
Lanier’s patents for vacu- and para-planes 1

IMPLEMENTING LANIER’S PATENTS FOR STABLE, SAFE,

ECONOMICAL ULTRA-SHORT WING VACU- AND

PARA-PLANES.

G.C. Hocking1, Y.M. Stokes2 and W.L. Sweatman3

Six patents were secured by E.H. Lanier from 1930 to 1933 for aero-
plane designs that were intended to be exceptionally stable. A feature
of five of these was a flow-induced “vacuum chamber” that it was
thought provided superior stability and increased lift compared to
typical wing designs. Initially this chamber was in the fuselage, but
later designs placed it in the wing by replacing a section of the upper
skin of the wing with a series of angled slats. We investigated this
wing design using inviscid aerodynamic theory and viscous numeri-
cal simulations and found no evidence to support the claims made.
Rather we suggest that any improvement in lift and/or stability seen
in the few prototypes that were built was due to thicker airfoils than
was typical at the time.

1. Introduction

BackYard TEch are interested in aspects of aircraft design described by Ed-
ward H. Lanier in a series of six United States patents obtained from 1930 to
1933. Lanier’s overall aim was to provide an exceptionally stable aeroplane that
would both fly normally and recover from undesirable attitudes without pilot
aid. BackYard TEch were specifically interested in Lanier’s idea of creating a
vacuum cavity in the wing by replacing a section of the upper skin of the wing
with a series of angled slats, believing that this wing design would give superior
lift and stability compared to typical wing designs.

The MISG group approached this problem with a background reading of
Lanier’s patents, calculations and study based on the basic theory of aerody-
namics, numerical solution of potential flow around an ellipse, and numerical
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simulation of viscous flow around an airfoil. The effects of angle of attack,
ground separation and wing thickness were considered. The complexity of the
situation and lack of experimental data made mathematical modelling difficult.
To the limited extent to which modelling was possible there was no indication
that modern aeroplane design had overlooked a major feature which would im-
prove flight characteristics. Lanier’s designs from the 1930s are now over seventy
years old and are perhaps more readily related to the pioneering aircraft of the
early 1900’s than to those of the present day.

Details obtained of aircraft studies based on Lanier’s patents from the 1930’s
were very limited. A few non-technical articles appeared in contemporary pop-
ular science magazines. We were unable to find any reference or citation of the
designs in the scientific literature. The main sources of information were Lanier’s
six US patents.

In this paper, we begin by briefly summarising flight theory and then at-
tempting to put the designs of Lanier into some historical context. We then
analyse the comments made by Lanier in the original patent documents. This is
followed by some calculations made from the claimed performance of the vacu-
plane in the existing documents, and calculations of lift made using an inviscid
model. Next, results of viscous-flow simulations, done using the finite-element
PDE solver Fastflo (3), for a ‘slat-wing’ (with open top surface) and a more
conventional closed wing are compared. Finally, we look at viscous flow over a
single slot, again using numerical simulations from the Fastflo PDE solver.

2. Background Theory and Historical Perspective

The theory of flight is now well-established. Aircraft undergo four different forces
that dictate their flight characteristics: lift, weight, thrust and drag. In level
flight, lift and gravitational forces are in balance. Similarly, at a constant speed,
the forward thrust must be of the same magnitude as the drag created by the
motion. The weight and thrust are characteristic of the aircraft with its load
and the engine, respectively. Lift and drag are influenced by the aerodynamics
of the plane’s lifting surfaces and fuselage and, consequently, are the main focus
of this work. More detailed discussions of what follows can be found in (1; 4).

Lift is usually recorded in terms of the lift coefficient CL, which is a non-
dimensional measure of lift that can be used in any consistent system of units.
Thus the lift on an airfoil can always be calculated as L = CLρU2A/2, where U
is the speed, A = chord × span is the projected area of the lifting surface, and
ρ is the air density. In a similar way, drag is recorded as a drag coefficient, i.e.
CD, where total drag is D = CDρU2A/2.
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Lift is generated by the difference in flow velocity above and below the wing.
The air flows more quickly over the upper surface, and therefore has lower pres-
sure (according to the Bernoulli equation) than the more slowly moving air under
the wing. Factors influencing lift are the shape of the wing, the angle of attack
and the proximity to the ground. Drag consists of two types, form and induced.
Form drag is the effect of viscosity as the air “sticks” to the surface of the plane.
Induced drag results from the fact that wings have a finite length; the flow of
air around the wing tips, from the high pressure region below the wing to the
low pressure region above it, creates trailing vortices that result in further drag.

Flight is a trade-off between lift and drag. Mechanisms that increase lift,
such as additional flaps or small extra airfoils that prevent separation around the
leading edge, usually have the effect of increasing drag. Modern aircraft usually
have some of these additional devices that extend during take-off and landing
where higher lift is desirable and extra drag is not so important (in fact during
landing it is often desirable).

Lift is generally proportional to the angle α of the wing relative to the direc-
tion of travel or air flow (the angle of attack) and the square of the velocity. We
assume that the wing span is long relative to its thickness and chord (breadth).
Then the flow is essentially two-dimensional enabling us to consider flow in a
plane containing a cross-section of the wing. Lift per unit wing-span can then be

quantified by the formula L = ρUΓ, where Γ =

∮

q ·dr around a loop containing

the wing cross-section, is known as the circulation. (The circulation is not an
actual flow.) This has to be determined subject to the Kutta condition; that
the air flow separates smoothly from the (sharp) trailing edge of the wing. For
relatively thin, symmetric wings, Γ ≈ πUC sinα, where C is the chord length of
the wing, so that the lift per unit span is L = πρU2C sinα, or CL = 2π sinα.

However, if the angle of attack becomes too large, the flow no longer follows
around the wing but separates from the upper surface leading to a sudden and
dramatic loss of lift called stall. The thicker the wing, the more likely this is
to occur since the air has to divert more rapidly around the blunter leading
edge, but it can also be influenced by the roughness of the surface, and in older
aircraft, especially the early metallic bodies, this could play a significant role.

Aircraft from the time of the Wright Brothers until after World War I were
mostly bi-planar. Biplanes typically had two thin wings made of wood and
canvas held together by a variety of struts and wires. These were relatively light
and so required less lift, but had high drag due to the wires, struts and rough
surfaces.

Early monoplane wings were still quite thin, although they were fatter than
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biplane wings because the structural framework was internal. The slightly fatter
wings generated slightly higher lift, but more powerful engines enabling higher
speeds and hence considerably more lift (increasing with the square of speed)
were a major factor in enabling the evolution of the monoplane. Rapid develop-
ment between the two World wars led to planes designed for both long distance
travel and high air speed, as adventurers tried to set records of both types.
Further rapid advances in aircraft design during World War II, led to the first
jet-powered craft.

3. Lanier’s Patents

Lanier registered six US patents for aeroplanes in the early 1930’s namely 1750529
and 1779005 in 1930, 1803805 and 1813627 in 1931, 1866214 in 1932 and 1913809
in 1933 ((6)–(11)). Each patent is for an entire aircraft design and includes com-
mentary on such matters as the windows and landing gear. The design aspect of
interest here is the presence of cavities or slats on the upper surface of the wing
and fuselage. In the early patents it was claimed that the cavity designs im-
proved stability; later patents claimed enhanced lift as well. (The third of these
patents (8) is not relevant here since it concerns an aeroplane with a top-wing
and makes no reference to cavities or slats.)

Lanier in part attempted to explain increased lift from one or more cavities
in the wings and/or fuselage as an effect of a partial vacuum set up in the
aeroplane’s wings and body. This space would then be at a lower density than
the air surrounding the aircraft increasing buoyancy. Lanier also appears to
anticipate an additional lift effect by exposing the inside top surface of the lower
shell of the wing. Being patents the descriptions are on the whole general without
detailed measurements. We now consider the patents in more detail.

The first two patents from 1930 introduce Lanier’s idea of a “vacuum cham-
ber”. Essentially this is constructed by removing a portion of the upper wing
surface allowing flow between the internal wing cavity and the outside. At this
stage there is no claim of additional lift from the design, the purpose of including
the vacuum chamber being purely stability (6):

“ . . . it is an object to provide a machine that will not nose dive,

side slip or tail spin under ordinary circumstances, but should this

happen, the machine will right itself without the pilot aid.”

The second patent is directed towards larger machines and develops the idea
of including a system of slats (or air buffers) across the hole in the upper wing
surface. These buffers would not extend to the base of the vacuum chamber
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and would preferably be hinged so that they could close the top of the vacuum
chamber when desired. Lanier argues for the inclusion of these buffers to reduce
the flow of air into the vacuum chamber (7):

“When the plane is moving at slow speed or the engine is throttled

down, there is a tendency for the air to flow down into the vac-

uum chamber from above. The provision of the air buffers, however,

causes this air to be deflected upwardly and rearwardly, thus prevent-

ing it from entering the vacuum chamber to any considerable extent.”

The buffers remained a feature of the later patents and with his fourth patent
(9) Lanier made the further claim that his vacuum chamber increases lift in
addition to improving stability:

“ I have found by experiments and tests that the lifting power of

the vacuum chamber exceeded my expectations, and I have further

found that an aeroplane can be designed utilising the principle of the

vacuum chamber lift in which the wings can be wholly eliminated or

reduced to dwarf wings, . . . ”

The fifth patent (10) contains many of the earlier features and claims and is
perhaps the most useful for obtaining an insight into Lanier’s thoughts. He
reiterates his goal of safety through stability but also mentions features that
would be associated with a reduced wing size and increased lift. His vacuum
chamber here extends to the whole of the wing and perhaps a portion of the
fuselage and he explicitly claims that the partial evacuation of air leads to an
increased lift. In addition to this lift, due to the buoyancy of a reduced air density
within the plane (as in a balloon), Lanier also appears to claim a mechanical lift
by exposing the bottom inner surface of the wing (in practice this would in part
be offset by reduced lift on the inner top surface of the wing). He states that
apart from the vacuum pocket the wings can be otherwise conventional:

“The theory of getting additional lift from a given wing area is ap-

plicable to the conventional wings of today with few changes, simply

by making the wing air-tight and supplying vents or openings in the

top surface to evacuate the air, thus increasing the payload without

an increase in structural weight. Lift is also exerted on the inside

bottom skin of the airfoil above the cabin which, on the conventional

wing, is negligible. On planes with large cabins this additional lift

would greatly increase payload.”



6 BackYard TEch

4. Lift Calculations

4.1 Simple calculations

In horizontal flight, the lift must balance the weight of the aircraft. Therefore,
we can estimate the lift coefficient for the aircraft described in Lanier’s patents
by considering the weight.

Popular magazines indicate that the total mass of the Lanier XL-5 (1933)
plane was not much more than M=220 kg including the pilot, and that they
were able to take off at speeds as low as 48 km/hr (≈ 13.3 m/s). At their
cruising speed of U = 128 km/hr (≈ 35.6 m/s) in level flight, the well known
relation L = CLρU2A/2, where A is the wing area (estimated at A ≈ 7 m2) and
ρ is the density of air (1.23 kg/m3 at 15◦C and atmospheric pressure), gives an
estimate for the lift coefficient of CL ≈ 2Mg/(ρU2A) ≈ 0.40, where g = 9.8 m/s2

is the acceleration due to gravity. This is comparable with lift coefficients of
conventional aircraft.

The Lanier Paraplane Commuter 110 (see (2)) was built by Lanier aircraft
corporation circa 1949, sixteen years after the original patents were submitted,
and is of unknown design. This plane had similar takeoff and cruise speeds
but a greater mass (640 kg), and roughly 30% greater wing area, giving a lift
coefficient of CL ≈ 0.88, again within conventional values.

Further to this, we can estimate the drag coefficient by considering the maxi-
mum speed. The XL-5 had a 36 horsepower engine (≈ 26 kW), and an estimated
top speed of 96 mph (≈ 154 km/h or 43 m/s). Drag D = CDρU2A/2 and the
power required is P = D ∗ U ≈ 3.4 × 105CD Watts, so P ≈ 340CD kW. The
engine power is given as PE ≈ 36 Hp ≈ 27 kW, so by comparing we see that the
drag coefficient is CD ≈ 0.079.

The Lanier Paraplane Commuter 110 had a maximum speed of 165 mph or
≈ 74 m/s, but had a 150 Hp ≈ 112 kW engine and slightly greater wing area;
the same calculations give P ≈ 2300CD kW and therefore a drag coefficient of
CD ≈ 0.049.

In calculations to be described later, we have used an airfoil shape approx-
imating the Clark-Y wing, see e.g. (4). Hence, for comparison, the lift and
drag coefficients of this wing at 0◦ (6◦) angle of attack are CL = 0.36 (0.80) and
CD = 0.0217 (0.045).

These very simple calculations are based on information of slightly doubtful
veracity, but indicate that there is nothing out of the ordinary in the behaviour
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of the Lanier aircraft.

A further implication in some of the popular literature and Lanier’s patents
(see above) was that there is a buoyancy effect of air being sucked out of the
wing cavity. However, it is easy to show that the effect of reducing air density
within the wings would have an almost negligible effect, perhaps lightening the
aeroplane by a few hundred grams. For example, the total weight of air in a
wing cavity with a volume of two cubic metres (estimated for the Lanier XL-4)
is about 2.4 kilograms or around 1% of the total weight. However, since not all
of the air could be evacuated, this is a very generous upper bound. In heavier,
larger craft, this proportion would be greatly reduced.

In a stall situation, the pressure would equalise between the inside and out-
side of the wing, causing the air to rush back in, negating any buoyancy effect
in free flight. It may be that the effect of drag on the lighter and slatted (and
hence rougher) wings is greater than that on the engine and cabin, causing the
plane to right itself as it falls, but this will depend on the plane’s attitude at
stall.

4.2 Inviscid Theory

In this section we compute the lift on an elliptic airfoil using an integral equation
method so that we can compare the effects of wing thickness, angle of attack
and the ground effect. The lift on an airfoil can be determined by inviscid flow
theory. The assumption of irrotational flow of an inviscid, incompressible fluid
in two-dimensions (assuming a large wing span) reduces the problem to that of
solving for the velocity potential, Φ, where the velocity field q = ∇Φ, and Φ
must satisfy Laplace’s equation ∇2Φ = 0.

One way to do this is to compute the complex potential

w(z) = Φ + iΨ = Uz +
iΓ

2π
ln(z2 + H2) + χ(z),

where the first term represents the free stream flow with velocity U , the second
the circulation around the wing, H is the height above the ground, and χ(z)
is to be determined to satisfy the boundary conditions for the flow. Complex
function theory says that the velocity potential Φ satisfies Laplace’s equation
provided w(z) is an analytic function. Ψ is the streamfunction, and this must be
constant on the surface of the wing, so that q · n = 0, where n is the normal to
the airfoil with upper and lower surfaces y = f±(x), i.e. there is no flow through
the surface of the wing.

Using Cauchy’s integral formula for the function χ(z) = ξ + iη around an
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integration contour including the body, an image body (symmetric about the
ground) and a circle of infinite limiting radius, leaves

χ(z0) =
1

2πi

∫

γ

χ(z)

z − z0
dz,

and γ consists of a path around the surface of the airfoil and its image beneath the
line of symmetry of the ground. Defining an arclength s, where ds =

√

dx2 + dy2,
and using the chain rule together with invoking the symmetry of the airfoil above
the ground and its image, it can be shown that we obtain an integral equation
for the real part of χ, i.e. ξ, as

ξ(s) =
1

π

∫ sL

0

ξ(t)[y′(t)∆x − x′(t)∆y] − η(t)[x′(t)∆x + y′(t)∆y]

(∆x2 + ∆y2)
(1)

+
ξ(t)[y′(t)∆x − x′(t)∆y+] − η(t)[x′(t)∆x + y′(t)∆y+]

(∆x2 + ∆y2
+)

dt, (2)

where sL is the arclength from the trailing edge of the body to the leading edge
then back, and ∆x = x(t) − x(s), ∆y = y(t) − y(s) and ∆y+ = y(t) + y(s).

Thus the method is to write the surface of the airfoil in parametric form
(x(s), y(s)), and then take a discrete form of the integral using steps in arclength,
sk, k = 1, 2, ..N , and ξk, k = 1, 2, ...N . Replacing the integral by a sum, the
unknown ξk can be obtained by solving N equations in N unknowns. This was
all programmed using Fortran. Further details of the method can be found in
(5).

We also know that the function χ(z) = ξ + iη is made up of the following
components; ξ(s) = Φ(s) − Ux(s) + Γ

2π (β1(s) − β2(s)) and η(s) = Ψ0 − Uy(s) −
Γ
2π ln

[

ρ1(s)
ρ2(s)

]

where Ψ0 is the (constant) value of the stream function on the wing

surface, β1 = arctan(y−H
x ), β2 = arctan(y+H

x ), ρ1 = (x2 + (y − H)2)1/2 and

ρ2 = (x2 + (y + H)2)1/2 are the distances and angles to points on the surface.
Thus, η is known everywhere on the surface and the integral equation can be
used to find ξ and hence the velocity potential.

The crucial factor in determining the lift is the Kutta condition, which says
that the flow detaches smoothly from the end of the airfoil. The circulation
Γ must be chosen to ensure this condition is satisfied. This was achieved by
allowing Γ to be one of the unknowns and including an extra equation to enforce
this condition. In this case, since the trailing edge of an ellipse is blunt, it was
enforced by ensuring the stagnation point formed on the trailing edge of the
ellipse.

A series of simulations was performed using this code for various values of
wing chord, thickness, angle of attack and height above the ground. Figure 1
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Figure 1: Lift (as lift coefficient CL) on elliptic airfoils of maximum thickness
0.05 (+) and 0.3 (×) as angle of attack α varies, compared with the analytic
formula for a flat plate (o). The approximate lift coefficients for a Clark-Y wing
(which has thickness ≈ 0.12) are given as the upper line. Stall occurs at around
18.5◦.

shows the results of increasing lift CL with increasing angle of attack α and
maximum thickness. These data are compared with the analytically computed
formula for lift on a flat plate (or thin symmetric airfoil) and with the lift co-
efficient for the Clark-Y wing, which has maximum thickness of around 0.12.
This non-symmetric airfoil is clearly much better designed than those used for
numerical experiments. The stall of this wing at around 18◦ can be clearly seen
(separation and stall are not computed as part of the other curves). The effect
of wing thickness is seen in that for the elliptic airfoil the wing that is six times
thicker has about 30% more lift at each angle of attack.

Figure 2 shows the effect of proximity to the ground on the lift coefficient for
several different thickness wings. It is clear that ground effect plays a role only
when the ground is within one or two wing chord widths. These results suggest
that we can neglect ground effect from our deliberations.

In general, wing profile designs must balance lift with drag. These results
confirm that thicker wings tend to have higher lift for a given speed. However,
they also tend to have increased drag making it more difficult to attain speed.
In addition, thicker wings at higher speed are more likely to induce separation
of the flow and hence stall (loss of lift).

At the time of Lanier’s patents wings tended to be narrow in profile. How-
ever, one of his patents includes an illustration of a conventional wing together
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Figure 2: Lift (as lift coefficient CL) on elliptic airfoils versus height above
ground h (as a multiple of chord length) for thickness 0.05 (∗), 0.1 (+) and 0.2
(×), all at angle of attack of 10◦.

with the slatted wing of the patent design. The slatted wing is much fatter in
profile than the conventional wing in the picture and if in practice this were
the case then that could provide an explanation of increased lift for the Lanier
aeroplane. The simple calculations in the previous section suggest that the lift
of the Lanier craft was not exceptional compared to conventional airfoils such
as the Clark-Y wing.

5. Numerical Simulations

5.1 Two-dimensional viscous flow over a wing

To compute the form drag of a wing, as well as its lift, we cannot use inviscid the-
ory, but must solve for viscous flow around the airfoil. Hence, two-dimensional
flow over thick and thin airfoils at different angles of attack has been simulated
using the finite-element package Fastflo (3). We here, necessarily neglect in-
duced drag, which is a three-dimensional effect as described earlier, although it
can be significant, especially for short wings. We have also made no attempt to
compute form drag from the aircraft fuselage, focusing rather on the trade-off
between lift and drag for a “slat-wing” compared to a conventional wing.

The geometries of the thick airfoils used in our simulations are shown in
Figure 3. The basic airfoil shape superficially resembles the Clark-Y wing, see
e.g. (4). The chord length C of the airfoil is eleven times the nose radius R, which
is the characteristic length for non-dimensionalisation. To complement flow over
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Figure 3: Typical ‘thick’ airfoil geometry. Conventional airfoil shown solid;
cavity and vertical slats shown dashed.

the conventional shape, the flow is also considered around a similar shape with
a cut away cavity and slats to resemble the Lanier “slat-wing” design. The thin
airfoil geometries are obtained by halving lengths in the vertical direction, giving
a less blunt elliptical nose. Again a conventional closed airfoil and a “slat-wing”
geometry are considered.

The flow is assumed to be two-dimensional, incompressible, steady and lam-
inar, with a Reynolds number of 10. Although, Reynolds numbers of order 105

are to be expected, this is about the maximum that Fastflo can reliably handle
for all simulations done, and no other simulation packages were available to the
team during the MISG. We note also that the flow would almost certainly be
turbulent, but only laminar flow has been considered due to constraints on time
and facilities. Despite these draw-backs, the simulations still allow a comparison
of the fundamental behaviour of a conventional wing and a Lanier “slat-wing”.
Separation of the flow from the airfoil is expected to occur at lower angles of
attack for the blunt-nosed thick airfoil than for the thin airfoil.

We must solve the continuity and steady Navier-Stokes equations, subject
to no-slip on the airfoil boundary, for the flow around four different airfoils
(thick/thin × conventional/slat-wing). We adopt a reference frame that moves
with the airfoil at speed U , and let x, y be the horizontal and vertical axes,
respectively, with the origin at the tip of the nose of the airfoil (see Figure 3).
Let u, v be the x, y components of velocity scaled with U , and let p denote
pressure scaled with ρU2. Lengths are scaled with the nose radius R. Then the
dimensionless continuity equation is

∂u

∂x
+

∂v

∂y
= 0 (3)

and the Navier-Stokes equations are

u
∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

, (4)
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u
∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

, (5)

where Re = UR/ν is the Reynolds number, ν being the kinematic viscosity of
air (≈ 1.5 × 10−5 m2/s). On the boundary of the airfoil we have u = v = 0. Far
upstream of the airfoil, the flow is taken to be a uniform stream of magnitude
U at angle of attack α. Sufficiently far above and below the airfoil we expect
the flow to be that of a uniform stream also. Because we must solve over a
finite computational domain, we define a square far field boundary having sides
of length 20R around the airfoil, aligned with the flow and with centre at the tip
of the nose of the airfoil (x, y) = (0, 0). Thus, on the inlet (left), top and bottom
boundaries we specify u = cos α, v = sinα. The outlet (right) boundary is a
stress-free boundary. The far-field boundary is (hopefully) sufficiently far from
the airfoil that the prescribed-velocity conditions do not impact too severely on
the solution.

The finite-element PDE solver Fastflo was used to solve for the flow. Fastflo’s

automatic mesh generator was used to generate an unstructured mesh of about
1900 6-node triangles over the computational domain, with elements clustered
more densely near the airfoil. The “augmented Lagrangian method” (3, §13.3)
and quadratic basis functions were used to solve for pressure and velocity.

Having solved for velocity and pressure, lift and drag forces per unit wing-
span are found by integrating the pressure around the surface of the airfoil dΩ,
i.e.

F

ρU2R
=

∮

dΩ
p dr.

and resolving the force per unit span F = (Fx, Fy) obtained into two components,
one in the direction of the uniform stream (drag D = Fx cos α − Fy sinα) and
the other normal to it (lift L = Fx sinα + Fy cos α). We may also find the lift
and drag coefficients:

CL =
2L

11ρU2R
, CD ≈

2D

11ρU2R
.

These are given in Table 1 for different angles of attack for each of the simulations
performed. Figures 4 and 5 show the lift and drag coefficients CL, CD versus
angle of attack α for each of the four airfoils considered. Figure 6 shows the
ratio of lift to drag coefficients, again versus angle of attack. In Figures 7–10 we
show stream lines around the airfoils and velocity vectors near the upper surface
behind the nose of the airfoils.

A comparison of the curve for the Clark-Y wing in Figure 1 with those for
the thin wings in Figure 4 shows the lift coefficients to be of a similar order of
magnitude at the same angle of attack and gives some assurance that the general



Lanier’s patents for vacu- and para-planes 13

Table 1: Lift and drag coefficients at angle of attack α for thick and thin con-
ventional airfoils and slat-wings.

α Conventional Slat-wing
Thick Thin Thick Thin

CL 0.31 0.18 0.31 0.21
0

CD 0.21 0.11 0.24 0.13

CL 0.54 0.54 0.53 0.55
5

CD 0.26 0.15 0.28 0.16

CL 0.71 0.81 0.69 0.80
10

CD 0.33 0.23 0.35 0.23

CL 0.83 1.04 0.82 1.05
15

CD 0.42 0.39 0.44 0.38

CL 0.97 1.10 0.96 1.07
20

CD 0.54 0.46 0.55 0.45
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Figure 4: Lift coefficient CL versus angle of attack α. (a) Thick conventional
wing, (b) thick slat-wing, (c) thin conventional wing, (d) thin slat-wing.
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Figure 5: Drag coefficient CD versus angle of attack α. (a) Thick conventional
wing, (b) thick slat-wing, (c) thin conventional wing, (d) thin slat-wing.
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Figure 6: Ratio of lift to drag CL/CD versus angle of attack α. (a) Thick
conventional wing, (b) thick slat-wing, (c) thin conventional wing, (d) thin slat-
wing.
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behaviour of the wings under investigation is captured by our low Reynolds
number simulations. It is expected that at higher Reynolds numbers boundary
layers will be thinner and lift coefficients a little larger. In keeping with known
aerodynamic behaviour, the lift coefficient for the thick wings is larger than
for the thin wings at small angle of attack, however the slope of the curve CL

versus angle of attack α is greater for thin wings than for thick wings so that
this situation reverses at larger angle of attack. (For thin symmetric wings
CL/ sin α ∼ 2π, while we have CL/ sinα ∼ 4 for the thin asymmetric airfoils
considered here.) For the thin wings, there is a sudden decrease in slope above
α = 15◦ signaling imminent stall (loss of lift). This is due to flow separation
which occurs at about α = 15◦ as seen in the plots of streamlines and velocity
vectors given in Figures 9–10. The thicker wings experience flow separation at
a lower angle of attack α ∼ 10◦, as seen in Figures 7–8, but do not exhibit such
a sudden reduction in lift. It is readily seen that the conventional airfoil and
corresponding slat-wing, whether thick or thin, differ little from one another in
terms of lift coefficient.

As is to be expected the drag coefficient increases with angle of attack as
seen for all airfoils in Figure 5. For the thin airfoils we have CD ≈ 0.1 (0.15)
at α = 0◦ (5◦) compared with CD ≈ 0.022 (0.045) for the Clark-Y wing. It is
expected that, with thinner boundary layers at higher Reynolds numbers, drag
coefficients will be lower than indicated by our simulations. From α = 10◦ to
15◦ there is a significant increase in drag for the thin wings, which may be
attributable to a relatively large increase in the projection of the surface area
normal to the flow, an effect which would be smaller for thicker airfoils. There
appears to be a slight increase in drag for the thick slat-wing compared to the
thick conventional wing, but there is little difference in the CD versus α curves
between the thin conventional wing and the thin slat-wing.

The curve of lift to drag ratio CL/CD versus angle of attack (Figure 6)
indicates that the thick and thin airfoils are most efficient over the range α =
5−10◦. For the thick airfoils it is evident that the conventional shape is superior
to the slat-wing in giving slightly more lift, less drag and, consequently, a higher
lift to drag ratio at a fixed angle of attack, over the full range of angles considered.
For the thinner wings, the conventional and slat-wing profiles are very similar
excepting at α = 10◦ where the conventional wing again appears to be superior.

Although we are mindful of the fact that our computations are not very
accurate, the clear message emerging from our work is that our simulations
certainly provide no evidence to support the slat-wing over conventional airfoils,
but, if anything, the reverse.
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Figure 7: Thick, conventional airfoil. Streamlines and velocity vectors.
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Figure 8: Thick, “slat-wing” airfoil. Streamlines and velocity vectors.
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Figure 9: Thin, conventional airfoil. Streamlines and velocity vectors.
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α = 0◦
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α = 20◦

Figure 10: Thin, “slat-wing” airfoil. Streamlines and velocity vectors.
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Figure 11: Geometry used for simulations of flow over a slot cavity. Slot aspect
ratio is defined as ̺ = w/d

5.2 Modelling flow over a slot

Some further numerical simulations were conducted to illustrate the general
features of flow over a slot cavity. The typical dimensionless geometry used in
simulations is shown in Figure 11. The continuity and Navier-Stokes equations
(3)–(5) were solved, again using Fastflo and the augmented Lagrangian method
with quadratic basis functions. At the inlet (left boundary) we specified the flow
to be that of a unit uniform stream (U = 1), while the outlet (right) was defined
to be a stress-free boundary. The lower boundary containing the cavity is, of
course, a no-slip boundary (u = v = 0); at the upper boundary we specified no
normal flow (v = 0) and no tangential stress, i.e. this is a slip boundary. A
mesh of about 3000 6-node triangles was used over the computational domain.

The effect of slot aspect ratio (̺ = w/d) and slot angle β were considered
to a limited extent. Pressure contours and streamlines are shown in Figure 12
for a cavity of depth d = 1.5 and width w = 1 at angles of inclination β =
60◦, 90◦, 120◦. These were computed at a Reynolds number of Re = 1000; at
higher Reynolds numbers convergence difficulties were experienced. The results
shown are typical of cavities of both larger and smaller aspect ratio, although
the width and depth of the slot does vary the vortex flow and pressure. As can
be seen, a vortex develops in the slot. The pressure at the centre of this vortex is
lower than the average pressure in the surrounding fluid, but the overall pressure
in the slot is very similar to that in the fluid immediately above the slot. This
confirms our earlier findings that slots in the upper surface of the wing make
little difference to the lifting capacity of the wing.
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Pressure, β = 60◦. Streamlines, β = 60◦.

Pressure, β = 90◦. Streamlines, β = 90◦.

Pressure, β = 120◦. Streamlines, β = 120◦.

Figure 12: Flow in the vicinity of a slot of aspect ratio ̺ = 3/2 (d = 1.5, w = 1)
at various angles of inclination β. The colour of contours from blue to red
indicates the change in value from lowest to highest.
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6. Conclusions

The MISG team investigated the Lanier slat-wing design to determine whether
there is any scientific basis to the claims, made in the patents, of superior sta-
bility and lift compared with conventional airfoils. We, necessarily, focused on
lift and drag, as an investigation of stability required resources beyond those
available to us. Our preliminary computations indicate that conventional air-
foils are superior, or at least equivalent, to the Lanier slat-wing in terms of lift.
We suggest that the apparent improvement in lift and/or stability reported in
the popular science literature of the times after experiments with one or two
prototypes, was a result of using thicker airfoils than was typical at the time, so
as to accommodate a “vacuum chamber” in the wing. As shown above (see e.g.
Figure 1), thicker airfoils generate more lift at small angles of attack compared
with thin airfoils. Possibly they also appeared to be more stable to Lanier and
co-workers, since they would not undergo such a sudden stall as a thin wing. The
rougher top surface due to the slats would almost certainly lead to separation
at lower speeds and hence prohibit their use at higher speeds. It seems likely
that even if the slat wing design provided some improvement on its contempo-
raries, it has now been superseded by modern wing designs that include variable
wing shapes, auxiliary lifting surfaces and flaps that provide greatly enhanced
performance, especially during take-off and landing.

The investigation of Lanier’s designs could be extended. Probably the most
natural approach would be to compare airfoils using wind tunnel experiments.
Improved numerical experiments at higher Reynold’s number might also help
illuminate the problem. Further historical research might find out more from
the 1930’s to add to the largely anecdotal information available. The possible
stability features at low speed appear the most promising aspect. It could be
interesting to see how the Lanier design compared with contemporary aircraft
of the 1930’s. However, it appears unlikely that any such study would have an
impact on modern aircraft design.
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