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Thin-film flow in helically wound rectangular channels
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Laminar gravity-driven thin-film flow down a helically wound channel of rectangu-
lar cross-section with small torsion in which the fluid depth is small is considered.
Neglecting the entrance and exit regions we obtain the steady-state solution that is in-
dependent of position along the axis of the channel, so that the flow, which comprises
a primary flow in the direction of the axis of the channel and a secondary flow in the
cross-sectional plane, depends only on position in the two-dimensional cross-section
of the channel. A thin-film approximation yields explicit expressions for the fluid
velocity and pressure in terms of the free-surface shape, the latter satisfying a nonlin-
ear ordinary differential equation that has a simple exact solution in the special case
of a channel of rectangular cross-section. The predictions of the thin-film model are
shown to be in good agreement with much more computationally intensive solutions
of the small-helix-torsion Navier–Stokes equations. The present work has particular
relevance to spiral particle separators used in the mineral-processing industry. The
validity of an assumption commonly used in modelling flow in spiral separators,
namely, that the flow in the outer region of the separator cross-section is described by
a free vortex, is shown to depend on the problem parameters. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4818628]

I. INTRODUCTION

Flows in curved geometries, such as those that arise in many piping systems, and, in particular,
in the human blood-circulation system, have motivated study of fully developed flow in completely
filled helically wound pipes. A common assumption is that the flow is helically symmetric, which
here means that there is a steady-state solution that is independent of position along the axis of the
pipe. Thus the flow, which comprises a primary flow along the axis and a secondary flow in the cross-
sectional plane normal to the axis, depends only on position in the two-dimensional cross-section
of the pipe.1–5 In the present work, we consider flows in helically wound channels (see Figure 1)
which differ from their filled-pipe counterparts in having a free surface. They have been studied in
the contexts of river flow and sediment transport,6–8 distillation of petroleum products,9, 10 and, of
particular interest here, spiral particle separation.11–22

Spiral particle separators are helically wound channels along which particle-laden slurries
flow under gravity. They are used in the coal- and mineral-processing industries to segregate and
concentrate particles of different sizes and densities.12, 23 Theoretical understanding of these devices
has lagged practical development and, although considerable progress towards filling this gap has
been made over the past four decades, the lack of a good “quantitative basis for the design and
evaluation of spiral separators”12 largely remains to this day. A steady-state empirical mathematical
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FIG. 1. A right-handed helically wound channel. The central axis of the channel is a helix of radius A and pitch 2πP. The
fluid-filled portion of the channel has width 2a.

model was developed by Holland-Batt,11, 22 in which the primary flow down the channel is described
by a Manning law in an inner region near the central column around which the channel is wound, and a
free vortex in the outer region. The transition point between the two regions is specified empirically,
with a smoothing function used to avoid discontinuities; for details see Holland-Batt.11 Flow-
visualisation experiments performed by Hotham12, 14 and Holland-Batt and Holtham13 to validate
this model proved to be difficult, but did confirm the existence of the predicted secondary flow, in
addition to showing that the fluid depth is small, that some flow regions are turbulent, and that the
flow reaches a fully developed profile within two spiral turns, as well as giving rough estimates of
flow velocities.

Computational Fluid Dynamics (CFD) simulations of steady laminar flow in a spiral separator
seem to have been performed first by Wang and Andrews;15 helical symmetry was assumed, and
the flow in a planar cross-section of the channel was determined via a finite-difference method.
Three-dimensional CFD simulations of laminar flow were performed by Jancar et al.16 using the
finite-volume method, and turbulence models were included by Matthews et al.,17, 18 who used the
volume-of-fluid method.

All the above studies are in agreement that in order to improve the operation of spiral separators
it is necessary to have a better understanding of the flow in them, and, in particular, to obtain a
quantitative understanding of the influences of fluid properties and of geometrical parameters (such
as the curvature and torsion of the helical channel axis, and the channel cross-sectional geometry)
on the flow; the purpose of the present paper is to develop an alternative model for this flow (and
for other helical flows of similar types), based on the observation that the fluid depth is small but
centrifugal effects are significant, in general. We then verify this approach via comparison with
numerical solutions of the full problem, and investigate the predictions of the thin-film theory in
detail.

The work of Holland-Batt and Holtham12–14 shows that over most of the channel the flow is
laminar; this motivates the use of a laminar model, as considered herein. (Indeed, the laminar and
turbulence models of Holland-Batt and Holtham are not too dissimilar from each other.) However,
Holland-Batt’s suggestion of a free-vortex primary flow (either in the outer region11, 13 or across
the entire channel22) is inconsistent with some of the experimental observations of Holland-Batt
and Holtham,13 because the predicted free-surface shape has the wrong curvature in the outer
region; the present model seems to capture the observed curvature correctly, although quantitative
comparison with the experiments is difficult because, as Holtham14 acknowledges, the experimental
measurements that he reports are prone to significant errors. Holland-Batt22 adopts the free-vortex
model even for spiral separators of large diameter, a case in which, according to the present model,
it is unlikely to be valid.

In the present work, we consider laminar gravity-driven thin-film flow in a helically wound
channel. We assume that the helical channel axis has small torsion, an assumption that is appropriate
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for spiral particle separators, and seek a helically symmetric steady-state solution for the flow. As
part of the solution process, the free-surface shape of the fluid in the channel must be determined,
making this analysis significantly different from and more complicated than that for fully developed
flows in filled pipes. Since the channels of spiral particle separators typically have widths of the
order of half a metre, two orders of magnitude larger than the capillary length scale at which surface
tension is important (of the order of a few millimetres for water), we are justified in neglecting the
effect of surface tension. In Sec. II, we describe the helically symmetric small-torsion model for
flows of arbitrary depth and discuss the numerical solution of this model. Then, since flows in spiral
separators are typically shallow, in Sec. III we derive a thin-film model, which we verify using the
more general model described in Sec. II. Related work on the flow of a thin rivulet down a locally
non-planar substrate (but in which surface-tension effects are significant) has been performed by
Wilson and Duffy.24, 25 In Sec. IV we use the thin-film model to examine thin-film flow in helically
wound channels of rectangular cross-section. Some preliminary work on deeper flows has been
performed by Stokes.19, 20 Finally, in Sec. V, we summarise our results and draw some conclusions
(which we anticipate are also relevant to helical flows with a free surface other than those occurring
in particle separators).

II. HELICALLY SYMMETRIC SMALL-HELIX-TORSION MODEL

A. Governing equations

Consider steady gravity-driven flow of a prescribed volume flux Q of fluid of constant density ρ

and viscosity μ down a helically wound channel whose central axis is a vertical right-handed helix
with radius A and pitch 2πP (see Figure 1). The fluid-filled portion of the channel is taken to be
A + y� ≤ r ≤ A + yr, where r denotes the radial coordinate indicated in Fig. 1, and y� and yr

correspond to the positions of the left-hand and right-hand ends of the free surface, respectively, so
that the fluid occupies a width 2a = yr − y� of the channel. (In particular, later in the present study
we consider a channel of rectangular cross-section of width 2a, for which we take −y� = yr = a.)

Let α be the angle of inclination of the helix to the horizontal, given by tan α = P/A. We define
the dimensionless curvature and torsion of the helix, ε and τ , and the dimensionless Reynolds and
Froude numbers of the flow, R and F, by

ε = a A

A2 + P2
, τ = a P

A2 + P2
, R = ρUa

μ
, F = U√

ga
, (1)

where U is a characteristic axial velocity (specified in Sec. III, after the thin-film model has been
introduced), and g is the magnitude of gravitational acceleration, and we note that tan α = P/A
= τ /ε. Physically, we require A ≥ a, to avoid self-intersection of the channel. This immediately
implies from (1) that ε < 1 for any τ > 0. Spiral particle separators used in the mineral-processing
industry typically have ε � 0.2−0.5 and τ � 0.03−0.11, and so in the present work we will consider
spiral channels with 0 < ε < 1 in the small-torsion limit (τ → 0). Note that torsion was also assumed
to be small in the early work by Dean26 on flow in curved pipes. For flow in a channel, the assumption
of small torsion implies that the pitch of the helix is much larger than the fluid depth, and so the free
surface will not intersect the portion of the channel directly above. This is consistent with the fact
that fluid depths in spiral separators are small.12

In studies of flow in helically wound filled pipes with non-zero torsion1, 3–5 considerable attention
has been given to the selection of an appropriate orthogonal helical coordinate system. The essentially
identical coordinate systems of Germano1, 4 and Kao3 identify a point in the flow domain by its local
position in the cross-sectional plane normal to the vector tangent to the central helical pipe axis and
the arc-length distance of the cross-section along this axis, which is valid for ε < 1. In general,
for such coordinate systems the assumption of helical symmetry means, in fact, that the flow is
independent of the arc-length coordinate, which, as discussed by Zabielski and Mestel,5 is not true
helical symmetry. They therefore propose a different coordinate system, formally equivalent to that
of Germano1, 4 and Kao,3 but which permits true helical symmetry. However, in the small torsion
limit τ → 0, as considered in the present study, these coordinate systems are equivalent, and a
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FIG. 2. Cross-section of a channel showing the locally Cartesian (x, y, z) coordinate system. The x axis is directed out of the
figure in the direction of the primary axial flow.

flow that is independent of arc length along the central axis is truly helically symmetric. Thus, for
simplicity, we adopt a coordinate system (x, y, z) similar to that used by Germano1, 4 and Kao,3 in
which x is arc length measured along the central axis of the helically wound channel in the direction
of the primary flow, and y and z are local Cartesian coordinates in the cross-sectional plane, as shown
in Figure 2.

The steady helically symmetric Navier–Stokes equations in the small-torsion limit (τ → 0) may
be derived directly in terms of the present helical coordinates (x, y, z) using the vector differential
quantities given by Batchelor (Appendix 2 of Ref. 27) in general curvilinear coordinates, in the
same manner as Germano;1 the scale factors corresponding to the x, y, and z coordinates are
hx = 1 + εy, hy = 1 and hz = 1, respectively. Alternatively, we may start with the small-torsion
limit of the fluid-flow equations given by Germano,1, 4 to which we add the gravitational force terms,
and convert from the spatial (s, r, θ ) coordinates used by Germano to the (x, y, z) coordinates used
herein, using the transformation (x, y, z) = (−s, r sin θ , r cos θ ). For helically symmetric flow in a
channel, the velocity and pressure are independent of arc length (x = −s), with the flow being driven
by gravity; this differs from a filled pipe, in which the flow may instead be driven by a prescribed
pressure gradient along the axis of the pipe.

Let u(y, z) = (u(y, z), v(y, z), w(y, z)), and p = p(y, z) be the velocity vector and pressure,
respectively, in the (x, y, z) coordinate system, with u corresponding to the primary (axial) flow, and
v and w corresponding to the secondary (transverse) flow. In terms of the dimensionless variables

(x̃, ỹ, z̃) =
( x

a
,

y

a
,

z

a

)
, (ũ, ṽ, w̃) =

(
u

U
,

Rv

U
,

Rw

U

)
, p̃ = R2(p − pa)

ρU 2
, (2)

where pa is the constant atmospheric pressure, and with the tildes on dimensionless variables omitted
for clarity, the continuity equation is

∂

∂y
[(1 + εy)v] + ∂

∂z
[(1 + εy)w] = 0, (3)

and the Navier–Stokes equations are

v
∂u

∂y
+ w

∂u

∂z
= ∂2u

∂y2
+ ∂2u

∂z2
− ε

1 + εy

(
uv − ∂u

∂y
+ εu

1 + εy

)
+ R sin α

F2
, (4a)

v
∂v

∂y
+ w

∂v

∂z
− K u2

2(1 + εy)
= −∂p

∂y
+ ∂2v

∂y2
+ ∂2v

∂z2
+ ε

1 + εy

(
∂v

∂y
− εv

1 + εy

)
, (4b)

v
∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ ∂2w

∂y2
+ ∂2w

∂z2
+ ε

1 + εy

∂w

∂y
− R2 cos α

F2
, (4c)

where K = 2εR2 is the dimensionless Dean number.
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Equations (3) and (4) are to be integrated subject to no-slip and no-penetration boundary
conditions on the channel walls, and continuity-of-stress and kinematic conditions on the free
surface. Thus on the channel walls we have simply

u = v = w = 0. (5)

On the free surface the stress condition takes the form −p n + 2e · n = 0, where n denotes the
unit normal vector to the free surface, and e denotes the rate-of-strain tensor, whose components
in helical coordinates may be obtained from the expressions given by, for example, Batchelor27 or
Yuan.28 For a free surface S(y, z) = 0, a normal vector is given by

n = (nx , ny, nz) = ∇S =
(

0,
∂S

∂y
,
∂S

∂z

)
, (6)

and the continuity-of-stress boundary conditions at the free surface are(
∂u

∂y
− ε

1 + εy
u

)
ny + ∂u

∂z
nz = 0, (7a)

(
−p + 2

∂v

∂y

)
ny +

(
∂w

∂y
+ ∂v

∂z

)
nz = 0, (7b)

(
∂w

∂y
+ ∂v

∂z

)
ny +

(
−p + 2

∂w

∂z

)
nz = 0. (7c)

In addition to the above, the kinematic condition at the free surface, u · ∇S = 0, gives

v
∂S

∂y
+ w

∂S

∂z
= 0. (8)

The governing equations and boundary conditions (3)–(8) are to be solved for some prescribed
value of the volume flux Q down the channel to give the velocity and pressure distributions in the
flow domain and the free-surface shape S(y, z) = 0. We denote the cross-sectional area of the flow
domain by 
.

From (3) we see that the secondary flow may be represented in terms of a stream function
ψ = ψ(y, z) defined by

∂ψ

∂z
= (1 + εy)v,

∂ψ

∂y
= −(1 + εy)w, (9)

together with the condition that ψ = 0 on the boundary of the flow domain.

B. Numerical solutions

In general, the model described above must be solved numerically, and for this we may use a
general-purpose CFD package. Previously, a method employing the finite-element package Fastflo
(developed by the CSIRO, Australia) was discussed and demonstrated by Stokes.19, 20 In the present
work, we instead make use of the commercial finite-element package COMSOL Multiphysics.

Starting with an initial estimate of the free-surface shape, the problem is solved iteratively, with
the free-surface shape adjusted at each iteration, until a steady state solution is obtained. In the
present work, we are considering flows of small depth, and an excellent estimate of the free-surface
shape is given by the thin-film model described subsequently in Sec. III. In particular, the points of
contact of the free surface with the channel walls are taken to be as given by the thin-film model, so
that the difficulty of determining these, discussed by Stokes,19, 20 is resolved. As will be shown, with
the thin-film model providing the initial flow domain for the numerical solution process, a numerical
solution of very good accuracy can be obtained. A detailed description of the setup and solution
process is given in the Appendix.
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III. THIN-FILM MODEL

A. Derivation

As mentioned earlier, flows in spiral particle separators are typically of small depth. We now
exploit this to derive a thin-film model for a channel of general shape by a perturbation expansion
in terms of a small parameter δ � 1 representative of the cross-sectional aspect ratio of the flow.

We first define new variables (denoted by carets) by

z = δẑ, v = Rδv̂, w = Rδ2ŵ and p = R p̂

δ
, (10)

and choose δ2R/F2 = 1, i.e., δ = F/
√

R =
√

νU/(ga2), where ν = μ/ρ, which explicitly defines
the parameter δ in terms of the physical parameters. We return to this definition in a more detailed
examination of the scaling of the model in Subsection III B. Substituting (10) into Eqs. (3) and (4)
gives, at leading order in δ,

∂

∂y
[(1 + εy)v̂)] + ∂

∂ ẑ
[(1 + εy)ŵ] = 0, (11a)

∂2u

∂ ẑ2
+ sin α = 0, (11b)

−∂ p̂

∂y
+ ∂2v̂

∂ ẑ2
+ χ

1 + εy
u2 = 0, (11c)

−∂ p̂

∂ ẑ
− cos α = 0, (11d)

where the parameter χ = δK/(2R) is taken to be O(1). Equations (11b)–(11d) represent balances
between viscosity and gravity in the x direction, pressure gradient, viscosity, and centrifugal force in
the y direction, and pressure gradient and gravity in the z direction, respectively. Under this thin-film
scaling, the boundary conditions on the free surface Ŝ(y, ẑ) = 0 become, at leading order in δ,

∂u

∂ ẑ
= 0,

∂v̂

∂ ẑ
= 0, p̂ = 0 and v̂

∂ Ŝ

∂y
+ ŵ

∂ Ŝ

∂ ẑ
= 0. (12)

Let the cross-section of the channel be of general shape ẑ = H (y) and let the fluid depth be
h(y), so that the free surface is at ẑ = H (y) + h(y). Integrating (11b) and (11d), substituting u and
p̂ into (11c) and integrating for v̂ we obtain

u = sin α

2
(ẑ − H )(H + 2h − ẑ), (13a)

v̂ = − χ sin2 α

120(1 + εy)
(ẑ − H )

[
(ẑ − H )5 − 6h(ẑ − H )4 + 10h2(ẑ − H )3 − 16h5

]

−cos α

2
(ẑ − H )(H + 2h − ẑ)

d

dy
(H + h), (13b)

p̂ = cos α (H + h − ẑ). (13c)

Rewriting the continuity equation (11a) in the alternative form∫ H+h

H
v̂ dẑ = 0, (14)

substituting for v̂, and integrating yields a first-order ordinary differential equation (ODE) for h for
a general prescribed channel shape ẑ = H (y):

d

dy
(H + h) = h4

1 + εy
. (15)
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In writing (15), we have set 6χsin 2α/(35cos α) = 1, which scales the problem as described in
Subsection III B. Note that the ODE (15) explicitly involves the helix curvature ε, but is independent
of other parameters.

Substituting (15) in (13b) yields

v̂ = cos α

144(1 + εy)
(ẑ − H )(H + 2h − ẑ)

{
7
[
(H + h − ẑ)2 − 2h2

]2 − 23h4
}

(16)

from which it is straightforward to show that the flow is outward (v̂ > 0) on and near the free surface
ẑ = H + h, but is inward (v̂ < 0) near the channel wall ẑ = H . Thus, in general, the secondary
flow comprises one or more eddies in each of which the flow is always clockwise, regardless of the
channel shape ẑ = H (y).

From (9) the stream function for the secondary flow ψ̂ is defined by ∂ψ̂/∂ ẑ = (1 + εy)v̂ and
−∂ψ̂/∂y = (1 + εy)ŵ. Substituting for v̂ and integrating subject to ψ̂ = 0 on ẑ = H (y) we obtain

ψ̂ = cos α

144
(ẑ − H )2(H + 2h − ẑ)2(H + h − ẑ)

[
(H + h − ẑ)2 − 5h2

]
. (17)

The scaled cross-sectional area of the flow domain, 
̂ = 
/δ = 
 R1/2/F , is given by


̂ =
∫ yr

y�

h dy, (18)

and the scaled volume flux down the channel, Q̂ = Q/(δ sin α) = Q R1/2/(F sin α), is given by

Q̂ = 1

sin α

∫ yr

y�

∫ H+h

H
u dẑ dy = 1

3

∫ yr

y�

h3 dy, (19)

where again y = y� and y = yr are the positions of the left-hand and right-hand ends of the free
surface, respectively. To obtain a thin-film solution for a given channel shape ẑ = H (y) we must
solve (15) subject to a prescribed flux Q̂ = Q, with Q̂ given by (19).

We let h(y�) = h� and h(yr) = hr denote the fluid depth at the left-hand and right-hand end of
the free surface, respectively, so that (y�, h�) and (yr, hr) are the points of contact of the free surface
with the channel wall. For any channel geometry, two of the four values y�, yr, h�, hr will be known
and two must be determined as part of the solution of the problem.

Once the fluid depth h has been determined it is straightforward to obtain ψ̂ , u, v̂, ŵ, and p̂ by
substituting for H and h in the formulae given above.

B. Scaling of the model

In deriving the thin-film model in Subsection III A we set

δ2 R

F2
= 1 and

6χ sin2 α

35 cos α
= 1, (20)

and claimed that this corresponds to a particular scaling of the model. In this subsection, we describe
this scaling in more detail.

Since χ = δK/(2R) = δεR = 35cos α/(6sin 2α) and δ = FR−1/2 we find that

35 cos α

6ε sin2 α
= F R1/2. (21)

Then, substituting F R−1/2 =
√

νU/(ga2) and F R1/2 =
√

U 3/(gν) gives

U =
[(

35 cos α

6ε sin2 α

)2

gν

]1/3

and δ = 1

a

[
35ν2 cos α

6gε sin2 α

]1/3

. (22)

We want to examine the effect of varying the helix curvature ε on the flow and, for this, we
choose to keep the helix torsion τ = ε tan α fixed at some small value (since the torsion is assumed
to be small). Then, as ε decreases the helix slope tan α must increase and we will still obtain a
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non-trivial free-surface shape. Thus we write

U =
[(

35

6τ sin α

)2

gν

]1/3

and δ = 1

a

[
35ν2

6gτ sin α

]1/3

, (23)

where sin α = τ/
√

τ 2 + ε2.
The typical values ν � 10−6 m2 s−1 (water), a � 0.5 m, τ � 0.1, ε � 0.5, and sin α � 0.2

give δ � 6 × 10−4, so that δ � 1, as assumed. Also, for these values, U � 0.95 m/s, the Reynolds
number R and the reduced Reynolds number δ2R are of orders 106 and 10−1, respectively, and F is
of order 1.

The parameters of the full small-helix-torsion numerical model of Sec. II may also be expressed
in terms of physical parameters:

R sin α

F2
=

[(
6τga3

35ν2

)2

sin5 α

]1/3

,
R2 cos α

F2
= ga3ε sin α

ν2τ
, K = 2εa2

[(
35

6ντ sin α

)2 g

τ

]1/3

.

(24)
The dimensional flux Ua2Q down the channel is given by

Ua2 Q = Ua2δ sin α Q̂ = 35νa

6τ
Q̂, (25)

which is independent of the helix curvature ε. Thus, results for a given value Q of the dimensionless
flux Q̂ correspond to results for a given physical flux and we may examine how they change with
changes in the helix curvature ε. Note that both of our dimensionless models require specification
of values for three free parameters, which we choose to be ε, τ and δ. In particular, we will fix τ and
δ, both of which must be small, and allow ε to vary from zero to unity.

C. Solution and verification of results

In general, solutions for h(y) of the ODE (15) must be obtained numerically; this was done
readily using an ODE solver in MATLAB, for a chosen value of a parameter such as h�. Then h and
h3 were integrated numerically to determine the corresponding values of 
̂ and Q̂ from (18) and (19),
respectively, using one of the MATLAB (version R2009b) built-in quadrature functions; for accuracy
we used the adaptive Gauss-Konrad quadrature function (quadgk). More specifically, starting with
two initial guesses of the unknown fluid depth h� at the left-hand free-surface contact point, one for
Q̂ < Q and one for Q̂ > Q, where Q̂ = Q is the prescribed flux down the channel, the bisection
method was employed to determine the location of the free-surface contact points for Q̂ = Q to
within a small tolerance. The flow-domain area 
̂ was then calculated, by numerical integration of
h, and a grid was defined over the flow domain on which the remaining quantities were calculated.
MATLAB’s in-built contouring functions were used to plot streamlines and contours of the axial
velocity and pressure.

In the particular case of a channel of rectangular cross-section treated in Sec. IV, the ODE (15)
may be solved exactly, and the integration to determine 
̂ and Q̂ may be performed exactly.

In order to verify the thin-film approximation the flow-domain geometry from a solution of
the thin-film model was imported into COMSOL Multiphysics, and a solution of the full small-
helix-torsion model described in Sec. II was found for this geometry via the method described in
Subsection II B. The parameters for the full model were chosen to be consistent with those used to
obtain the thin-film solution. Specifically, for chosen values of the helix curvature and torsion, ε and
τ , and the aspect ratio of the fluid domain, δ, we have

R sin α

F2
= τ

δ2
√

τ 2 + ε2
,

R2 cos α

F2
= 35ε

6τ 2 δ3
, K = 2ε(τ 2 + ε2)

δ2

(
35

6τ 2

)2

. (26)

In general, the free-surface shape was adjusted a little from that obtained from the thin-film
solution. The post-processing facilities provided by COMSOL were used to calculate the area of
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FIG. 3. Cross-section of a rectangular channel showing the locally Cartesian coordinate system with magnified z coordinate,
ẑ = z/δ. The x axis is directed out of the figure in the direction of the primary axial flow.

and flux through the updated flow domain. A quantitative indication of the accuracy of the thin-film
model was obtained by comparing these quantities with those obtained from the thin-film solution.

IV. A CHANNEL OF RECTANGULAR CROSS-SECTION

Consider now the particular case of a channel of rectangular cross-section with left-hand and
right-hand vertical walls at y = y� = −1 and y = yr = 1, as shown in Figure 3, for which H(y) ≡ 0 for
−1 < y < 1. For this case the thin-film flow solution may be found exactly for a prescribed fluid depth
at some position y = y0 in the channel. Comparison of this solution with the numerical solution
of the full small-helix-torsion model, for different values of the relevant parameters, verifies the
thin-film model. Analysis of the exact thin-film solution for the channel of rectangular cross-section,
for curvature between zero and unity and for flux ranging from zero to infinity, then provides insight
into the flow behaviour not readily obtained from a numerical solution.

A. Thin-film solution

Let the fluid depth at the left and right vertical walls be h(y�) = h� and h(yr) = hr, which must,
for prescribed curvature and flux, be determined as part of the solution. From (15) the film depth
h = h(y) satisfies

dh

dy
= h4

1 + εy
, (27)

whose solution satisfying h( − 1) = h� is

h = h�

[
1 − 3h3

�

ε
log

(
1 + εy

1 − ε

)]−1/3

for − 1 ≤ y ≤ 1, (28)

or alternatively whose solution satisfying h(1) = hr is

h = hr

[
1 − 3h3

r

ε
log

(
1 + εy

1 + ε

)]−1/3

for − 1 ≤ y ≤ 1. (29)

Equation (27) shows that h increases monotonically with y, and hence, in particular, that h� < hr;
specifically, h� and hr are related by

1

h3
�

− 1

h3
r

= η, (30)

in which we have defined

η = 3

ε
log

(
1 + ε

1 − ε

)
, (31)
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so that η ≥ 6 for 0 ≤ ε < 1. Note from (28) that, except in the limit ε → 1, in which h( − 1) → 0
(i.e., h� → 0), the fluid depth h is strictly positive within the channel −1 ≤ y ≤ 1, showing that the
free surface never intersects the bed ẑ = 0 of the channel.

Substituting the solution (28) or (29) for h into (18) and (19) gives the flow-domain area 
̂ and
the flux Q̂, respectively:


̂ = 1 + ε

31/3ε2/3
exp

(
ε

3h3
r

)[
�

(
2

3
,

ε

3h3
r

)
− �

(
2

3
,

ε

3h3
�

)]
, (32)

Q̂ = 1 + ε

9
exp

(
ε

3h3
r

) [
�

(
0,

ε

3h3
r

)
− �

(
0,

ε

3h3
�

)]
, (33)

where �(a, z) denotes the incomplete gamma function, defined by

�(a, z) =
∫ ∞

z
ta−1e−t dt. (34)

Equations (30) and (33) determine h� and hr when ε and Q̂ = Q are prescribed.
From (30), we see that for physically meaningful (i.e., finite and positive) hr we require

h� < η−1/3; Eq. (30) also shows that hr → ∞ and dh/dy → ∞ as h� → η−1/3, i.e., both the
fluid depth and the free-surface slope at the right-hand wall become infinite in this limit. Thus there
is a limiting value of h�, denoted by h�max = h�max(ε) = η−1/3 (and, as we shall see, a correspond-
ing limiting value of 
̂, denoted by 
̂max = 
̂max(ε)), at and beyond which there is no physically
meaningful solution.

B. Small-helix-curvature limit

At leading order in the limit of small helix curvature, ε → 0+ (the case considered by Stokes
et al.21), from (31) we have η → 6 and from (28) we have

h = h�

(
1 − 3h3

�(1 + y)
)−1/3

. (35)

Also the flow-domain area 
̂ and the flux Q̂ in (32) and (33) simplify to


̂ = 1

2h2
�

[
1 − (

1 − 6h3
�

)2/3
]
, Q̂ = −1

9
log

(
1 − 6h3

�

)
. (36)

Prescribing the value of the flux Q̂ = Q we thus obtain h� and hr in terms of Q:

h� =
(

1 − exp(−9Q)

6

)1/3

, hr =
(

exp(9Q) − 1

6

)1/3

. (37)

Therefore,

h =
[

6

1 − exp(−9Q)
− 3(1 + y)

]−1/3

, (38)

and hence


̂ =
(

3√
2(1 − exp(−9Q))

)2/3

(1 − exp(−6Q)) . (39)

In the limit of small flux Q → 0, we have h� ∼ (3Q/2)1/3 → 0, hr ∼ (3Q/2)1/3 → 0 and

̂ ∼ (12Q)1/3 → 0, and in the limit of large flux Q → ∞ we have h� → h�max(0) = 6−1/3

� 0.5503, hr ∼ 6−1/3 exp(3Q) → ∞ and 
̂ → 
̂max(0) = (9/2)1/3 � 1.6510. Note that h�, hr and

 are all monotonically increasing functions of the flux Q, and so, in particular, 
̂ < 1.6510 for all
Q. Figure 4 shows the free-surface shape given by (35) for a range of values of h�. In particular,
Figure 4 shows that the free-surface shape changes rapidly with h� as the latter approaches the
limiting value 6−1/3.
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FIG. 4. Free-surface shape in the limit ε → 0+ for h−3
� = 6, 7, 8, 10, 15, 30, 50, 100, i.e., h� � 0.55, 0.52, 0.50, 0.46, 0.41,

0.32, 0.27, 0.22.

C. Unit-helix-curvature limit

In the limit of unit helix curvature, ε → 1− (satisfying the physical requirement that ε < 1),
from (31) we have η → ∞ and, since 0 < h� < h�max = η−1/3 → 0, we see that h� = 0 at leading
order in the limit ε → 1−. Moreover, from (29)–(33) it may readily be seen that

h = hr

[
1 − 3h3

r log

(
1 + y

2

)]−1/3

(40)

and


̂ = 2

31/3
�

(
2

3
,

1

3h3
r

)
exp

(
1

3h3
r

)
, Q̂ = 2

9
�

(
0,

1

3h3
r

)
exp

(
1

3h3
r

)
(41)

at leading order in the limit ε → 1−. Prescribing the value of the flux Q̂ = Q in (41) gives hr

implicitly in terms of Q. In the limit of small flux Q → 0, we have hr ∼ (3Q/2)1/3 → 0 and

̂ ∼ (12Q)1/3 → 0, and in the limit of large flux Q → ∞ we have hr ∼ 3−1/3 exp(γ /3 + Q/2)
→ ∞ (where γ � 0.5772 is Euler’s constant) and 
̂ → 
̂max(1) = (2/31/3)�(2/3) � 1.8778.
Note that both hr and 
 are monotonically increasing functions of the flux Q, and so, in particular,
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FIG. 5. Free-surface shape in the limit ε → 1− for h−3
r = 0, 1, 2, 5, 100, i.e., hr � ∞, 1, 0.79, 0.58, 0.46, 0.22.
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FIG. 6. Streamlines of the secondary flow, ψ̂ = C × 10−5 where C = 0.0 (outer curve), −0.2, −0.4, . . . , −3.4 (inner curve),
for a rectangular channel with helix curvature ε = 0.01 and torsion τ = 0.1. The aspect ratio of the flow domain is δ = 0.1 and
the flux is Q = 0.1. Black curves correspond to the thin-film model and grey curves correspond to the full small-helix-torsion
model. The arrows show the direction of the flow.


̂ < 1.8778 for all Q. Figure 5 shows the free-surface shape given by (40) for a range of values
of hr.

D. Verification of the thin-film model

In this subsection, we verify the thin-film solution for different values of the helix curvature ε

(which, for the scaling used in our thin-film model, is the only free parameter in the problem for
the free-surface shape) by comparing it with the numerical solutions of the full small-helix-torsion
model described in Subsection II B. To do this we must choose values for the helix torsion and fluid-
domain aspect ratio, which we fix to be τ = 0.1 and δ = 0.1. As we have already seen, the parameters
ε, τ and δ are the only parameters needed in the thin-film and the full small-helix-torsion models.
The initial flow-domain geometry for the COMSOL computation is that given by the thin-film model
for prescribed flux Q = 0.1. Since the free surface is, in general, modified by COMSOL, we also
compare the flow-domain area and the flux of the two solutions. Because of the different scalings in
the two models, we must use appropriate scalings of the results to make direct comparison between
them possible. We have

z = δ ẑ, p = R

δ
p̂, ψ = δ2 R ψ̂, 
 = δ 
̂, Q = δ sin α Q̂, (42)

where carets again denote variables of the thin-film model, and

δ2 R =
(

35

6τ sin α

)
δ,

R

δ
=

(
35

6τ sin α

)
1

δ2
, sin α = τ√

τ 2 + ε2
. (43)

Since τ is held fixed as we vary ε, we have limε→0+ sin α = 1 and limε → 1sin α � τ for small
torsion τ .

Figures 6–8 show the streamlines of the secondary flow, the axial velocity contours and the
pressure contours, respectively, for both the full small-helix-torsion and the thin-film models with
small helix curvature ε = 0.01, while Figures 9–11 show the corresponding plots for large helix
curvature ε = 0.9. All of these figures also show the free-surface shapes predicted by both models.
The agreement between the results of the two models is excellent. At the scale used, the free-surface
shape and pressure contours are in remarkably good agreement, differing only near to the vertical
channel walls. The axial velocity contours also agree extremely well, also differing only near to the
vertical channel walls. The most significant differences between the predictions of the two models
are in the streamlines. These differences are due to the fact that the thin-film model satisfies the
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FIG. 7. Axial flow contours, u = C × 10−1 where C = 0.0 (lowest curve), 0.2, 0.4, . . . , 1.8 (highest curve), for a rectangular
channel with helix curvature ε = 0.01 and torsion τ = 0.1. The aspect ratio of the flow domain is δ = 0.1 and the flux is
Q = 0.1. Black curves correspond to the thin-film model and grey curves correspond to the full small-helix-torsion model.

no-slip boundary condition only along the bottom of the channel, while the no-slip conditions along
the vertical channel walls were necessarily neglected. In reality there is a thin boundary layer along
these walls which the thin-film model does not resolve, but which is shown in the solution to the
full small-helix-torsion model. The thickness of these boundary layers reduces with the aspect ratio
δ, and goes to zero in the thin-film limit, δ → 0. Hence the smaller the value of δ used for our full
small-helix-torsion model, the better the agreement with the thin-film model should be. The effect of
this boundary layer is greater at the right-hand wall of the channel, near to which the axial velocity
in the thin-film model is largest, than at the left-hand wall, where it is smallest. Similar excellent
agreement between the two models was found for ε = 0.5, but this is not shown here for brevity.
The agreement in the free-surface shape improves slightly as the helix curvature ε decreases.

The flow-domain area 
̂ and flux Q̂ predicted by each model for each of ε = 0.01, 0.5 and 0.9
are shown in Table I. In all cases, the flux Q̂ given by the full small-helix-torsion model is just a little
less than the value Q̂ = 0.1 used to obtain the thin-film solution. This larger flux in the thin-film
model corresponds to the neglect of the no-slip conditions on the vertical channel walls, as discussed
above. The flow-domain areas 
̂ agree very well.
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FIG. 8. Pressure contours, p̂ = C × 10−2 where C = 0.0 (highest curve), 0.2, 0.4, . . . , 6 (lowest curve), for a rectangular
channel with helix curvature ε = 0.01 and torsion τ = 0.1. The aspect ratio of the flow domain is δ = 0.1 and the flux is
Q = 0.1. Black curves correspond to the thin-film model and grey curves correspond to the full small-helix-torsion model.
The only discernible differences between the two sets of curves are at the right-hand channel wall.
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FIG. 9. Streamlines of the secondary flow, ψ̂ = C × 10−4 where C = 0.0 (outer curve), −0.2, −0.4, . . . , −5.6 (inner curve),
for a rectangular channel with helix curvature ε = 0.9 and torsion τ = 0.1. The aspect ratio of the flow domain is δ = 0.1 and
the flux is Q = 0.1. Black curves correspond to the thin-film model and grey curves correspond to the full small-helix-torsion
model. The arrows show the direction of the flow.

E. Discussion of results

Having shown the thin-film model to be in good agreement with numerical solutions to the full
small-helix-torsion model, we now use it to analyse further the flow in a rectangular channel. The
effects of both the helix curvature ε and the flux Q on the free-surface shape are of particular interest.
Also of interest is how well the solutions in the limits ε → 0+ and ε → 1− represent the solutions
for small non-zero curvature and for curvature near to unity.

1. Fluid depth at the vertical channel walls

Figures 12–14 show the fluid depths at the left-hand and right-hand channel walls, h� and hr,
as functions of the prescribed flux Q for a range of values of the helix curvature ε. Figure 12 shows
both h� and hr over a relatively small range of Q, and shows that h� quite quickly approaches its
maximum value h�max = η−1/3, with η given by (31), while hr continues to increase without bound.
Figures 13 and 14 show h� and hr, respectively, over a larger range of Q. Clearly, the maximum
value of h� has almost been reached by Q = 1 for all values of ε shown. This is also shown in
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FIG. 10. Axial flow contours, u = C × 10−2 where C = 0.0 (lowest curve), 0.2, 0.4, . . . , 4.2 (highest curve), for a rectangular
channel with helix curvature ε = 0.9 and torsion τ = 0.1. The aspect ratio of the flow domain is δ = 0.1 and the flux is
Q = 0.1. Black curves correspond to the thin-film model and grey curves correspond to the full small-helix-torsion model.
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FIG. 11. Pressure contours, p̂ = C × 10−1 where C = 0.0 (highest curve), 0.2, 0.4, . . . , 6 (lowest curve), for a rectangular
channel with helix curvature ε = 0.9 and torsion τ = 0.1. The aspect ratio of the flow domain is δ = 0.1 and the flux is
Q = 0.1. Black curves correspond to the thin-film model and grey curves correspond to the full small-helix-torsion model.
The only discernible differences between the two sets of curves are at the two vertical channel walls.

Figure 15, which shows h�max = η−1/3 plotted as a function of ε, with crosses showing computed
values of h� for Q = 1 for a range of values of ε. From Figure 15, it is apparent that the computed
value of the flux Q̂ becomes very sensitive to the value of h� as it increases. Hence, as Q increases,
h� needs to be calculated to an increasingly higher precision. Eventually, for moderately large Q we
reach the limits of numerical precision. For ε = 0.05 this occurred at Q � 3.5, but for ε ≥ 0.25 it was
possible to compute up to Q = 4 (which was the largest value of Q considered) without significant
loss of accuracy. For satisfactory numerical accuracy at these larger values of the flux it was essential
to compute Q̂ using a quadrature function of sufficient accuracy. The trapezoidal rule was not suitable,
but MATLAB’s higher order quadrature functions (namely, adaptive Simpson, adaptive Lobatto, and
adaptive Gauss-Konrod) all gave satisfactory results. The adaptive Gauss-Konrod function (quadgk)
was selected for its accuracy and because it handles moderate singularities at the endpoints of the
domain. Figures 12–14 also show that for 0 < ε < 1 the fluid depths h� and hr are monotonically
decreasing functions of the helix curvature ε and monotonically increasing functions of the flux Q,
satisfying h� → 0 and hr → 0 as Q → 0, and h� → h�max = η−1/3 and hr → ∞ as Q → ∞, in
accord with the behaviour in the limits ε → 0+ and ε → 1− described earlier.

2. Flow-domain area

Figure 16 shows the flow-domain area, 
̂, plotted as a function of the prescribed flux Q for
a range of values of the helix curvature ε. In particular, Figure 16 shows that for 0 < ε < 1
the flow-domain area 
̂ is a monotonically increasing function of the helix curvature ε and of
the flux Q, satisfying 
̂ → 0 as Q → 0 and 
̂ → 
̂max(ε) as Q → ∞, again in accord with
the behaviour in the limits ε → 0+ and ε → 1− described earlier. In particular, this means that

̂ < 
̂max(1) � 1.8778 for all values of ε and Q.

TABLE I. Comparison of the flow-domain area 
̂ and the flux Q̂ for the thin-film and full small-helix-torsion models.

Thin-film model Small-helix-torsion model

ε 
̂ Q̂ = Q 
̂ Q̂

0.01 1.05485 0.10000 1.05486 0.096000
0.5 1.05489 0.10000 1.05501 0.096292
0.9 1.05291 0.10000 1.05347 0.096460
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FIG. 12. Fluid depths at the left-hand and right-hand channel walls, h� and hr, as functions of the prescribed flux Q in the
asymptotic limits ε → 0+ (dashed), ε → 1− (dashed-dotted), and for ε = 0.05, 0.25, 0.5, 0.75, 0.9 (solid). The lower set of
curves is for h� and the upper set for hr. The arrows show the direction of increasing ε. Note that h� = 0 for all Q at leading
order in the limit ε → 1−. h� and hr are shown separately in Figures 13 and 14 for a larger range of Q.

3. Free-surface shape

Figure 17 shows the free-surface shape h(y) with prescribed flux Q = 0.1 for a range of values
of the helix curvature ε. In particular, Figure 17 shows how the curvature of the free surface changes
sign as ε increases. Differentiating (27) with respect to y we have

h′′ = h4(4h3 − ε)

(1 + εy)2
, (44)

where a dash denotes differentiation with respect to argument, from which it is clear that the free-
surface curvature (i.e., h′′ in the thin-film approximation) changes sign when h passes through
(ε/4)1/3. Substituting h� = (βη)−1/3, where β ≥ 1 and η is given by (31), into (28) we find that

h′′ � 0 for y � ζ, where ζ = 1

ε

[
e−4/3

(
1 + ε

1 − ε

)β−1

(1 + ε) − 1

]
, (45)
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FIG. 13. Fluid depth at the left-hand channel wall, h�, as a function of the prescribed flux Q for the asymptotic limit
ε → 0+ (dashed) and for ε = 0.25, 0.5, 0.75, 0.9, 0.99, 0.999 (solid). The arrow shows the direction of increasing ε. The
curve for ε = 0.05 (not shown) cannot be distinguished from that for ε → 0+ at the scale used. Note that h� = 0 for all Q at
leading order in the limit ε → 1−.
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FIG. 14. Fluid depth at the right-hand channel wall, hr, as a function of the prescribed flux Q in the asymptotic limits
ε → 0+ (dashed), ε → 1− (dashed-dotted), and for ε = 0.05, 0.25, 0.5, 0.75, 0.9 (solid). The arrow shows the direction of
increasing ε.
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FIG. 15. The maximum possible fluid depth at the left-hand channel wall, h�max = η−1/3, where η = (3/ε) log ((1 + ε)/
(1 − ε)), plotted as a function of the helix curvature ε. The crosses show the fluid depth h� for flux Q = 1 in the asymptotic
limit ε → 0+ and for ε = 0.05, 0.25, 0.5, 0.75, 0.9, 0.99.
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FIG. 16. Cross-sectional area of the flow domain 
̂ as a function of the prescribed flux Q in the limits ε → 0+ (dashed),
ε → 1− (dashed-dotted), and for ε = 0.05, 0.25, 0.5, 0.75, 0.9 (solid). The arrow shows the direction of increasing ε.
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FIG. 17. Free-surface shape h(y) for ε = 0.05, 0.25, 0.5, 0.75, 0.9, 0.99 (solid) and in the limits ε → 0+ (dashed) and
ε → 1− (dashed-dotted) with flux Q = 0.1.

i.e., that the curvature h′′ changes sign from negative to positive at y = ζ . In particular, as
Figure 17 confirms, in the limit ε → 0+ we have ζ → −∞ and hence the curvature is al-
ways positive across the entire channel (in agreement with the solution in that limit described in
Subsection IV B), while in the limit ε → 1− we have ζ → +∞ and hence the curvature is al-
ways negative across the entire channel (in agreement with the solution in that limit described in
Subsection IV C). As the helix curvature ε increases, the slope of the channel decreases because
the helix torsion is held constant, and the free-surface shape changes from one resembling the
paraboloidal shape generated by a forced (rotational) vortex, seen, for example, when a container of
fluid is rotated about its axis, to one resembling that generated by a free (irrotational) vortex, seen,
approximately, when water drains through a plug hole.29

Figure 18 shows the free-surface shape h(y) with fixed helix curvature, specifically ε = 0.99, for
a range of values of the prescribed flux Q. Figure 18 also shows the asymptotic solution in the limit
ε → 1− (which is, as expected, virtually indistinguishable for all values of Q) and the asymptotic
solution in the limit Q → ∞ given by (40) in the limit hr → ∞. In particular, Figure 18 shows
that the free-surface shape in the limit Q → ∞ is very similar to that for Q = 1, except near to
the left-hand channel wall where, in the limit Q → ∞, the fluid depth drops rapidly to zero at the
wall. In the case of near-unity helix curvature and large flux, the free-surface shape resembles that
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FIG. 18. Free-surface shape h(y) for Q = 0.1, 0.2, 0.3, 0.4, 0.5, 1 with ε = 0.99. The arrow shows the direction of increasing
Q. The solid curves show predictions of the thin-film model and the dashed curves show the virtually indistinguishable
asymptotic solution in the limit ε → 1−. The asymptotic solution in the limit Q → ∞ (shown dashed-dotted) is given by
(40) in the limit hr → ∞.
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of a compound vortex;29 near to the left-hand channel wall (y = −1) the free-surface shape is like
that generated by a free vortex (with negative curvature) and, as y increases, its shape becomes like
that generated by a forced vortex (with positive curvature). Using (40) we find that in the limit
ε → 1−, h′′ changes from negative to positive at y = 2 exp[(h−3

r − 4)/3] − 1. In particular, as
Figure 18 shows, in the limit Q → ∞ (hr → ∞) the sign of h′′ changes at y � −0.4728, while for
Q � 0.1 (hr = 0.6) h′′ < 0 across the entire width of the channel, as shown by the curve for Q = 0.1.

V. CONCLUSIONS

We developed a thin-film model for flows of small depth in helically wound channels. The helix
torsion was assumed to be small and the helix radius must be greater than the half-width of the
channel. The channel may have any cross-sectional shape, and it was shown that the solution for
the film depth as a function of horizontal position in the channel cross-section is governed by the
first-order ODE (15) (which must, in general, be solved numerically). With the scaling used, the
fluid depth (and therefore the free-surface shape) depends only on the helix curvature ε and the fluid
depth at a given position, usually taken to be the left-hand end of the free surface. The volume flux
down the channel is found by quadrature.

The present work focused on a channel with rectangular cross-section, for which an exact
solution of (15) is available, greatly facilitating detailed analysis of the flow. We found that there
is a (finite) upper limit on the fluid depth at the left-hand channel wall, h�, dependent on the helix
curvature, above which there is no physically meaningful solution. At this value of h� both the fluid
depth and the slope of the free surface at the right-hand channel wall are infinite. The upper limit
on h� corresponds to infinite flux down the channel, and so the range of possible values of h� covers
all possible fluxes Q (i.e., ranging from zero to infinity). In the limit as the flux goes to infinity
the flow-domain area also approaches a (finite) upper limit. Computed results for non-zero helix
curvature show the same behaviour as in the limits of zero- and unit-helix-curvature.

An interesting feature of this problem is the change in the free-surface shape as the helix
curvature increases to unity for fixed values of the flux and (small) helix torsion. If the helically
wound channel is viewed from above, the axial velocity component resembles that of a vortex flow.
In the case of small flux, the free-surface shape at small helix curvature resembles that generated
by a forced vortex; as the helix curvature increases it changes to resemble that generated by a free
vortex. In the case of large flux the free-surface shape at small helix curvature still resembles that
of a forced vortex; as the helix curvature increases the free-surface shape near the left-hand channel
wall resembles that generated by a free vortex but changes to a shape resembling a forced vortex
away from that wall, i.e., it has a shape consistent with a compound vortex. Given the helix curvature
ε and the flux Q, which determines the fluid depth at the left-hand vertical wall h�, we are able
to determine from (45) whether the free surface has a shape corresponding to a free, forced, or
compound vortex and, in the latter case, the inflexion point. In addition, the helix torsion is small.
It is, then, not surprising that the flow has features of free, forced and compound vortex flow, as we
have inferred from the free-surface shape. Note that our findings call into question the assumption
made by Holland-Batt11 of free vortex flow in the outer region of the channel. The validity of this
assumption depends on the problem parameters, and for moderate to large flux the flow in the outer
region of the channel looks more like that of a forced vortex than a free vortex. Where the helix
torsion and curvature are small, as in Holland-Batt’s more recent work on large diameter spiral
separators of rectangular cross-section,22 the free-vortex assumption is not justified. The thin-film
model presented in the current work provides an alternative means for predicting the flow within
spiral separators that should be more accurate and more generally applicable, and is straightforward
to use.

Corresponding results for channels whose cross-sectional shapes are other than rectangular
may be obtained. In more typical cases (such as a channel of parabolic cross-section), the fluid
depth at one or both points of contact of the free surface with the channel wall is zero and the
horizontal position(s) of the contact point(s) must be found. In addition, it is in general no longer
possible to obtain a closed-form solution of (15) or, in the few cases where an exact solution is
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available, its form often does not allow analysis of the flow to the extent possible for the rectangular
case, so that behaviour must be inferred from numerical results, which presents some additional
challenge.

Finally, we note that the validity of the small-torsion assumption everywhere in the flow domain
requires that (A + y)2 + P2  aP for y� < y < yr. In particular, for the rectangular channel, as
the curvature of the channel axis approaches unity (ε → 1) and y� → −A, torsion effects may
be non-negligible in a region of the channel near to the vertical axis around which the channel is
wound.

ACKNOWLEDGMENTS

Two extended visits by Y.M.S. to the University of Strathclyde were made possible by funding
from the UK EPSRC (Research Grant No. GR/ S71873), the University of Adelaide Special Studies
Program, and a University of Adelaide ECMS Faculty Grant.

APPENDIX: NUMERICAL SOLUTION OF THE FULL SMALL-HELIX-TORSION MODEL

We here describe numerical solution of the full small-helix-torsion model of Sec. II, using the
finite-element package COMSOL Multiphysics (version 3.5a). In order to implement the zero-stress
boundary conditions (7c) and (8) in the standard finite-element manner, i.e., as the natural boundary
conditions of the Navier–Stokes model, we add the y and z derivatives of the continuity equation (3)
to (4b) and (4c), respectively, to obtain

v
∂v

∂y
+ w

∂v

∂z
= − ∂p
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+ 2

∂2v
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∂y
− εv

1 + εy

)
+ K u2

2(1 + εy)
,

(A1a)
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)
− R2 cos α

F2
, (A1b)

which replace (4b) and (4c).
As discussed by Stokes,19, 20 it is necessary either to determine the points of contact of the

free surface with the channel wall a priori or to have a means of varying them during the solution
process. In the present work, considering flows of small depth, we use the thin-film model of
Sec. III to define the initial flow domain for the numerical solution process and assume the contact
points to be known a priori.

Next note that (4a), with boundary conditions u = 0 on the channel walls and (7a) on the free
surface, has the form of a modified steady-state heat conduction-convection problem with u playing
the role of temperature, while (3), (A1a), and (A1b), along with boundary conditions (5) on the
channel walls and (7b) and (7c) on the free surface, comprise a modified two-dimensional steady-
state Navier–Stokes problem. Thus, a heat conduction-convection model for the axial velocity (u)
and a Navier–Stokes model for the secondary-flow components (v,w) and pressure (p) are set up
within COMSOL Multiphysics. These are coupled through the three velocity components. In the
special case of a straight channel, ε = 0, these are standard models:

1. the heat conduction-convection equation with source term Rsin α/F2, “temperature” u = 0
on the channel walls and zero “heat conduction” through the free surface;

2. the Navier–Stokes equations with body force (Ku2/2, −R2cos α/F2), no slip and no penetration
on the channel walls and zero stress conditions on the free surface.

In the general case of a curved channel, ε �= 0, the extra terms in (4a), containing the fac-
tor ε/(1 + εy), must be explicitly added to the heat conduction-convection model for u, and the
usual boundary condition at the free surface must be changed to allow non-zero heat conduction
through it:

∂u

∂y
ny + ∂u

∂z
nz = εu

1 + εy
ny . (A2)
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With respect to the Navier–Stokes model for v, w, p, we first write the continuity equation (3) in
the form

∂v

∂y
+ ∂w

∂z
+ εv

1 + εy
= 0, (A3)

showing that an extra term, εv/(1 + εy), must be added to the usual form of the continuity equation.
Also, the additional terms in (A1a) and (A1b), containing the factor ε/(1 + εy), must be explicitly
added to the usual form of the Navier–Stokes equations and the body force changed slightly to
(Ku2/(2(1 + εy)), −R2 cos α/F2).

Once the conduction-convection and Navier–Stokes models have been solved for the velocity
and pressure, the flow-domain geometry is modified via a COMSOL Multiphysics moving mesh
(augmented Lagrangian-Eulerian) model. This maps between fixed reference mesh coordinates
(Y, Z) and the moving physical mesh coordinates (y, z). Motion of the physical mesh in the interior
of the flow domain is determined by solving Laplace’s equation for each of y(Y, Z) and z(Y, Z),
subject to constraints on the boundary. At the channel walls the mesh does not move, while at the
free surface the mesh moves according to the normal velocity component. An iterative procedure of
solving for velocity and pressure, and then using this to update the physical mesh, is run until the
kinematic condition (8) is satisfied. The kinematic condition is considered to be satisfied when∫

�

(vny + wnz)
2 ds < tol, (A4)

where � denotes the boundary of the flow domain, s denotes arc length along �, and tol is a small
tolerance of order 10−4 or less.

Finally, we also determine the stream function ψ defined by (9). In order to obtain ψ at all mesh
nodes for export to MATLAB and to plot streamlines for comparison with those obtained from the
thin-film model, the stream function is found by solving Poisson’s equation

∂2ψ

∂y2
+ ∂2ψ

∂z2
= − [(1 + εy)ω + εw] , (A5)

where ω = ∂w/∂y − ∂v/∂z is the component of vorticity in the direction of the primary flow.
In summary, the numerical solution to the present helically symmetric small-torsion model is

found, using COMSOL Multiphysics, by the iterative solution of four sub-problems: (1) a convection-
conduction model for the primary flow velocity, (2) a Navier–Stokes model for the secondary flow
velocity and pressure, (3) a moving mesh problem for updating the flow-domain geometry, and (4)
Poisson’s equation for the stream function. The initial flow-domain geometry used is that predicted
by the thin-film model, which is adjusted a little by the iterative numerical solution process.
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