a) → ∞ the present flow must approach a uniform free stream. Thus the

relationship between initial velocity at the centre of a slumping disc and aspect ratio

must be generally similar to that shown for the sagging viscous bridge in Figure 3.7,

with velocity becoming infinitely large in the thin limit and approaching a constant

value in the thick limit. Now, for time t = t∗T with T = µ/(ρga) and vertical

slumping velocity v = v∗V with V = ρga2/µ, as in the present problem, the time

taken to slump a fixed distance εa is given by t∗ = ε/v∗, assuming that the slumping

velocity v∗ remains constant over the time interval taken to slump this distance,

which for small epsilon is a reasonable approximation.

Let us first consider the thick disc limit h/(2a)→∞. In this case mould contact

proceeds radially inwards from the disc edge, so that the radius of the unfilled

mould cavity, which we denote rc(t) with rc(0) = a, decreases over time. At any

time t, this problem is approximately equivalent to the initial problem at t = 0, with
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the slumping velocity v∗ → c, for some constant c, and a velocity scale ρgr2c/µ =

V(rc/a)
2, V being the initial velocity scale when rc = a. Thus, for a constant

velocity scale V , as in present computations, we have a slumping rate that decreases

like (rc/a)
2 as slumping proceeds. Next let us assume that for an unfilled mould

cavity of radius rc the disc slumps a distance εrc before further mould contact results

in a decrease in rc. The time taken to slump this distance is ∆t∗ = ε/c multiplied by

a time scale µ/(ρgrc) = T (a/rc), T being the initial time scale. Thus as slumping

proceeds and rc → 0 we have the slumping time t → ∞, and in fact, although we

get very close, we never actually get to full mould contact. If instead we consider a

constant slumping increment of εa (instead of εrc), then the slumping time increment

is ∆t = (ε/c)T (a/rc)
2, and, while with this formulation of the problem the slump is

completed, again the total slump time is very large.

Now we consider the thin disc limit h/(2a) → 0. In this case there is a period

of time during which the disc slumps freely, until contact with the mould at the

centre. For this first stage of the slumping process, the velocity is very large, with

v∗ →∞ initially, and the velocity scale remains constant at V . Even allowing for a

decrease in the velocity during this period (cf. Figure 3.10) it is readily appreciated

that this first stage of the slump up to initial contact at the centre of the mould is of

short duration. After contacting the mould at the centre, the slumping of the disc

between its centre and edge is approximately the same as the initial problem, but

the size of the mould cavity is much reduced with an effective radius of a/4 so that

the time scale increases to 4T and the velocity scale reduces to V/16, where again T

and V are the initial time and velocity scales respectively. However, this next stage

of the slumping process appears to proceed in a manner similar to that described

above for a thick disc, i.e. with mould contact proceeding radially inwards. Thus, a

slowing of the slumping rate is to be expected, although the large slumping velocity

applicable to a very thin disc still results is a faster process than for a thick disc.

For discs with some thickness, between the thin and thick limits, the first stage
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Figure 6.21: Slumping time for full mould contact.

of the slumping process (up to contact with the mould at the centre) occurs over

a longer time period than for very thin discs due to the lower slumping velocities

(cf. Figure 3.7). The second stage of the process will also take a longer time than

for very thin discs, as the aspect ratio h/rc, rc being the effective cavity radius,

increases and towards the end of the slump approaches the thick-disc limit.

Thus, although this argument is very approximate, the increasing total slump

time with increasing disc thickness is understandable. Figure 6.21 shows the rela-

tionship between disc aspect ratio and the time taken for full mould contact. There

is no obvious tendency to approach a limiting slump time as aspect ratio increases,

although this is possible for aspect ratios exceeding the range of our computations.

However, even if such a limit exists, in terms of real times it will exceed practical

slump times, and hence has no real relevance.

One conclusion that we can draw from our considerations so far is that, if thermal

replication is to be practical as a manufacturing process, then thin discs must be
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used, both to keep manufacturing times to a minimum, and so that the mould shape

can be effectively transferred to the upper free surface of the disc. Because of this,

thick-limit calculations may appear to be irrelevant. However, such calculations may

be of benefit in determining just how thin a disc must be for a reasonable slumping

time and sufficient accuracy of replication, and, furthermore, thick-limit calculations

are relevant to a consideration of the transfer of mould roughness to the upper free

surface.

6.7 Print-Through of Surface Roughness

In describing the thermal-replication process at the beginning of this chapter, men-

tion was made of the reason for using such a process being to obtain a replica of the

macro-surface of a mould while not transferring the small-scale imperfections in the

mould. The ceramic mould is machined in some type of milling machine, which gives

it certain roughness characteristics. Obviously the surface of the product that comes

into direct contact with the mould will be directly affected by the mould roughness,

and some work on small scale surface changes resulting in such circumstances has

been done by others [85]. This type of roughness transfer is not, however, of im-

portance in considering replication of the mould surface on the upper surface that

makes no contact with the mould. Rather we are concerned, in this section, with

“print-through” of the mould surface roughness to the upper free surface. It is of

interest to know how coarse the mould can be and still yield a very smooth surface,

such as is necessary for optical applications, since the finer the required milling, the

greater the cost of the mould, and it is obviously important on an industrial scale

where these moulds are mass produced, to keep costs to a minimum. From this

study we also obtain some further insight into the size of the surface features in

the mould that can be transferred to the upper surface of the glass in the thermal-

replication process. This is also important, since it strongly influences the design of
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Figure 6.22: Enlargement of fluid-mould interface showing mould roughness.

products that can be manufactured with this process.

The milling machines which have come to the author’s attention during the

present work, cut the required mould surface shape by making a series of closely

spaced parallel runs which are long compared to the width of the cut. Thus, at the

scale at which the roughness is seen, the problem is two dimensional. At this scale

also and for the gravity slumping process with which we are primarily involved, it

is reasonable to take the viscous fluid layer to be of uniform thickness lying in the

horizontal plane. This suggests the initial geometry shown in Figure 6.22. Here

roughness is represented as a periodic “wave”, with wavelength λ and depth from

crest to trough δ. The wave shape from crest to crest has been shown as an arc

because something like this is expected from a milling machine, but this is not critical

to the final formulation of the problem. A layer of viscous fluid (e.g. molten glass)

of height h is initially supported on the mould crests, and typically h À δ. This

fluid layer sags under gravity g. Interest is in the shape of the upper free surface

that results from the fluid layer sinking down into the troughs in the mould surface.

The expected periodicity of the mould roughness, enables the restriction of the

computational flow domain to a half wavelength w = λ/2, with symmetry conditions

on the side boundaries. Let us also simplify the mould representation to a series

of short, horizontal supports (at the “wave” crests) with infinite depth holes in

between. This is reasonable while the only contact of the lower free surface with
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Figure 6.23: A simplified mould roughness element.

the mould is at the crests, which is certainly true for t = 0+. Furthermore, the time

scale of this problem T = µ/ρgw (using the half wavelength w as the length scale)

is very large for the large viscosity µ and small length scale w involved, so that even

typical real slumping times of one to two hours, are very small relative to this scale,

and little further mould contact can be expected. In any case, this is a worse-case

scenario. Thus, the final geometry is that shown in Figure 6.23.

We first solve for the flow field in this computational domain, and then determine

how this affects the upper free surface of the glass. Since in the industrial application

the slumping time t is very small, the deformed shape of the initially horizontal upper

free surface given by y = h, will be, to a good approximation, given by

y = h+ tv(x, h). (6.10)

In particular, the difference in sag of the top surface from the centre to the edge of

the roughness element, given by

∆y = t[v(w, h)− v(0, h)] = t∆v, (6.11)

gives a measure of the print-through of mould roughness to the upper surface.

This problem is quite similar to the slumping liquid bridge analysed in Chapter 3;

only the boundary conditions must be modified. It is most readily analysed using a

semi-analytic series method to solve for the stream function ψ, in a similar manner to
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that outlined in Section 3.2. The basic slow-flow equations and boundary conditions

are the same as in Section 3.2, but are repeated here for convenience. Thus, we must

solve the Stokes equations

px = µ∇2ψy and (6.12)

py = −ρg − µ∇2ψx, (6.13)

which for an incompressible fluid combine to give the biharmonic equation

∇4ψ = 0, (6.14)

with boundary conditions as given below.

As always throughout this thesis, the mould surface is assumed to be a no-slip

wall so that on y = 0, βw ≤ x ≤ w we must satisfy

ψx = ψy = 0. (6.15)

The zero-stress free-surface conditions at t = 0+,

−p− 2µψxy = 0 for no normal stress and (6.16)

ψxx − ψyy = 0 for no tangential stress, (6.17)

apply on y = 0, 0 ≤ x < βw and y = h, 0 ≤ x ≤ w. Differentiating (6.16) with

respect to x and substituting into (6.12) yields

ψyyy + 3ψxxy = 0 (6.18)

which replaces (6.16) and temporarily eliminates pressure from the equations [93].

However, (6.16) must be used at some stage of the solution process to re-introduce

pressure back into the problem. Symmetry requires that there be no horizontal

velocity component and no horizontal vertical-velocity gradient on the left and right

side boundaries so that

ψ = 0 onx = 0, (6.19)

ψ = V w for constant V onx = w, and (6.20)

ψxx = 0 on bothx = 0 and x = w. (6.21)
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Choosing the characteristic length L = w/π, we next define non-dimensional

variables

x∗ = πx/w (6.22)

y∗ = πy/w (6.23)

so that the computational flow domain at t = 0+ is the rectangle 0 ≤ x∗ ≤ π, 0 ≤

y∗ ≤ h∗ where h∗ = πh/w, and the mould surface is the line segment βπ ≤ x∗ ≤ π,

y∗ = 0. Then

ψ =
V w

π

(

x∗ +
N
∑

n=1

sin(nx∗)[e−ny∗(an + bny
∗) + eny

∗

(cn + dny
∗)]

)

(6.24)

satisfies the biharmonic equation (6.14) and the side-boundary conditions (6.19) to

(6.21).

On substituting (6.24) into equations (6.15), (6.16), and (6.18), we obtain

N
∑

n=1

n cos(nx∗)(an + cn) = −1 and (6.25)

N
∑

n=1

sin(nx∗)(−nan + bn + ncn + dn) = 0 (6.26)

on βπ ≤ x∗ ≤ π, y∗ = 0,

N
∑

n=1

n sin(nx∗)(nan − bn + ncn + dn) = 0 and (6.27)

N
∑

n=1

n3 sin(nx∗)(an − cn) = 0 (6.28)

on 0 ≤ x∗ < βπ, y∗ = 0, and

N
∑

n=1

n sin(nx∗)[e−nh∗(nan + nbnh
∗ − bn)

+enh
∗

(ncn + ndnh
∗ + dn)] = 0 and (6.29)

N
∑

n=1

n3 sin(nx∗)[e−nh∗(an + bnh
∗)− enh(cn + dnh

∗)] = 0 (6.30)

on 0 ≤ x∗ < π, y∗ = h∗.
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Choosing M collocation points on y∗ = 0 and another M collocation points on

y∗ = h∗, with M > N , we have a linear least-squares problem of 4M equations in

4N unknowns.

To completely define ψ, we lastly need to determine the constant V . To do this

we substitute (6.24) into (6.12), then integrate with respect to x and differentiate

with respect to y. Comparing this result with equation (6.13) yields an expression

for pressure,

p = p0 −
ρgw

π
y∗ −

µπV

w

N
∑

n=1

2n cos(nx∗)(e−ny∗bn + eny
∗

dn) (6.31)

where p0 is a constant. This is then substituted into boundary condition (6.16)

which, when satisfied on 0 ≤ x∗ < βπ, y∗ = 0, gives an expression for p0 that is in

turn used in satisfying (6.16) on y∗ = h∗ to give an expression for V

V −1 =
2µπ2

ρgw2h∗

N
∑

n=1

n2(an − cn

−e−nh∗(an + bnh
∗) + enh

∗

(cn + dnh
∗)). (6.32)

The equations that have been derived may be solved for a fluid layer of any

thickness h. In the thick-layer limit h → ∞ we must have ψ → V x, requiring

cn = dn = 0 for all n. Then equations (6.29) and (6.30) are automatically satisfied

for large h, and they may be dropped from the system of equations leaving a least-

squares problem of 2M equations in 2N unknowns.

For the present calculations let us fix some of the problem parameters. Let

the mould support to be one tenth of the roughness ‘wavelength’ λ, i.e. β = 0.1

cf. Figure 6.23. In general let us also set M = 2N , which has been found by

experimentation to be about the right proportion of terms in the series expansions

(N) to collocation points (M). A larger proportion of terms leads to numerical

difficulties. Sometimes, when solving the full set of equations for fairly large aspect

ratios h/(2w) it is necessary to use less terms to avoid computational problems with

numerical overflow caused by the terms involving exp(nh∗). Aspect ratio h/(2w)
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Table 6.1: Velocities on the top free surface of a roughness element of aspect ratio
h/(2w) = 0.5.

M −v(0, h)/V −v(w, h)/V ∆v/V

40 0.71283 0.50706 0.20578
60 0.73915 0.50003 0.23912
80 0.73776 0.49876 0.23900

100 0.73900 0.49875 0.24025
120 0.73999 0.49926 0.24073
140 0.74009 0.49934 0.24075
160 0.74071 0.49970 0.24101
180 0.74070 0.49967 0.24103
200 0.74054 0.49955 0.24099
220 0.74055 0.49955 0.24099
240 0.74054 0.49955 0.24099

and the number M of collocation points on each of y∗ = 0 and y∗ = h∗ are left

as adjustable parameters. With respect to spacing of the collocation points, both

uniform spacing and Chebyshev spacing about x = (1 − β)w have been tried with

the same point spacing on both y∗ = 0 and y∗ = h∗. Not surprisingly Chebyshev

spacing, which clusters points about the singularity where the boundary changes

from no-slip to free-surface, was found to be best. Collocation points were located

near to, but not at, this point, and 0.1M points were placed on the wall segment

according to the size of β.

Having solved for ψ it is easy to obtain expressions for initial horizontal and

vertical velocity components (u, v) = (ψy,−ψx) at some vertical position y, and in

particular find these at y = h. Table 6.1 shows the top surface velocities at the centre

and edge of a roughness element of aspect ratio h/(2w) = 0.5, computed using the

full system of equations. Velocities are scaled with the usual V = ρgw2/µ. From this

we see that M = 80 gives two figures of accuracy and M = 120 gives almost three

figures of accuracy, which is near the best the method can do. Increasing M to 200

with N = 100 gives slightly better accuracy, but at considerable computational cost.
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Table 6.2: Centre to edge velocity difference from the full and thick-limit series
equations for roughness elements of large aspect ratio.

h/(2w) Full System Thick Limit

M, N ∆v/V M, N ∆v/V
0.5 120, 60 0.2407 1500, 750 0.1651
1.0 100, 50 0.0343 1500, 750 0.0174
1.5 100, 30 0.0032 1500, 750 0.0016
2.0 100, 20 0.0003 1500, 750 0.0001

Numerical overflow occurs with N > 100 so that the results shown for M > 200

were computed with N = 100 rather than N =M/2. Consequently, the consistency

of the results for N ≥ 100 cannot be taken as definite convergence, and the results

can only be quoted to three significant figures.

Table 6.2 gives the difference in the velocities at the centre and edge of the

roughness element, computed using the full and the thick-limit systems of equations

for a range of large aspect ratios. As the aspect ratio increases so do numerical

problems when solving the full system of equations, and the number N of terms

computed must be significantly reduced. Although we would like to see a better

correspondence between the two methods, it is necessary, and probably adequate,

to use the thick-limit equations for h/(2w) > 1.

Now we try to ascertain the minimum aspect ratio at which the top free surface

can be considered unaffected by the mould. As stated at the beginning of this

section, the difference in height ∆y from the centre to the edge of the roughness

element gives a measure of the mould effect. This is given by equation (6.11), and is

simply the product of the velocity difference ∆v = v(w, h)−v(0, h) between the two

points and a time period t, so that we may also use ∆v to measure mould effects.

The top-surface velocity profile is much like a sine curve, and, when scaled so that



6. Mould Contact and Replication 189

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

(a)
(b)
(c)

PSfrag replacements

δv∗

x/w

Figure 6.24: Roughness-element top surface velocities δv∗(x/w) for aspect ratios of (a)
h/(2w) = 0.25, (b) h/(2w) = 0.5, and (c) h/(2w) ≥ 1.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

(a)
(b)
(c)
(d)
(e)

PSfrag replacements

wκ

x/w

Figure 6.25: Roughness-element top surface curvature profiles computed for h/(2w) = 1
when (a) ∆y/w = 0.05, (b) ∆y/w = 0.1, (c) ∆y/w = 0.2, (d) ∆y/w = 0.3, and (e)
∆y/w = 0.4.



6. Mould Contact and Replication 190

∆v∗ = 1, is quite similar for all aspect ratios. Let us define

δv∗(x∗) =
v(x, h)− v(w, h)

∆v
(6.33)

so that −δv∗(0) = ∆v∗ = 1. Figure 6.24 shows curves of δv∗ for several aspect

ratios. At this graphical scale the curves for h/(2w) ≥ 1 appear identical. Now the

dimensionless time period

t∗ = t
∆v

w
(6.34)

is equivalent to the measure ∆y/w of roughness effect. Multiplying δv∗ by t∗ gives

a curve of the same shape as the top free surface of the fluid, from which the

curvature profile wκ associated with the roughness measure ∆y/w can be computed.

Curvature is computed using the B-spline method described earlier in, and used

extensively throughout, this chapter. Because aspect ratio does not greatly affect

the curve δv∗, especially when large, it is reasonable, at least for the present, to

do all computations for one aspect ratio, and take them as representative for all

aspect ratios. Figure 6.25 shows curvature profiles for a number of different values

of ∆y/w, computed using h/(2w) = 1.

In the present context of determining the extent of print-through of mould sur-

face roughness to the upper free surface in thermal replication, it is the maximum

variation of the top-surface curvature from a value of zero that is of most interest.

This can be obtained from curvature profiles such as in Figure 6.25, but there is

a simpler way. From Figure 6.25 we see that the maximum variation occurs at

x/w = 1. Now, at this position symmetry requires that the curve of δv∗ versus x/w

have zero slope, as we see in Figure 6.24, so that the curvature at x/w = 1 is given

by (refer equation (6.2))

wκ = t∗ × (δv∗)′′, (6.35)

where primes indicate differentiation with respect to x∗ = x/w. Thus, we can

compute the curvature profile for t∗ = ∆y/w = 1, find the maximum variation from
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zero, which is |wκ| = 4.966739 at x/w = 1 and then just use

|wκ|max ≈ 5.0t∗ (6.36)

to find the maximum variation for other values of t∗.

Lastly the plot in Figure 6.26 shows the relationship between aspect ratio h/(2w)

and ∆v. This plot has been scaled using V2 = ρga4/(32µh̄2), where a = (1 − β)w

is the roughness cavity half-width and h̄ = h/2 is the half-thickness. This scale is

the thin-bridge centroid velocity limit of the sagging viscous bridge of Chapter 3

(see equation (3.7)). Since the thin limit of the present problem is identical to that

sagging viscous-bridge problem, we must have v(0, h)/V → 1 and v(w, h)/V → 0,

and therefore ∆v/V → 1 as h/(2w) → 0. This is seen in Figure 6.26. Note that

for optical, and perhaps other, applications that have quite fine tolerances on the

specified surface curvatures, aspect ratios exceeding h/(2w) = 2.5, which is the

maximum shown in Figure 6.26, must be considered.
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Now, if for a particular application of the thermal-replication process we know

the variation in curvature that can be tolerated with the top surface still considered

unaffected by the mould, we can determine from (6.36) the corresponding measure

∆y/w = t∗. From Figure 6.26 we can find the value of ∆v for different aspect ratios

h/(2w), and using (6.34) we can then find possible combinations of glass thickness

h, roughness element half-width w and slumping time t such that the tolerable

curvature variation is not exceeded. If, as is likely, t and w are known and fixed by

the process and milling machine, then the value of ∆v is specified by (6.34) and we

must find from Figure 6.26 the aspect ratio that corresponds to this value, to give

the minimum glass thickness such that the top surface is unaffected by the mould

roughness.

To illustrate this procedure, let us take a roughness element with w = 0.5mm,

i.e. a very rough mould, and assume a slumping time of one hour. Suppose that

the permissible tolerance on curvature is ±0.2 × 10−5mm−1. Then the allowable

variation in dimensionless curvature wκ is ±10−6. Equation (6.36) then gives that

t∗ = ∆y/w ≤ 2 × 10−7, and from (6.34) we have ∆v ≤ 10−7mm/hr. Now, while

Figure 6.26 is not of a suitable range or scale to show this, when h = 2.5mm ≡

h/(2w) = 2.5 then ∆v/V2 = 2.383× 10−3 and ∆v = 1.724× 10−7mm/hr, and when

h = 3.0mm then ∆v/V2 = 2.114 × 10−4 and ∆v = 1.062 × 10−8mm/hr, where a

density for glass of ρ = 2500 kg/m3 and a viscosity of 106 Pa·s have been used. Thus,

a glass component of just 2.5 mm thickness is almost adequate, and a component of

3 mm thickness is more than adequate. Note that glass of about 6 mm in thickness

is quite typical for slumping ophthalmic lens moulds, and the ceramic moulds used

generally have less roughness than here assumed, so that these calculations indicate

that cost savings may be possible with both more coarsely milled moulds and/or

thinner glass components.

In this section we have concentrated on the unwanted transfer of mould roughness

to the upper free surface of the fluid layer. The minimum aspect ratio for eliminating
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this transfer can also be considered, for a larger scale problem, as the maximum

aspect ratio at which the mould will have some effect on the upper surface. Thus,

as mentioned earlier, these calculations can be used to give some idea of the size

of features that can be replicated from a mould for different glass thicknesses and

slumping times.

6.8 In Summary

In this chapter we have considered thermal replication by slumping into a mould,

developing a method for handling mould contact, and, more importantly, a method

for determining surface curvature when slumping is complete. This latter method

appears to give quite good results, although we have not attempted any formal

quantifying of error which calls for further work.

With these tools we are able to simulate and compare different slumping cases,

and we considered the slumping of initially flat and spherical glass discs of varying

thickness. In addition we considered the transfer of mould roughness to the critical

upper surface of the glass, using a series method to compute velocities and a B-spline

method to compute surface curvature profiles.

In the next chapter we shall relax the isothermal assumption, and consider spa-

tially varying viscosity and how this might affect the final product.



Chapter 7

Non-Isothermal Effects in

Replication

7.1 The Issue

To this point in this thesis, we have, with some justification, assumed viscosity to

be spatially constant throughout the fluid, i.e. that conditions are isothermal at

any point in time. However, in modelling molten glass flows, and thermal replica-

tion of optical surfaces requiring accurate surface curvatures in particular, further

investigation of this assumption is warranted.

As was seen in our considerations of glass properties in Chapter 5, the viscosities

of molten glasses are highly sensitive to temperature. Soda-lime-silica glasses, which

are by far the most commonly used, including for the types of optical components

that we are considering, typically have viscosities that increase from the softening

point of 107.6 poise at around 700◦C to the annealing point of 1013.4 poise at around

500◦C (see Table 5.2), i.e. by nearly six orders of magnitude for a temperature

drop of about 200◦C. Thermal replication involves heating the glass and mould

from room temperature over this temperature and viscosity range to the softening

point, after which the temperature is held constant for a period of time. Cooling

194
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then takes the glass through another period of rapid viscosity change. The viscosity

changes with temperature most rapidly at low temperatures, the rate decreasing

with increasing temperature, but even at the upper end of the slumping-temperature

range the viscosity changes by about an order of magnitude in 50◦C, as is indicated

by the VFT equation (5.1) with constants (A = 2.0886, B = 4915.8820, T0 =

192.6136) determined using the annealing, softening and working point data given

in Table 5.2 for a typical soda-lime-silica glass. With the viscosity being so sensitive

to temperature there is clearly potential for even small spatial temperature variations

to significantly affect the glass flow, all the more so when the quality of the final

product is measured in terms of second derivatives, i.e. curvature.

As already discussed in Chapter 6, the importance of temperature has been rec-

ognized in the modelling of other glass forming processes, specifically blow moulding

and parison forming [14, 21, 83, 100]. Cormeau et al. state [21, p. 221]

It is important to realize that a full thermal analysis must be conducted

in parallel with the mechanical simulation; indeed, the flow of molten

glass is strongly dependent on the glass viscosity which varies rapidly

with temperature in the vitreous transition temperature interval in which

one operates ...

However, as also noted in Chapter 6, in these particular processes a hot viscous film

is forced against a comparatively cold mould, so that significant spatial temperature

variations are most likely. This is not the case in thermal replication where the

mould is heated with the glass, so that the hot glass contacts a mould of a similar,

if not the same, temperature, and the isothermal assumption is more justifiable. On

the other hand, small surface variations resulting from small spatial temperature

variations, are considerably magnified when calculating second derivatives, and may

therefore significantly affect the critical surface curvature of the optical components

being formed.
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There are a number of possible causes of non-isothermal conditions in the thermal-

replication process. First there are factors relating to specific oven designs such as

non-uniform oven temperatures. Then, the finite time taken for heat transfer into

glass, as well as geometrical arrangement which may allow better heat transfer

in some areas of the glass compared to others, could result in non-uniform glass

temperatures. Lastly, although the mould is heated with the glass, the probably

differing thermal properties of the glass and ceramic (or other material) from which

the mould is made may also lead to small spatial temperature variations as the lower

free surface of the glass progressively contacts the mould.

It is well recognized that full thermo-mechanical modelling of an industrial pro-

cess involving complex heat transfer mechanisms of conduction, convection and ra-

diation, and equipment specific factors, is a very difficult task. Where ceramics,

including glass, are involved, there is additional complication resulting from the

dependence of thermal properties on composition and temperature in a complex,

and incompletely understood, manner [50]. The level of difficulty presented by

thermo-mechanical modelling may, in fact, be a good reason to first get an ini-

tial understanding of a process by mechanics-only modelling, as done so far in this

thesis. When thermal modelling is included numerous simplifying assumptions are

necessarily made. In relation to glass forming processes, such work as is reported in

the published literature mostly concerns the blowing phase in blow moulding after

the initial parison has been formed; in [14] some assumptions are made about the

temperature or viscosity distribution in the glass before and after mould contact,

avoiding solution of the heat flow equation; a coupled heat and fluid-flow model

is used in [21, 100] with an initial temperature field established by heat-flow-only

computations on an already formed parison prior to commencement of blowing. A

recent paper by Simons and Mattheij [83] reports a more comprehensive thermo-

mechanical analysis of parison forming which is, however, not continued through the

blowing phase.
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In considering the development of a full thermo-mechanical model of thermal

replication, we are immediately confronted by very complex issues of heat transfer in

both glass and ceramic, including composition and temperature dependent thermal

properties, and possible heat transfer by radiation between the glass and ceramic.

Then, at the end of the day, such a model may not even prove worthwhile since

some, or even all, of the factors identified as possibly contributing to non-isothermal

conditions may not cause significant temperature variation, and there may be others

that do. Furthermore, while the isothermal assumption should be questioned and

investigated, it has not yet been established that temperature variations such as

might arise, will have an important effect on the slumping process. It must also

be borne in mind when contemplating a significant increase to the complexity of a

model, as we are now doing, that a simple model that provides fast answers may be

of much more value to industry than a complicated and slow model that gives only

a little more accuracy. As Yuen [102, p. 30] states

In general, it is advisable to adopt the simplest model possible for the

purpose intended. Overly complicated models are often a cause for the

failure of their applications.

In the light of the foregoing discussion, it is apparent that, before attempting

to couple heat flow to the fluid-flow model, there is considerable value in conduct-

ing some numerical simulations of thermal replication under both isothermal and

some arbitrary non-isothermal conditions. A comparison of the isothermal and non-

isothermal results will indicate how temperature variations can influence the final

outcome. Then, by comparing the results of isothermal and non-isothermal simula-

tions with experimental data we might determine whether, in fact, non-isothermal

conditions of real practical importance arise in typical industrial manufacturing cir-

cumstances. This methodology is due to the fact that temperatures within a slump-

ing glass disc are not at all easy to measure. Our results should indicate whether a

proper thermo-mechanical analysis is warranted.
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We look at a comparison of experimental and numerical results in Chapter 8. In

this chapter we compare numerical simulations of thermal replication under isother-

mal and non-isothermal conditions. Different non-isothermal conditions are specified

by imposing different temperature distributions in the glass which can be converted

to viscosity distributions via the VFT equation. This approach is similar to that of

[14], and requires only a simple modification to the finite-element program to allow

an arbitrary non-uniform viscosity distribution in the fluid.

In comparing different numerical simulations, and also numerical and experi-

mental results, we need to think about the type and magnitude of differences that

should be considered important. This is not easy to decide since it will be greatly

determined by specific industry needs, but it seems that, at the least, major differ-

ences in the top free-surface curvature profiles would be significant, and hence we

shall focus on this in our analyses. Even in this, what constitutes a major difference

needs to be defined by industry, and we can only indicate the scale of variation that

the numerical modelling predicts.

7.2 A Fluid Flow Model with Non-Constant Vis-

cosity

As the first step towards simulating glass slumping under non-isothermal conditions,

we next consider modifying the finite-element fluid-flow model to cater for a fluid

viscosity that may vary in both time and space, i.e µ = µ(xi, t), employing tensor

notation. Let us define a characteristic constant viscosity µ0 and a dimensionless

viscosity µ∗(xi, t) such that

µ(xi, t) = µ0µ
∗(xi, t). (7.1)

With reference to equations (2.4) and (2.5) we now define

U =
ρgL2

µ0
. (7.2)
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For very viscous fluids such as molten glass, µ0 is very large (O(106) Pa · s) so that

the inertial terms on the left of (2.4) may still be neglected, and, in place of (2.7)

we obtain the Stokes creeping-flow equations for a fluid of non-constant viscosity

∂p∗

∂x∗i
=

∂

∂x∗j

[

µ∗
(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)]

− δ2i. (7.3)

This differs from (2.7) only in the µ∗ multiplier, and on setting µ∗ = 1 for a fluid

of constant viscosity we recover that equation. Similarly the no-stress free-surface

conditions (2.15) become

−p∗ni + µ∗nj

(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)

= 0. (7.4)

Following the same route as taken in Chapter 2 and using Green’s theorem to

obtain the variational form of (7.3), an equation identical to (2.22) is obtained,

excepting that each term inside the integrals involving a component of the velocity

ui must be multiplied by µ∗. As then, the boundary integral term is removed from

the equation by virtue of (7.4). Likewise, the axisymmetric Stokes equations (2.30)

must just have each term inside the integrals involving a component of ui multiplied

by µ∗. This carries through the Galerkin finite-element formulation of the equations,

so that at the end of the route µ∗ is a factor in some of the integrals to be evaluated

using a numerical quadrature rule. To compute these integrals by means of the

quadrature rule, the value of µ∗ must be known at each quadrature point.

Now, it is most convenient to store the value of µ∗ at each mesh node, and this

is done. However, a transformation similar to those in (2.48) for mapping a mesh

element onto the master triangular element, maps the viscosity field applicable over

a mesh element onto the master element, namely

µ∗(ζi) =
6
∑

j=1

µ∗jφ̂j(ζi), (7.5)

where the µ∗j are the (dimensionless) viscosity values at the six mesh nodes j =

1, 2, . . . , 6, the φ̂j are the quadratic basis functions defined for the master element

(see Figure 2.1), and ζi, i = 1, 2, 3 are the area coordinates of a point within the
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master element. On substituting the coordinates of each quadrature point, the

corresponding values of µ∗ are obtained for use in evaluating integrals with the

chosen quadrature rule.

The creeping-flow equations can now be solved with spatially-varying viscosity

specified at the mesh nodes. In order to run a slumping simulation with a spatially-

varying viscosity field that also changes in time with temperature the following

procedure has been used. First note that below some known temperature Ts the glass

can be considered a solid that will not flow, so that time t = 0 may be defined as that

point in time when the maximum temperature in the glass is Ts. Then, considering

the temperature at a node n to be a function of time, i.e. T n = T n(t), the initial

temperature distribution within the glass is given by specifying the temperature

T n(0) at each mesh node such that max{T n(0)} = Ts. The maximum temperature

Tmax to which the glass will be heated is also specified, as well as some heating-rate

rule that defines how the temperature at each node n will vary from its initial value

T n(0) to Tmax. On reaching Tmax it is assumed that the temperature remains at

that value. Next, it is assumed that over a specified time interval ∆tT = t2− t1, the

temperature at any node remains fixed at T n(t1+∆tT/2). Then the algorithm is as

follows:

1. set t = 0;

2. compute T n(t+∆tT/2) using the known heating-rate rule, for all nodes n;

3. compute µ∗ = µ/µ0 at each node by substituting the known nodal tempera-

tures into the VFT equation (5.1) with constants appropriate to the particular

glass under consideration;

4. compute the slumping of the glass over a time interval ∆tT using the algorithm

given on page 152, but now with the Stokes equations for a non-constant

viscosity field;



7. Non-Isothermal Effects in Replication 201

5. set t = t+∆tT ;

6. if t = tmax then stop (or use some other stopping criterion), else go to step 2.

The finite-element method is very convenient in removing the need to compute

the gradients of µ∗ that arise in (7.3), so that the problem with spatially varying

viscosity is not much harder than the constant-viscosity problem, basically only

requiring a little extra in computer resources and book-keeping to store the temper-

ature and viscosity at each mesh node, and then use these in computations.

7.3 Isothermal Slumping - A Check

In Chapter 5 a method was described for computing slumping in circumstances

where the viscosity is spatially constant but varies in time due to a time-varying

temperature. We saw that a time-varying viscosity is equivalent to a time-varying

time scale, and that slumping with a time-varying viscosity can be computed by

post-processing of results from a constant-viscosity simulation having the same ini-

tial geometry. A spatially constant time-varying slumping problem may also be

computed with the non-constant-viscosity model described in the previous section,

by specifying T n(0) = Ts for all nodes n and using a heating-rate rule that changes

the temperature by the same amount at every node. Comparing such a simulation

with the results obtained from post-processing of a constant-viscosity simulation

provides a check of the non-constant-viscosity model.

Let us again consider the initially-flat glass disc of radius a slumping into a mould

as used to demonstrate numerical slumping in Chapter 6 (Section 6.3). Suppose

that the disc is a typical soda-lime-silica glass of density ρ = 2500 kg/m3, and with

reference viscosities as given in Table 5.2 yielding VFT equation constants A =

2.0886, B = 4915.8820, and T0 = 192.6136. It is reasonable in a slumping context

to consider glass to be solid at its annealing point, and hence define Ts = 510◦C. We

consider the slumping of the disc into the mould as the temperature is increased at
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5◦C per minute from 510◦C at t = 0 to a maximum temperature of Tmax = 700◦C,

after which the temperature is then held constant at 700◦C.

Following the algorithm given in the previous section, a uniform initial temper-

ature distribution is first specified by setting T n(0) = 510◦C for all nodes n. The

heating-rate rule is, of course, just

T n(t) =











510 + 5t, 0 ≤ t ≤ 38,

700, t ≥ 38,
(7.6)

where t is the elapsed time in minutes, and T n(t) is the temperature at node n and

time t in ◦C. Next, the temperature is assumed to remain constant during time

intervals of ∆tT = 1minute. Then the temperature in the ith interval at each node

n is given by

T n
i = min(510 + 5(i− 1/2), 700) (7.7)

Choosing µ0 = 106 Pa · s, the dimensionless viscosity µ∗
i can be computed at each

mesh node during the ith one minute constant-temperature time interval. The time

scale of these computations is constant at T = µ0/(ρga) ≈ 15.1172minutes, so

that in dimensionless terms the constant-temperature time intervals are of length

∆t∗T = 0.06615. Within each of these intervals the slumping of the disc is computed

according to the algorithm on page 152, using a maximum dimensionless time step

of ∆t∗ = 0.01 which is reduced as necessary to prevent nodes from passing through

the mould boundary.

Because we wish to compare the results of this numerical slumping simulation

with the constant-viscosity simulation conducted in Chapter 6, it should be stopped

at the point corresponding to Figure 6.5, i.e. at t = 0.075T , where T = µ(t)/(ρga)

is the time scale of the constant-viscosity simulation. Note that the time scale T for

the constant-viscosity simulation is given as a function of time t, as a reminder that,

although referred to as a ‘constant-viscosity’ simulation, a time-varying viscosity,

as in the present problem, is readily accommodated in a time-varying time scale as
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Table 7.1: Dimensionless time t∗ after the ith one minute interval at temperature Ti
◦C

and viscosity µ∗i × 106 Pa · s, as given by equation (7.8) for a constant-viscosity slumping
simulation.

i Ti µ∗i t∗

29 652.5 3.987847E+01 6.614433E-03
30 657.5 3.060357E+01 8.775945E-03
31 662.5 2.361843E+01 1.157672E-02
32 667.5 1.832739E+01 1.518608E-02
33 672.5 1.429700E+01 1.981292E-02
34 677.5 1.121019E+01 2.571380E-02
35 682.5 8.833594E+00 3.320226E-02
36 687.5 6.994445E+00 4.265977E-02
37 692.5 5.564134E+00 5.454841E-02
38 697.5 4.446408E+00 6.942559E-02

described in detail in Chapter 5. We need then to compute the value of t = 0.075T

so as to find the dimensionless time in terms of the time scale T of the present

simulation, i.e. t∗ = t/T , at which to stop this simulation.

For a constant-viscosity slumping simulation, the relationship between true and

dimensionless time through a time-varying time scale is given by equation (5.38).

For the present case, this becomes

t∗ =
ρga

µ0

(

n−1
∑

i=0

∆tT
µ∗i

+
t− (n− 1)∆tT

µ∗n

)

, (7.8)

where (n − 1)∆tT < t ≤ n∆tT is the true time, and t∗ is the corresponding di-

mensionless time. It is then a simple matter to compute the dimensionless time

after each one minute constant-temperature time interval over the 38 minute time

period during which the temperature increases from 510 to 700◦C. This is shown,

for the last part of the heating period, in Table 7.1 from which we see that the

maximum temperature is reached at t∗ = 0.069426. From t∗ = 0.069426 to

the stopping point at t∗ = 0.075 the temperature is held constant at 700◦C, so that

µ∗ = 3.9814. This adds a further 20.13 seconds to the slump time, giving a total
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Figure 7.1: Surface curvature of a slumped disc computed using a quintic B-spline ap-
proximation. (a) Non-constant-viscosity simulation and (b) constant-viscosity simulation.
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Figure 7.2: As above but at a larger scale.
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time of 38.3355 minutes. For the non-constant viscosity model having a constant

time scale of T = 15.1172minutes, this represents a dimensionless slumping time of

t∗ = 2.5359, at which the simulation was stopped.

Figures 7.1 and 7.2 compare the top free-surface curvature of the slumped disc

after full mould contact as obtained from the constant-viscosity simulation of Chap-

ter 6 and the present non-constant-viscosity simulation. Considering the different

numerical slumping methods the two curves are remarkably similar, and we can

certainly be satisfied with the accuracy of the non-constant-viscosity finite-element

program.

7.4 Temperature Variation in Slumping Glass

We could now proceed directly to compare slumping simulations with identical ini-

tial geometry but a variety of arbitrary temperature distributions in the glass, and

so examine the sensitivity of thermal replication to non-isothermal conditions. How-

ever, before we do this we briefly consider the magnitude of temperature variations

that are likely to arise in thermal replication.

In this connection, we first note that, as part of their disc sagging experimental

work, Gulati et al. [41, 42] made some measurements of temperature uniformity

within the region occupied by the glass disc during a sagging experiment. In [41] they

report a radial temperature increase of about 2.6◦C over about 30mm, and a vertical

temperature increase of less than 0.5◦C over 10mm. In [42] they report a similar

radial temperature increase of less than 3◦C over 30mm, but about 4◦C over 10mm

vertically. This last result is somewhat surprising, and is ignored because an error is

suspected in the presentation. Otherwise, the measurements indicate a temperature

gradient of up to 1◦C in 10mm. These measurements were made with a small

oven in carefully controlled laboratory conditions, and greater oven-temperature

variations can be anticipated in typical industrial manufacturing conditions. Oven
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Figure 7.3: A simple one-dimensional heat-conduction model at t = 0.

air temperature is not, of course, necessarily the same as glass temperature, and

hence it can only be used as indicative of glass temperature in the absence of better

data.

At the beginning of this chapter mention was made of the difficulties presented by

thermal modelling of industrial processes, because of which it was decided to investi-

gate the effects of arbitrary spatial temperature variations on thermal replication as

a precursor to possible full thermo-mechanical modelling of the process. However, in

order to get some very rough feel for the magnitude of spatial temperature variation

that might arise due to differential heat transfer in the thermal-replication process,

the very simple one-dimensional problem shown in Figure 7.3 has been considered.

Here we have a ‘sandwich’ consisting of an upper layer of glass of thickness h, a

middle layer of air of thickness βh, and a bottom layer of ceramic of thickness αh

being heated in an oven. Initially the temperature in the glass, air, and ceramic

is given by T = T0. Then, at time t = 0 the oven temperature, which is assumed

to be uniform, is increased to T = T0 + ∆T , and it is supposed that the temper-

ature of the surfaces in direct contact with the oven environment at x = 0 and

x = (1 + α+ β)h, also instantaneously reach this value. The temperature profile in

the glass, air and ceramic is then computed after a time period ∆t, assuming heat

transfer by conduction only. At the end of this period the oven temperature, and
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hence the temperature at x = 0 and x = (1 + α + β)h, is again increased by an

amount ∆T , and the resulting temperature profile computed at the end of another

time period ∆t, and so on.

The one-dimensional geometry is justified for a glass disc supported on a ceramic

mould as in thermal replication, where the disc radius is large compared to its

thickness h, and where the radial change in the thicknesses of the air gap and ceramic

mould is slow. Then the computed temperature profile is locally relevant at a radial

position appropriate to the choice of α and β, and an idea of the radial temperature

distribution is given by solving the one-dimensional model with different values of

α and β corresponding to different radial positions in the glass-mould combination.

Only in a narrow band around the perimeter of the disc will the additional edge

surface area of both disc and mould contribute anything to the heating process, and

this is ignored in the computations.

In assuming heat transfer by conduction alone, any natural convection in the air

gap is neglected, which seems reasonable because of the small thickness of this gap.

By contrast, neglect of radiative heat transfer between the glass and mould across

the air gap has no physical justification. However, since at this stage we only want

to get an idea of the magnitude of possible temperature variation in slumping glass,

this neglect is justified by the resulting computational simplification.

This model has been used to compute the temperature differences that might

arise in a glass disc and ceramic mould combination as it is heated from normal

ambient temperatures to a temperature in excess of the annealing point where the

glass will begin to sag. For the isothermal slumping case just computed in the

previous section, significant sagging began at a temperature of about 600◦C, so

that, at a heating rate of 5◦C per minute there was a heating period of some 115

minutes (from 25◦C) during which non-isothermal conditions could arise to affect

the glass flow in the following time period of a little over 20 minutes during which

the glass slumped into the mould.
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The one-dimensional equation of heat conduction in a solid of density ρ, thermal

conductivity k, and specific heat c, where there are no heat sources, is [75]

ρc
∂T

∂t
−

∂

∂x

(

k
∂T

∂x

)

= 0, (7.9)

where it is allowed that all thermal properties, and k in particular, may vary with

temperature and hence in both time and space. If k is independent of x at any point

in time, then (7.9) may be written in terms of the diffusion coefficient α = k/(cρ)

∂T

∂t
− α

∂2T

∂x2
= 0. (7.10)

For boundary conditions, we have

T = T0 + i∆T, for i∆t ≤ t < (i+ 1)∆t (7.11)

at x = 0 and x = (1 + α + β)h , while at the interface of two different materials,

with thermal conductivities k1 and k2, and temperature profiles T1(x) and T2(x), we

must satisfy [17, p. 13]

k1
∂T1
∂x

= k2
∂T2
∂x

and (7.12)

T1 = T2. (7.13)

Before (7.9) or (7.10) can be solved subject to the boundary conditions (7.11) to

(7.13) data is required for ρ, c, and k for each of the three different materials involved

in the problem (i.e. glass, air, and ceramic), and for how these vary with temperature

in the range 25 ≤ T ≤ 600◦C.

Already we know from earlier discussion of glass properties in Chapter 5 that

the density of a glass changes only very little with temperature, and that a constant

density of ρ = 2500 kg/m3 is typical for soda-lime-silica glasses. A plot given in

[81, p. 25] shows the specific heat of a soda-lime-silica glass increasing from 0.18 to

0.31 cal/(g◦C) over the temperature range of present interest (see Table 7.2), and

this data is reasonably well confirmed by a formula given in [5, p. 266] relating tem-

perature and true specific heat in the temperature range 500◦C ≤ T ≤ 1400◦C. The
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Table 7.2: Typical thermal properties for soda-lime-silica glasses.

T k c α
◦C cal/(s · cm · ◦C) cal/(g◦C) cm2/s

25 0.003 0.18 0.006
100 0.003 0.22 0.005
200 0.003 0.25 0.005
400 0.0035 0.29 0.005
600 0.004 0.31 0.005

conductivity of a semi-transparent solid such as glass is a more complex subject,

being influenced by the thickness of the glass sample, and involving “radiation con-

ductivity” due to internal radiation within the glass, as discussed in [5, 11, 50, 81].

From the data given in these sources, it seems reasonable for soda-lime-silica glass

discs of around 5 mm in thickness, as typically used in thermal replication, to as-

sume that the thermal conductivity is constant at around 0.003 cal/(s · cm · ◦C) to

a temperature of 200◦C, and that it then increases linearly to 0.004 cal/(s · cm · ◦C)

at 600◦C. With such a small increase in the conductivity for a fairly large increase

in temperature of 400◦C, and since we would not expect a temperature difference

of this magnitude across the thickness of the glass, it is reasonable to take k to

be independent of x and work with (7.10) and the diffusion coefficient α. As we

see from Table 7.2 it is quite justifiable to use a constant diffusion coefficient of

α = 0.005 cm2/s for glass.

There are a number of different classes of engineering ceramics having widely

varying properties, and even within the same class properties can vary significantly

(see [79]). As well as chemical composition, temperature and the method of man-

ufacture which determines the porosity of the material, strongly influence thermal

properties [39, Ch. 14]. Ceramics suitable for the moulds used in thermal replica-

tion must be thermally stable and must not adhere to glass [84]. They must also be

machinable, and from observation they can be quite porous. With respect to chem-
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Table 7.3: Typical thermal properties for alumina ceramic.

T k α
◦C cal/(s · cm · ◦C) cm2/s

25 0.093 0.112
100 0.066 0.079
400 0.032 0.038
800 0.015 0.018

ical composition of ceramics used for thermal replication, no specific information

could be found. However, the metal oxide ceramics alumina and stabilized zirconia

are suitable for the high temperature corrosive environments of glass melting fur-

naces [12, p. 71], and it seems likely that these would also be used for molten glass

forming in thermal replication. Alumina is a much better heat conductor than zirco-

nia [79, p. 249] but otherwise their properties are expected to be similar. Assuming

alumina for our current problem, we have from [12, p. 377] a density of 3.96 g/cm3,

a specific heat at 25◦C of 0.21 cal/(g◦C), which is assumed to be constant over the

temperature range of present interest, and a conductivity varying with temperature

as shown in Table 7.3. Although the variation of conductivity with temperature is

larger than for glass, it is still sufficiently small to consider k to be independent of

x for the magnitude of temperature variation that can be expected in the ceramic.

Thus, values of the diffusion coefficient α have been computed as shown in Table 7.3.

Values of k and α at other temperatures are computed using

k = −0.051 log10 T + 0.164, and (7.14)

α = −0.061 log10 T + 0.197, (7.15)

where T is in ◦C, k is in cal/(s · cm · ◦C), and α is in cm2/s.

Air behaves very nearly as an ideal gas, and hence obeys Charles’s law which

states that at constant pressure the volume occupied by a unit mass of air is directly

proportional to the absolute temperature [87, p. 29-4]. Then, using data given in
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Table 7.4: Thermal properties of air.

T ρ k c α m, b
◦C g/cm3 cal/(s · cm · ◦C) cal/(g◦C) cm2/s α = mT + b

4 1.274× 10−3 0.579× 10−4 0.239 0.190
60 1.060 0.703 0.240 0.276

1.551× 10−3,

171 0.795 0.868 0.243 0.449
0.1838

282 0.636 1.074 0.249 0.678 2.108× 10−3,
393 0.530 1.240 0.255 0.917 0.0885
504 0.454 1.446 0.261 1.220 2.703× 10−3,
615 0.398 1.612 0.267 1.517 -0.1452

[7, p. 594] we have

ρ =
0.353

273 + T
(7.16)

where ρ is in g/cm3 and T is in ◦C. Data for specific heat and conductivity of

air at various temperatures, as obtained from [87, p. 33-12], is given in Table 7.4.

Compared to both the glass and ceramic, air is seen to be a poor heat conductor

and can be expected to act as an insulator between these two layers. Again it seems

reasonable to consider k as independent of x, since we can expect temperature dif-

ferences of much less than 100◦C across the air gap. Table 7.4 gives the diffusion

coefficient α at various temperatures, calculated using the data from [87] and equa-

tion (7.16) for density. A plot of α versus T indicates that the relationship can be

approximated by piecewise continuous line segments α = mT + b over the intervals

4− 171◦C, 171− 393◦C, and 393− 615◦C, as given in the last column of Table 7.4.

For computational purposes, a relationship is also needed between k and T for air.

This is close to linear and can be approximated by

k = (1.638× 10−3T + 0.605)× 10−4 (7.17)

with k in units of cal/(s · cm · ◦C) and T in ◦C.

Sufficient information has now been given to solve the simple heat conduction

problem. Because thermal conductivity k is assumed to be independent of x in each
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of the three layers of the ‘sandwich’, the appropriate equation is (7.10), subject to

the boundary conditions (7.11) to (7.13). Let us denote the diffusion coefficient for

the glass by αg. Then, non-dimensionalizing using a length scale L = h and a time

scale T = h2/αg, and using asterisks to denote dimensionless variables, gives

∂T

∂t∗
−

α

αg

∂2T

∂x∗2
= 0 (7.18)

in place of (7.10), and

k1
∂T1
∂x∗

= k2
∂T2
∂x∗

(7.19)

in place of (7.12).

To solve (7.18) in each of the glass, air, and ceramic layers, the Crank-Nicholson

finite-difference method [64, Ch. 3, p. 31] is used. Defining a one-dimensional uni-

form grid on 0 ≤ x∗ ≤ (1 + α + β) such that

x∗j = j∆x∗, j = 0, 1, . . . , Nx (7.20)

with ∆x∗ = (1 + α + β)/Nx chosen so that a grid point falls at every material

interface, and specifying a time step ∆t∗ with

t∗i = i∆t∗, (7.21)

equation (7.18) becomes

−sT n+1
j−1 + 2(1 + s)T n+1

j − sT n+1
j+1 = s(T n

j−1 + T n
j+1) + 2(1− s)T n

j , (7.22)

where s = (α/αg)∆t
∗/(∆x∗)2 and T n

j = T (x∗j , t
∗
n) is the temperature at the jth grid

point and the nth time step. At a material interface, simple forward and backward

differencing is used to compute the temperature gradients, so that (7.19) becomes

−k1T
n+1
j−1 + (k1 + k2)T

n+1
j − k2T

n+1
j+1 = 0. (7.23)

Equations (7.22) and (7.23) lead to a tri-diagonal system of equations that must be

solved for the unknowns T n+1
j . The initial conditions at time t = 0 are

T 0j = T0, j = 0, . . . , Nx, (7.24)
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and at the (n+ 1)th time step the boundary conditions are given by

T n+1
j = T n

j +∆T, j = 0, Nx, (7.25)

where ∆T is the increase in the temperature in one time step.

Now, the glass, air, and ceramic have thermal properties that may change in time

with temperature, although they are assumed to be constant in any one time step.

The values of the material properties to be used in the (n+1)th time step, are just

computed in the manners discussed previously using the average of the temperatures

on the exterior boundaries at the n and (n+ 1)th time steps,

T = (T n
0 + T n+1

0 )/2. (7.26)

Let us compute the temperature distribution that develops in the flat glass disc

considered in the previous section and in Chapter 6. Let the glass thickness be

h = 0.6 cm corresponding to a radius of a = 4.5 cm. Then the time scale is T =

h2/αg = 0.36/0.005 = 72 seconds = 1.2minutes, a time step size of ∆t∗ = 1 is, for

a heating rate of 5◦C/min., equivalent to temperature increments at each step of

∆T = 6◦C, and 96 such steps takes the temperature from 25 to 601◦C in a time of

115.2 minutes. For this particular slumping case, the air gap increases from nothing

at r = a to 0.0947a ≈ 0.7h at r = 0, so that we need to consider 0 ≤ β ≤ 0.7. Let

the mould thickness be 5h = 3 cm at the edge, so that α = 5−β, and let ∆x∗ = 0.02.

Figure 7.4 shows temperature profiles across the glass-air-ceramic ‘sandwich’ that

have developed while heating from 25 to 313◦C, i.e. half way through the heating

period being considered. Figure 7.5 shows similar profiles at the end of this period

when the oven temperature has reached 601◦C. Profiles are shown close to the centre

of the disc (r/a = 0.12, β = 0.7), near the edge (r/a = 0.9277, β = 0.1), and at

the edge (r/a = 1, β = 0). In Figure 7.6 we have the relationship between radial

position and temperature on the lower face of the glass, after the oven temperature

has reached 601◦C. These figures show the air gap acting as an insulating layer (as

anticipated), slowing heat conduction from the glass into the mould. However, in
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Figure 7.6: Relationship between radial position and temperature at the bottom surface
of the glass for the disc-mould combination of Figure 6.3.

practice it is likely that the decrease in glass temperature towards the edge will be

less rapid than indicated, because of the additional surface area of both glass and

mould at the edge which is ignored in the model. Thus we might expect a radial

decrease in temperature of 1−2◦C, and, in view of the shape of the curve plotted in

Figure 7.6, it is reasonable to assume that the temperature varies linearly with disc

radius. These computations also show an approximately linear temperature drop of

3− 5◦C across the thickness of the glass.

The temperature gradients in the glass change little on increasing the temper-

ature from 313 to 601◦C (cf. Figures 7.4 and 7.5), and since the radial gradient

caused by the changing thickness of the air gap (see Figure 7.6) is considerably

smaller than the vertical gradient, it is reasonable to suppose that these gradients

would remain throughout the slumping of the glass as the air gap decreases in size.

Contact of some portion of the lower glass surface with the ceramic mould might

result in a fairly sudden temperature drop of perhaps 4 or 5◦C in that portion of the
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glass, but this is unlikely to significantly affect glass flow, since, as we have already

seen, mould contact itself, in the absence of a change in temperature, greatly arrests

glass flow.

These results, and their interpretation, must be treated with a considerable

degree of caution, considering both the assumptions underlying the simple heat-

conduction model used, and also the lack of specific thermal-properties data for the

glass and ceramic. Nevertheless, they are used in the following section as a rough

guide in deciding the temperature distributions in the glass to be considered.

7.5 Non-Isothermal Replication

By far the steepest temperature gradient suggested by our considerations so far, is

5◦C in 0.6 cm through the thickness of the glass disc given by the heat-flow computa-

tions. (The gradient suggested by the oven temperature measurements of Gulati et

al. is considerably less than this.) Because of this, let us first consider the influence

of linear temperature variations across the thickness of the glass on the top-surface

curvature. Although the heat-conduction model used resulted in the glass tempera-

ture varying from hottest at the top surface to coldest at the bottom surface, results

are also given for the reverse case where the bottom surface is hottest, just to see

how this compares. For this work we take a glass disc of 4.5 cm radius and 0.6 cm

thickness, as used for the heat-flow computations.

The computational method is the same as used in Section 7.3, excepting for the

definition of the initial temperature distribution. Again, let t = 0 be the time at

which the maximum temperature in the glass reaches the annealing point of 510◦C,

and let the simulation start at this point in time. However, instead of setting

the initial temperature at all mesh nodes at 510◦C, it is assumed that during the

heating period prior to t = 0 a straight-line temperature gradient develops across

the thickness of the glass disc, so that the temperature at each node is set according
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to its z-coordinate. The simulation then proceeds exactly as before. Thus, at any

node a constant temperature gradient is assumed until the temperature at that

node reaches the maximum Tmax to which the glass is to be heated, which seems

reasonable based on the earlier heat-conduction computations.

Let Td be the difference between the upper and lower surfaces of the glass, with a

positive value denoting a temperature increase in the direction of the z-axis. Hence,

a positive value of Td indicates an initial linear temperature distribution varying

from 510 − Td
◦C on the lower surface z = 0 to 510◦C on the upper surface z = h,

i.e.

T n(0) = 510− Td(1− z/h), (7.27)

where T n(0) is the temperature at node n having vertical coordinate z, at t = 0. A

negative value of Td indicates the reverse distribution, i.e.

T n(0) = 510− Tdz/h. (7.28)

Figures 7.7 and 7.8 show the top-surface curvature of the glass disc after full

mould contact has been established for different values of Td, with Td = 0◦C be-

ing just the isothermal case computed in Section 7.3. Note that the time taken

to achieve full mould contact increases slightly as |Td| is increased. These figures

shows that even a probably excessively steep temperature gradient of ±10◦C across

the 0.6 cm thickness of the disc has only a small effect on the finished top-surface

curvature. Relative to the isothermal curve, at the centre of the disc a small de-

crease in curvature results from a temperature increasing in the z-direction, while a

small increase in curvature results from a temperature decreasing in the z-direction.

In this region the maximum curvature variation from the isothermal curve is about

1.5 percent for Td = 10◦C and less than one percent for Td = 5◦C. Much of the

variation between the curves for the different slumping conditions seen towards the

edge (r/a > 0.6), is quite likely attributable to the fact that we are not comparing

at exactly equivalent instants in the slumping process. Overall, considering that the
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Figure 7.8: As above but at a larger scale.
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method for calculating curvature is subject to some degree of uncertainty and cannot

be considered to give an exact profile, it is reasonable to interpret these results as

suggesting that under these non-isothermal conditions, the disc basically slumps as

though conditions were isothermal but at a lower effective temperature and hence

higher effective viscosity, increasing the slumping time but not much affecting the

final product. From this we can draw the important conclusion that slumping is not

particularly sensitive to transverse temperature gradients, and hence that transverse

temperature gradients in the glass can be ignored at this stage in this work.

Next we consider the effect of linear radial temperature gradients in the glass.

The Gulati et al. measurements of air temperatures in their experimental oven

suggest a possible gradient of 1◦C in 0.1 cm or more, i.e. 4.5◦C or more across

the radius of the slumping disc under present consideration, while the heat-flow

computations of Section 7.4 suggested a radial temperature decrease of 1 − 2◦C.

We consider the effect of a temperature difference of 5◦C, which seems a possibility,

and also a larger temperature difference of 10◦C, which is probably quite excessive.

This time, let Td be the temperature increase in the direction of the r-axis, from the

centre to the edge of the disc. Thus, a positive value of Td indicates an initial linear

temperature distribution varying from 510 − Td
◦C at r = 0 to 510◦C at r = a, i.e.

the temperature at node n with radial coordinate r, at t = 0, is given by

T n(0) = 510− Td(1− r/a). (7.29)

A negative value of Td indicates the reverse initial temperature distribution, i.e.

T n(0) = 510− Tdr/a. (7.30)

Figures 7.9 and 7.10 show that a radial temperature gradient has an effect on

surface curvature at the centre of the disc which is considerably greater than seen

with a transverse temperature gradient, even though the gradient of up to ±10◦C

in 4.5 cm is small relative to the transverse temperature gradient of up to ±10◦C

in 0.6 cm. A comparison of the variation from the isothermal result for transverse
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Figure 7.9: Top-surface curvature resulting from a temperature drop Td from the centre to
the edge of the glass disc of aspect ratio h/(2a) = 0.0667. (a) Td = 0◦C, t = 38.3355min.,
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Figure 7.10: As above but at a larger scale.
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Table 7.5: Maximum variation in curvature from the isothermal result for transverse and
radial linear temperature gradients.

Td Percent Variation
◦C Transverse Radial

−10 +0.54 +4.38
−5 +0.08 +1.93
+5 −0.96 −2.69

+10 −1.47 −4.93

and radial temperature gradients is given in Table 7.5. A clear pattern is evident

in the figures with the central curvature profile becoming flatter for a temperature

that increases in the r-direction, and showing much more change with a temperature

that decreases in the r-direction. Note that a temperature that decreases with r can

be expected from the heat-flow computations. Again the non-isothermal conditions

cause a small increase in the time taken for full mould contact, and the variations

of curvature toward the edge of the disc are attributable to disc slumping having

progressed to slightly different points at the times of the curvature profile ‘snap-

shots’. These results lead to the conclusion that any radial temperature variations

of around 5◦C over 4.5 cm or more that occur, should be included in numerical

simulation of thermal replication.

7.6 Concluding Remarks

The investigations conducted in this chapter into the effects of non-isothermal con-

ditions in slumping glass on the final surface curvature of a thermally-replicated

component, have shown that even quite large and probably excessive transverse

temperature variations alter the curvature profile by only quite small amounts. By

contrast, relatively smaller radial temperature gradients in the glass have a signif-

icantly greater affect on surface curvature of the final product. Thus, while the
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simple heat-flow computations conducted show that reasonably large temperature

differences (Td ∼ 5◦C) may exist through the thickness of the glass, these can prob-

ably be ignored, and the temperature through the thickness of the glass at some

radial position r be assumed to be a constant average value. Then we have the glass

temperature being independent of vertical position z, and a function of r and time

t only, i.e. T = T (r, t). Further, if radial temperature gradients are only 1 or 2◦C

over 4.5 cm, as also suggested by the heat-flow computations, then these too will

have little effect on surface curvature, leading to the conclusion that, unless signifi-

cant radial oven air temperature variations exist throughout the thermal replication

process, an isothermal simulation is likely to be reasonably accurate. However, as

intimated at the beginning of this chapter, a proper judgement can only be made in

the context of specific industry needs, which may modify this assessment.

Although we have only considered linear temperature gradients in the glass, the

finite-element program developed for non-isothermal conditions is not limited to

these, and simulations could be run for any other temperature distributions. How-

ever, in the absence of clear evidence to the contrary, approximate linear gradients

seem most likely, and are supported by the rough heat-flow modelling done. Further,

it has been established that isothermal modelling may, in fact, be quite adequate

for thermal replication. Thus, it is now appropriate to proceed to a comparison

of numerical and experimental results, which might supply better evidence as to

whether radial temperature variations, of sufficient magnitude to affect the final

surface curvature, do, in practice, arise in the glass.



Chapter 8

Thermal Replication: A

Comparison of Numerical and

Experimental Results

8.1 Introduction

The mathematical model and finite-element simulation of thermal replication that

has been developed and used for the work reported in this thesis, has been neces-

sarily based on numerous simplifying assumptions. These render the problem more

tractable, and indeed solvable, using current knowledge, and allow a solution to be

obtained sufficiently quickly to be of value in a real industrial manufacturing con-

text. Much useful insight into and understanding of the process has been gained

from a simple constant-viscosity creeping-flow model that only involves what ap-

pear to be, its most important aspects. A simple extension to this model, enabling

slumping simulations with a spatially varying viscosity field, has permitted an as-

sessment of the possible effects of a non-uniform temperature distribution in the

glass. It must now be decided whether the additional complexity of this extended

model is required, or indeed whether the even more difficult task of developing a

223
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full thermo-mechanical model that couples heat transfer and fluid flow should be

addressed, for the simulation to be of real benefit to industry in respect to both the

predictions of product shape yielded, and the time taken to obtain these.

Unfortunately, determining of actual temperature variations in slumping molten

glass, by either experimental or computational methods, is extremely difficult. Hence,

in order to find whether these do arise in the thermal-replication process and sig-

nificantly affect the final product, requiring their inclusion in the numerical model,

we now compare the results of numerical simulations, using both the simple and

extended models, with experimental data. Clearly industry input is highly desir-

able in making this comparison, to indicate whether differences between numerical

and experimental results are at acceptable levels, and also to determine acceptable

trade-offs between complexity and accuracy on the one hand, and computational

time on the other. In the absence of this input, the aim is to give some comparative

results and an assessment of them, that can be used by industry to assess the present

models, and determine whether something more is needed.

This type of model-development procedure, involving numerical simulation fol-

lowed by validation against experimental data to ensure that the model gives results

that are consistent with reality, which may then lead to modifications to the model

and further experimental validation, is typical for, and a necessity in, the modelling

of many industrial processes [27, 102].

All experimental work reported here was conducted at SOLA International Hold-

ings Ltd Research Centre, Lonsdale, South Australia. The work presented in this

chapter has also been reported in a paper by this author [90].

8.2 The Experiments

The particular test geometry used for current validation purposes consisted of a

glass disc with small initial spherical curvature supported on a circular concave
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Figure 8.1: Experimental test geometry.

mould with larger spherical curvature, excepting for a small flat ledge around its

perimeter. This arrangement is shown in Figure 8.1, with all dimensions scaled

by the mould radius a which in practice was 45mm. The glass had a density of

2620 kg/m3, and strain, annealing, and softening points of 505 ± 3◦C, 545 ± 3◦C,

and 735± 3◦C respectively.

The glass disc and mould combination was placed in an oven and heated from

room temperature at 4◦C/minute to a temperature of 700◦C. The temperature was

then held at this value for a period of time known as the “soak”, before the oven

was turned off and the system allowed to cool naturally.

In order to find the point in time at which full contact between the lower glass

surface and the mould is achieved, a number of experiments with different soak

times were conducted. Full contact was deemed to have occurred if the slumped

glass component showed marking from the mould over the whole of its lower surface.

This is not easy to see, and it is possible that full contact occurs at an earlier time

than identified.

Figure 8.2 shows the curvature (κ) profile (multiplied by the mould radius a)

on the upper glass surface for 30, 40 and 50 minute soaks. After 30 minutes of

soak the glass did not appear to have fully contacted the mould. After 40 minutes

of soak it was still not certain that full contact between glass and mould had been

established, but after 50 minutes of soak this appeared to be fairly certain. Curvature

is calculated in the manner described in Chapter 6, using quintic B-splines with 26
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degrees of freedom, from vertical sag (δ) measurements made across a diameter of the

glass component using a profilometer. Two data sets of 81 (r, δ) coordinates at 1mm

intervals across two perpendicular diameters (denoted “0◦” and “90◦”) intersecting

at r = 0 were obtained in the region −40 ≤ r ≤ 40, to give two curvature profiles

for each of the two experiments, as shown.

The curves shown in Figure 8.2 bear a strong resemblance to those calculated in

previous chapters for numerical slumping simulations. However, since the slumping

geometry is axisymmetric (or at least nearly so), we expect all of these curves to be

symmetrical about the vertical axis and the two curves for a particular soak time

to be identical. Neither of these expectations is realised in Figure 8.2. Rather, the

central peak in the curves is offset to the right for the 0◦ profiles and to the left for

the 90◦ profiles, and all curves (with the possible exception of the 90◦ curve for the

30 minute soak) have oscillations on the left-hand side that are much larger than

those on the right. The magnitude of these differences cannot be explained by error

introduced through the method used to compute curvature. A number of possible

causes are, however, suggested by the nature of the differences. Also, it must be

borne in mind that quite significant changes in curvature can arise from even small

variations in the surface profile of the glass.

The large oscillations in the left portion of the curves compared with the right

portion, and the fact that this behaviour is consistent in all curves, strongly indicates

imperfections in the experimental components and/or setup resulting in irregular

slumping. Since the mould is the only component common to both experiments,

small imperfections in its shape, possibly resulting in non-continuous support of

the glass disc in the initial stages of slumping, are strongly suspected. The way in

which the central peaks of the curves are offset either side of the vertical axis for the

0◦ and 90◦ diameters, initially suggests that the glass components were not quite

centrally positioned on the profilometer, so that the intersection of these ‘diameters’

identified with the disc centre is in fact offset from the true centre, to the positive
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Figure 8.2: Top-surface curvature for (a) 0◦ diameter, 30 min. soak, (b) 90◦ diameter, 30
min. soak, (c) 0◦ diameter, 40 min. soak, (d) 90◦ diameter, 40 min. soak, (e) 0◦ diameter,
50 min. soak, and (f) 90◦ diameter, 50 min. soak.
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Figure 8.3: Average top-surface curvature for (a) 40 min. soak, and (b) 50 min. soak.
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Table 8.1: Raw profilometer data.

Soak r δ (mm)
(min.) (mm) 0◦ diameter 90◦ diameter

-3.000 54.449925 54.449205
-2.000 54.460255 54.459945
-1.000 54.466335 54.465965

40 0.000 54.468050 54.467390
1.000 54.465375 54.464285
2.000 54.458140 54.456825
3.000 54.446655 54.444765
-3.000 54.395180 54.395825
-2.000 54.406280 54.407110
-1.000 54.413225 54.413970

50 0.000 54.415680 54.415885
1.000 54.413590 54.413325
2.000 54.406980 54.406070
3.000 54.395785 54.394285

side of the 0◦ diameter and to the negative side of the 90◦ diameter. However, fitting

a parabola to the central three points of the raw profilometer sag data, some of which

is shown in Table 8.1, indicates an offset in both horizontal directions of less than

0.2 mm, and it is certainly much less than the 3 − 5mm seen from Figure 8.2 to

be necessary to account for this problem. Thus, it too is probably mostly due

to imperfections in the experimental components and/or setup. Another source of

error is small inaccuracies in the profilometer measurements themselves, which is

clearly evident in the data for each soak time at r = 0. The two sag measurements

for the 0◦ and 90◦ diameters should be identical since they are supposedly taken at

the same point on the glass component. In fact they differ a little, which must be

due to profilometer error in exactly locating the same point r = 0 for each of the 0◦

and 90◦ measurements, and/or error in measuring sag. Profilometer measurement

error should, however, have a uniform effect over all data sets and cannot explain the

magnitude of asymmetry that we are seeing. Note that direct comparison of raw sag
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data for one soak time with that of another is not meaningful since the profilometer

was reset for each set (consisting of both 0◦ and 90◦ diameters) of measurements.

Rather than using the curves shown in Figure 8.2 for comparison with numerical

slumping results, average symmetric curves are obtained for each of the 40 and

50 minutes soak times, for which there is most certainty of full mould contact,

in the following way. First the sign of the r-coordinate of each data point (r, δ)

is ignored and only its distance |r| from the disc centre r = 0 considered. The

0◦ and 90◦ data sets for a particular soak time are then combined, so that there

are four sag measurements for each value of |r|, excepting for |r| = 0 which has

two. The curvature profile is calculated from this new set of (|r|, δ) points. This

yields indicative (axisymmetric) profiles for 40 and 50 minute soak times as shown

in Figure 8.3, which we shall use in comparisons with numerical simulations. Note

however, that this averaging causes a reduction in the height of the central peak, as

well as a significant change to its shape, as seen in Figures 8.4 and 8.5. Some of the

peaks towards the edge of the discs are also flattened.

Numerical simulations of slumping with a slightly different geometry than the

present test case, showed the top-surface curvature profile in the central portion of

the disc remaining largely unchanged once contact between the lower surface and

the mould had been established (see Figures 6.16 and 6.17). By contrast, Figures 8.2

and 8.3 show a considerable variation in the curvature in the central region of the

disc on increasing the soak time from 40 to 50 minutes. However, considering the

magnitude of difference between 0◦ and 90◦ curvature profiles for a single soak time,

the central portions of the 40 and 50-minute-soak curves are really quite comparable.

Furthermore, there is much similarity between all three curves in the set of 0◦ curves,

and those in the set of 90◦ curves, so that our observation from numerical simulations

that mould contact strongly impedes further flow of the glass to the point where

flow can be considered to have ceased, is supported by these experimental results.

From the foregoing discussion, it can be appreciated that the experimental data
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Figure 8.4: Top-surface curvature profiles for a 40 min. soak. (a) Average, (b) 0◦

diameter, and (c) 90◦ diameter.
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Figure 8.5: As above but for a 50 min. soak.
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currently available for comparison with numerical simulations, are not as consistent

as we would like, despite the considerable efforts and care taken during its collec-

tion. Further work in refining experimental methods and techniques is certainly

warranted. In the meantime, however, let us compare what we have with some

finite-element simulations.

8.3 When Does Slumping Begin?

As in previous numerical work, computations could begin when the glass reaches

its annealing point, since flow can be considered to begin at some point after this.

However, as part of this work, some tests were conducted for the glass used in the

experimental work described above, to find the temperature at which the glass will

begin to flow. From the disc sagging work of Gulati et al. [42], we know that a

glass having an annealing point of 484◦C and a softening point of 645◦C slumped

to a measurable extent at temperatures higher than 550◦C, i.e. the minimum tem-

perature for glass flow was 66◦C higher than the annealing point and 95◦C below

the softening point. This leads to the expectation that slumping of the glass used

in these new experiments, with annealing and softening points of 545 and 735◦C

respectively, will begin at a temperature of 600◦C or greater.

To find the temperature Ts below which the glass is considered to be solid, a

number of tests were conducted as follows.

1. Two glass discs of the geometry described in Section 8.2 were supported on

moulds with radius of curvature 88.33mm = 1.96a.

2. The disc-mould combinations were placed in a rectangular slumping oven, one

at a location in the centre of the oven and the other in a corner of the oven.

3. The oven was then heated to a particular temperature T as quickly as possible,

and held for one hour at this temperature before being turned off and allowed
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to cool naturally.

4. Finally, the curvature of the slumped glass components was measured to de-

termine whether there had been any sag.

Tests were done for temperatures T of 450, 500, 550, 600 and 650◦C. Note that the

curvature of the mould was chosen to be large relative to that of the glass disc, so

that no contact between the lower disc surface and the mould occurred.

A dioptre-scope was used to measure curvature of the upper surface of the glass

disc. This instrument gives lens power P in dioptres (D) which, for a thin glass

‘lens’ in air, as the disc can be considered, is related to the radius of curvature R in

metres by P = (n−1)/R where n is the refractive index of the glass [57, pp. 85–87],

[51, p. 51]. For the glass used n = 1.53 so that P = 0.53/R, and curvature in m−1

is given by κ = 1/R = P/0.53. Since the accuracy of the dioptre-scope was ±0.1D,

and the initial power of the glass discs was 0.5D, only power measurements greater

than 0.51D were considered to indicate actual sag. Allowing for this measurement

error, it was found that slumping occurred for T ≥ 600oC, but not at the lower

temperatures. Hence we have Ts = 600◦C, at which temperature the glass viscosity

is around 1011 poise. No effort was made to find Ts to a better accuracy, since a long

soak time of one hour was required to detect slumping at this temperature, whereas

in thermal replication the oven is quite quickly heated above this to a temperature

near to the softening point of the glass (∼ 700◦C).

8.4 Isothermal Numerical Simulation

The first numerical simulation we consider is for isothermal conditions, that is, the

temperature throughout the glass is uniform at any point in time, although that

temperature varies with time. The slumping of the glass could be computed at

a temperature that is constant in time, and temporal temperature and viscosity

changes included by post-processing using a time-varying time scale, as described
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in Chapter 5. However, because we also wish to consider non-isothermal slumping,

the time scale is kept constant at T = µ0/(ρgR), with computation proceeding in

the same way as for the isothermal-slumping check of Chapter 7. The glass density

is 2620 kg/m3, and a characteristic viscosity of µ0 = 107 Pa · s is used, so that

T = 144.2477minutes.

Whereas in all previous numerical slumping simulations considered in this the-

sis the glass disc has been initially flat, in the present case, shown in Figure 8.1,

the glass disc has some small initial spherical curvature. This makes no difference

whatsoever to the computations, but some extra care is needed in mesh generation.

For this Fastflo is still used, which with appropriate input will generate meshes over

domains having boundaries that are segments of circles. For the current problem

a mesh of 889 6-node triangles is generated over the glass component. However,

Fastflo only generates straight-sided triangular elements (even for 6-node triangles)

so that curved boundaries are approximated by straight-line segments between ele-

ment corner nodes that lie on the boundaries. Therefore, in all probability, mid-side

nodes between these corner nodes do not lie on the boundaries. Further error arises

in the representation of curved boundaries when Fastflo writes the mesh specifica-

tion to file, because all node coordinates are output to only four decimal places.

Although the total error in the coordinates of nodes lying on curved boundaries

is small, calculation of surface curvature becomes increasingly sensitive to this as

the number of degrees of freedom of the B-spline approximation is increased. For a

better estimation of curvature it is preferable to use more degrees of freedom rather

than less, and consequently, before running a numerical simulation involving curved

boundaries, as in the present case, the mesh file generated by Fastflo is processed to

move all element nodes — both corner and mid-side nodes — that lie on the curved

boundaries back to those boundaries, with all node coordinates output in double

precision (i.e. to sixteen significant figures). Apart from the increased accuracy of

double precision, the effect of this is that a curved boundary is now approximated
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Figure 8.6: Comparison of error in curvature calculated using (a) a modified mesh giving
the correct constant curvature (horizontal line) of aκ = 0.04245, and (b) an unmodified
mesh causing considerable instability.

by parabolic segments defined by one mid-side and two corner nodes, all of which

lie on the boundary. The greatly increased accuracy of this approximation, over

the straight-line approximation, is seen in much smoother surface-curvature profiles

obtained from quintic B-spline approximations having more than 10 degrees of free-

dom. A comparison of the initial upper-surface curvature of the glass disc prior to

slumping, computed from the Fastflo mesh for the present problem before and after

modification, using a quintic B-spline approximation with 35 degrees of freedom,

is given in Figure 8.6. The curvature should be constant at aκ = 0.04245 as is

given by computations using the modified mesh. By contrast, the unmodified mesh

causes significant instability in the curvature profile due to numerical error. With a

modified mesh there is no such instability, even for a B-spline approximation having

in excess of 100 degrees of freedom relative to 165 data points on the upper disc

surface.

With reference back to Sections 7.2 and 7.3 of Chapter 7, let ∆t∗T = 0.01, and
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∆t∗ = 0.005. Then, for a heating rate of 4◦C/minute, the temperature increment

after a constant-temperature time interval ∆t∗T is ∆T = 4∆t∗T T ≈ 5.770◦C, and,

having decided, based on the tests described in the previous section, to begin com-

putations at Ts = 600◦C, the temperature at node n during constant-temperature

time interval i is given by

T n
i = min(600 + 4∆t∗T T (i− 1/2), 700). (8.1)

To determine viscosity from temperature using the VFT equation (5.1), constants

appropriate to the glass used in the experiments are required. Substituting the

strain, annealing and softening point data for this glass into (5.1) and solving for

the three constants gives one possibility, but the relationship between viscosity and

temperature is probably more accurately given by data supplied by Corning [23, 24]

for another very similar glass. This glass compares with that used in the experiments

described earlier in this chapter in having an annealing point (µ = 1013 poise) of

544◦C instead of 545◦C, and a softening point (µ = 107.6 poise) of around 730◦C

instead of 735◦C. For a viscosity expressed in poise, VFT-equation constants of

A = −1.6837, B = 1908.5 and T0 = 407.689 have been obtained using viscosity

measurements at 10◦C intervals over the temperature range 650 ≤ T ≤ 800◦C. The

viscosity in SI units of Pa · s is obtained using A = −0.6837.

Slumping is now computed to a time of 0.3T in 138 steps of size 0.005 or less.

From this simulation, the point of full contact between the mould and lower disc

surface is identified for comparison with the experimental results presented above.

Thus it is effectively assumed that there is no glass flow once the oven has been

turned off. This is not too unreasonable given that flow is very slow once full mould

contact has been established and that the experimental results with which we are

comparing are for full mould contact.

The numerical simulation gives full mould contact occurring at about 0.25T to

0.26T , which in real terms is a total slumping time of 36 to 38 minutes. Since

this includes the time for the temperature to rise from 600 to 700◦C at a rate of
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Figure 8.7: A comparison of upper-surface curvature given by (a) an isothermal numerical
simulation, (b) experiment with a 40 min. soak, and (c) experiment with a 50 min. soak.

4◦C/min., the soak time is only 11 to 13 minutes. This is considerably different from

the 40 to 50 minute soak determined experimentally, and we will return to this later

in this chapter.

Figure 8.7 shows the upper-surface curvature profile obtained from the numerical

data, compared with those obtained from the experimental data. A quintic B-spline

with 35 degrees of freedom was used to compute curvature from the numerical data.

The general behaviour of the numerical solution is in good agreement with the

experiments, especially considering the nature of the raw experimental data and

the processing it has undergone. In the region |r/a| < 0.6 where, at this stage in

the slump, the curvature profile is quite stable and changes only very slowly, the

maximum difference between numerical and experimental curvatures is about |aκ| =

0.008. Considering that we see this magnitude of difference between experimental

data sets that should be identical (see Figure 8.2), this is really quite good. It is more
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difficult to compare experimental and numerical results in the region 0.6 < |r/a| <

0.8. Recalling the difficulties experienced in experimentally identifying the point of

full mould contact, it is possible that this occurs after a soak of between 30 and 40

minutes. If so, then our numerical result corresponds to an earlier stage in slumping

than the 40 and 50 minute soak results with which we are comparing, and, since there

is some flattening of these edge peaks in the last stage of slumping after full mould

contact (see Figure 6.17), we can expect that the numerically obtained prediction

of curvature in this region will vary from that actually obtained experimentally

in the manner seen in Figure 8.7. It would even be quite easy to “prove” this

as the reason for the observed variation, by computing a curvature profile using

numerical data at a later stage in the slump with edge peaks that correspond with

either the 40 or 50 minute experimental curves. However, there are other possible

reasons for the discrepancy in the numerical and experimental results in this region.

Averaging of data sets, and the consequent reduction in some peak heights, is a

likely cause of variation, as indicated by the fact that a large peak approaching the

height of that seen in the numerical result is obtained from one of the data sets

for the 40 minute soak (see Figure 8.4), which is lost when the 0◦ and 90◦ curves

are averaged. Differences in this region could also be due to using too coarse a

grid when measuring sag with the profilometer, leading to an inability to properly

capture what is happening in this region of rapid curvature change. Compared with

the profilometer measurements, the numerical simulation gives about double the

number points on the upper glass surface in this region, from which we calculate

curvature.

8.5 Non-isothermal Numerical Simulation

Next, thermal replication under non-isothermal conditions is considered, and cur-

vature profiles computed from simulations after full mould contact for comparison
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with the curves obtained from experimental data. Having learned in Chapter 7 that

transverse temperature gradients in the glass are of little consequence, we consider

only radial temperature gradients. Again following the work of Chapter 7, we look

at just two arbitrary temperature distributions.

Firstly, we consider that the temperature in the glass at time t = 0 is a linear

function of radius only, decreasing from 600◦C in the centre to 590◦C at the edge (a

drop of 10◦C), i.e. the initial temperature distribution (in ◦C) is given by

T n(0) = 600− 10(1− r/a), (8.2)

where r is the radial coordinate of node n at time t = 0. We then suppose that

for t > 0 the temperature at any node is given by T n(0) + 4◦C/min. × t, where

t is given in minutes. When the temperature at any node reaches 700◦C it is not

further increased. Thus, the temperature at node n during constant-temperature

time interval i is given by

T n
i = min(T n(0) + 4∆t∗T T (i− 1/2), 700). (8.3)

At any time t, the viscosity distribution is obtained from the temperature distribu-

tion via the VFT equation.

The second example is similar to the first, excepting that at t = 0 the tem-

perature increases from 590◦C at the centre to 600◦C at the edge, i.e. the initial

temperature distribution (in ◦C) is given by

T n(0) = 590 + 10 r/a. (8.4)

The rough heat-flow computations of Chapter 7 indicate that a radial tempera-

ture gradient of 10◦C in 45mm, as in both of these non-isothermal cases, is probably

extreme. Nevertheless, they have been chosen in order to be able to clearly see the

nature of the changes to the curvature profile resulting from these types of non-

isothermal conditions.
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Figure 8.8: A comparison of upper-surface curvature given by (a) a numerical simulation
with temperature decreasing linearly from the centre to the edge, (b) a numerical simula-
tion with temperature increasing linearly from the centre to the edge (c) experiment with
a 40 min. soak, and (d) experiment with a 50 min. soak.

Figure 8.8 compares the upper glass-surface curvature profiles after full mould

contact for both of these non-isothermal cases, with the experimental results ob-

tained with 40 and 50 minute soak times. We restrict our attention to the central

region of stable curvature, |r/a| < 0.6. The outcome with temperature decreasing

from the disc centre to the edge, which the heat-flow computations of Chapter 7

suggests as more likely than the reverse, has a general shape that does not compare

with the experiments nearly as well as did the isothermal result. The differences

between experiment and the second case with temperature increasing from the disc

centre to the edge, are about the same magnitude as with the isothermal simulation,

but, again, the overall shape of the curve in the central region is less in keeping with

the experimental results. Thus it appears that the isothermal simulation gives the

most satisfying comparison.
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The non-isothermal simulations show full mould contact occurring in only slightly

longer times than the isothermal simulation (0.28T to 0.29T ). Thus the time taken

to achieve full mould contact, as determined by numerical simulation, is not much

affected by a 10◦C radial temperature difference, and is significantly less than the

time found by experiment to be required.

8.6 Discussion and Conclusion

We have compared isothermal and non-isothermal slumping simulations with ex-

perimental slumping data. The best agreement is obtained with an isothermal

model, so that, at least with the present quality of experimental data available,

it seems reasonable to suppose that temperature variations of sufficient magnitude

to substantially change the outcome do not arise in the thermal-replication process.

Rather the experimental results tend to support the assessment given in Chapter 7

that temperature gradients are sufficiently small to ignore, and that an isothermal

simulation is reasonably accurate. Thus it is not necessary, at this stage, to be

concerned with coupling heat transfer to the fluid flow model. However, there is

a clear need to refine experimental methods and techniques, which might lead to

an improved agreement between numerical prediction and experimental outcome.

Alternatively we might then be able to more easily assess whether non-isothermal

conditions can account for small variations in curvature profiles. Once we have more

accurate experimental, and possibly numerical, results, some consideration can be

given to meeting industry tolerances on surface curvature. However, at the present

stage, the experimental results are too uncertain to be able to meaningfully address

this subject.

The most major difference between all the numerical simulations and the exper-

imental work, that has not yet been explained, is in the time taken for the lower

surface of the glass disc to achieve full contact with the mould. The experiments
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showed a soak time of 40 to 50 minutes to be necessary before full mould contact

was achieved, while the numerical simulations give soak times of around 10 minutes,

and even quite large temperature gradients in the glass do not appreciably increase

the slumping time to the extent necessary for agreement with experiment. The most

likely major cause of this time difference is that the viscosities computed from the

known temperature using a VFT equation, and which vary over several factors of

10, are in error. If we increase them by a factor of two, then we double the time

scale so that the numerical soak time is of the order of 45 minutes, which is in

accord with the experiments. On a logarithm scale, such as is typical for quoting

glass viscosities, doubling the viscosity is an increase of only log10 2 ≈ 0.3, which is

of small magnitude relative to the viscosity range of a molten glass and represents

an error that is quite a possibility. Already we know that the VFT equation used is

for a different, though similar, glass to that used in the experiments. Then, even if

the VFT equation for the specific glass was used, it is still an approximation with

an associated error. Finally, the methods of determining glass viscosity in different

temperature ranges are known to be subject to error, with different methods not

generally giving exactly the same result in regions of overlap, as is plain from the

discussion by Hagy [44] of the various methods of measurement.

In summary, allowing for all the known and possible causes of error in both the

experimental and numerical results, the agreement between an isothermal finite-

element simulation based on a creeping-flow model and some actual experimental

data is very good.



Chapter 9

In Conclusion

A creeping-flow finite-element program has been developed that is capable of solving

a variety of very viscous fluid-flow problems that are driven by gravity. In this

thesis it has been used to solve for flows which are not impeded by a mould or other

object, such as the dripping of honey from a spoon and the slumping of glass in

disc viscometry. In addition, the slumping of glass in thermal replication of optical

quality surfaces, where the flow is modified by progressive contact with a mould, has

been given special attention. At this stage the program is restricted to geometries

that are two-dimensional or axisymmetric.

The finite-element program is able to compute for fluids of constant viscosity,

or fluids having a viscosity that varies with temperature in time and/or space in a

way that is known and can hence be prescribed. In the isothermal case where the

fluid viscosity is a function of time only, and hence is constant throughout the fluid

at any instant in time, the flow differs from that for a constant-viscosity fluid only

via a time scale that varies with the viscosity. Hence a constant-viscosity model

can always be solved first, and the results then re-processed if necessary to include

effects of time-varying viscosity. In the non-isothermal case where the viscosity may

also vary throughout the fluid at any instant in time, computations are a little more

complicated since the viscosity distribution in the fluid at every time step must be

242
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known and specified at the time of finite-element solution.

Because of specific application of this research to manufacture of optical surfaces

for which curvature is the critical measure, a method for computing the curvature

profiles of surfaces from coordinate data was required. For the types of surfaces that

arise in this thesis, which can be considered as functions of a single variable, the

method adopted was to fit B-splines by a least-squares method to surface coordinate

data, from which first and second derivatives can be obtained in order to compute

curvature. Least-squares fitting of B-splines is recommended by de Boor [26, p. 249]

as an effective method of filtering noise from non-exact data such as can be expected

from both numerical simulations and experiments. High degree (k ≥ 4) B-splines

were used to provide sufficient continuity so that second derivatives were continuous

and differentiable, and hence a smooth curvature profile could be computed.

Some simulations conducted using the creeping-flow finite-element program have

been compared with experimental results. Disc-sagging experiments in the absence

of a mould done at Corning Glass Works in the mid 1970’s provided some exper-

imental data. Other new experiments, involving slumping simple glass discs into

moulds of spherical shape, were conducted in conjunction with the work reported in

this thesis, providing data of direct relevance to the thermal replication process. The

numerical and experimental results were in good agreement in all cases, and likely

explanations exist for the differences seen. The viscosity-temperature relation ob-

tained using creeping-flow finite-element computations and Corning disc-viscometry

experimental data differed from the relation obtained by other accepted methods,

but this can be attributed to the method used to measure sag, which modified the

flow of the glass. Comparisons of finite-element simulations with other Corning

disc-sagging experiments in which the flow was not affected by sag-measuring tech-

niques, as well as comparisons with the new thermal-replication experiments, suggest

inaccuracy in the viscosity data and/or the approximated viscosity-temperature re-

lationship used in the simulations as a likely cause of differences between numerical
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and experimental results.

Multiplying viscosities by a ‘fudge factor’ to improve the agreement of numerical

simulations with experimental results is not as dubious as it might first appear.

The corrections are small relative to the magnitude of the viscosity, and small error

can easily arise from one or more of (i) inaccuracy in available viscosity data, (ii)

inaccuracy due to a VFT approximation to that data, and (iii) glass temperatures

differing a little from nominal oven temperatures. Other factors that have not been

examined in this thesis might also be responsible for differences between numerical

and experimental results. For example, surface skins can form on glasses, which

have higher viscosity than the bulk of the glass and act to increase the effective

viscosity [54].

Thermal replication has been the major focus of this thesis, and for this rea-

son it is appropriate to give some specific conclusions in relation to this process.

Preliminary comparisons of curvature profiles at full mould contact from numeri-

cal simulations and experiments indicated that an isothermal model most closely

matches what is seen experimentally. The differences, although quite considerable

in an optical context, were no larger than differences between what should have

been identical curves computed from experimental data. At least there is a need

for more consistent experimental data against which to assess numerical simulations

before very much effort is put into full thermo-mechanical modelling of the thermal

replication process. Considering the sensitivity of surface curvature to small changes

in surface shape, obtaining such consistent experimental data is quite a challenge

for the future. In the meantime, the creeping-flow finite-element simulation pro-

gram may still prove a useful tool to industry, not least for the good qualitative

understanding of thermal replication that may be, and indeed has already been,

gained from it. It has shown the progress of glass slumping, something that was not

physically observable with the equipment available for experiments and which may

even be difficult to see with sophisticated and expensive equipment. Specifically it
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has shown, for the thermal-replication cases considered, that mould contact occurs

first at the centre of a disc. It has shown that the curvature of the upper surface of

the glass disc quickly stabilizes once the opposite lower surface is in contact with a

mould. From this it is obvious that continued soaking after full mould contact has

been achieved is virtually wasted time, something that was unknown prior to this

investigation. Furthermore, if the outer annulus of the slumped disc is subsequently

discarded, then soaking can cease just as soon as the desired central portion of the

disc has attained contact with the mould and its curvature stabilized.

If thermal replication is an example of a process for which, as Pearson [68, p. 244]

found in relation to polymer processing,

... the geometry of flow boundaries is often far more important than all

other factors in determining flow fields and hence process behaviour ...

so that small temperature variations in the glass are not important and an isothermal

model is adequate, then an important implication is that the slumping temperature

history has no effect on the final product, provided only that the area under the curve

of inverse viscosity is constant. Thus, heating rates and soak times can be adjusted

so as to optimize heating costs and slumping times, and/or match throughput to

other inter-dependent processes.

Since thermal replication is most commonly used for generating quite general

three-dimensional surfaces, the most serious limitation of the current creeping-flow

finite-element program is probably the fact that only two-dimensional and axisym-

metric flows can be simulated. Full three-dimensional geometries will significantly

affect final surface curvature profiles, as indicated by the above quotation from

Pearson and the experiments conducted as part of this work. Extending the current

two-dimensional and axisymmetric program to handle flows in three dimensions is

reasonably simple; the difficulties lie in the generation of three-dimensional volume

and surface meshes. These are not automatically generated by Fastflo, the CFD

code used so far to generate two-dimensional meshes, but other commercial mesh
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generation packages are no doubt available that can be used. In addition a three-

dimensional code will require considerably more in computer resources, with com-

putational time also increasing significantly. A comment by de Boor [26] indicates

that it may be possible to extend the least-squares B-spline method for calculating

surface curvature profiles to three dimensions.

While, however, a full three-dimensional creeping-flow model is highly desirable,

it is also best to sort out some, if not all, of the current problems with simpler

two-dimensional or axisymmetric geometries, in the same spirit in which Pearson

[68, p. 245] also stated

... only after ruthless simplification can reliable quantitative analyses be

undertaken.

To this end there is, at this stage of the work, a need for substantial industry input,

to assess the importance of the differences between numerical and experimental

results in an industrial context, to decide the extent to which these can or should be

addressed, and to assist with the development of better experimental techniques and

methods of measurement. Further progress can then be made towards a (possibly

three-dimensional) program that can assist designers by reducing or eliminating

experimental iteration to determine the mould shape required to give a particular

optical surface. And this may also result in better techniques and controls for the

manufacturing process itself.
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