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Laminar helically-symmetric gravity-driven thin-film flow down a helically-wound chan-
nel of rectangular cross-section is considered. We extend the work of Stokes et al. (2013)
and Lee et al. (2014) to channels with arbitrary curvature and torsion or, equivalently,
arbitrary curvature and slope. We use a non-orthogonal coordinate system and, remark-
ably, find an exact steady-state solution. We find that the free-surface shape and flow
have a complicated dependence on the curvature, slope and flux down the channel. Mod-
erate to large channel slope has a significant effect on the flow in the region of the channel
near the inside wall, particularly when the curvature of the channel is large. This work
has application to flow in static spiral particle separators used in mineral processing.

1. Introduction

In this paper we study the gravity-driven flow of a viscous fluid in a channel of rect-
angular cross-section, helically wound about a vertical axis as shown in figure 1, where
the fluid depth is assumed to be small. The channel is oriented such that the bottom is
horizontal in the radial direction. We neglect the entrance and exit regions and assume
that the flow is helically symmetric; that is, independent of distance along any helix of
the same pitch and orientation as the channel centreline. Thus the flow, which comprises
a primary flow down the channel and a secondary flow in the cross-sectional plane, de-
pends only on position in the two-dimensional cross-section. We make no assumptions of
small channel torsion or slope and so extend the work of Stokes et al. (2013) for channels
of small centreline torsion, and of Lee et al. (2014) for channels of small centreline slope.
Using a non-orthogonal coordinate system, as in Lee et al. (2014), we are, remarkably,
able to find an exact solution of our thin-film model. Our use of a nonorthogonal coor-
dinate system and accounting for a channel slope that varies with position across the
channel width reveal corrections to the results of Stokes et al. (2013).
The study of flows in curved geometries has been motivated by flows in rivers and

pipes (Thomson 1876, 1877; Dean 1927, 1928), the circulatory system (Lynch et al. 1996;
Siggers & Waters 2005, 2008), and the cochlea (Manoussaki & Chadwick 2000). The
impact of Dean’s work was such that these flows are often termed “Dean flow”.
An application of particular interest to the authors, and which has attracted consid-

erable attention over several decades since the work of Holland-Batt (1975, 1989), is the
separation of minerals or coal from crushed ore in static spiral separators. These consist
of a helically-wound channel, down which a slurry of crushed ore and water is poured.
The resulting fluid motion serves to sort the particles across the width of the channel
by size/density, and simple sectioning of the flow at the bottom of the channel allows
particles of different sizes/densities to be collected separately. Whilst such devices are
commonly used, their design is hampered by a lack of quantitative understanding of the
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Figure 1: A helically-wound rectangular channel of width 2a. The centreline is a helix of
radius A and pitch 2πP .

fluid and particle motion, so that experimentation and empirical formulae are heavily
used during design; for a summary of the design process see Holland-Batt (1995). A
desire for a better quantitative understanding to aid design has driven experimental,
theoretical and computational research on both clear fluid and particle laden flow in
helically-wound channels. A steady-state empirical model of particle-free flow in a rect-
angular channel was developed by Holland-Batt (1989), in which the primary flow down
the channel is described by a Manning law in an inner region near the central column
around which the channel is wound, and a free vortex in the outer region. Experimental
work followed to attempt to validate this model (Holtham 1990; Holland-Batt & Holtham
1991; Holtham 1992) but the small fluid depth typical of spiral separators makes mea-
suring flow velocity and free-surface shape very difficult. While this work did confirm the
existence of the predicted secondary flow, show the flow to be laminar in much of the
flow domain, and indicate that the flow had reached a fully-developed profile within two
spiral turns, (justifying the assumption of helical symmetry) it gave only crude estimates
of flow velocities with errors as high as ±30%, precluding meaningful quantitative com-
parison of experiments with models. Recently Holland-Batt (2009) adapted the model for
large-diameter rectangular spiral channels, with the strength of the free vortex primary
flow computed using laminar, Manning and Bagnold shear equations; little difference was
found in the velocity profiles between the three options. Computational simulations were
performed by Wang & Andrews (1994), Matthews et al. (1998, 1999) and Stokes (2001).
Das et al. (2007) used the semi-empirical model of Holland-Batt (1989) to investigate
the behaviour of particles in such a flow, assuming that the particles do not modify the
flow, while acknowledging that this model sometimes predicts larger flow depths than
reported in experiments.
Flows in spiral separators are typically quite shallow. In experiments performed by

Holtham (1992) using two commercially-available spiral separators with an approximate
width of 280mm, the fluid depth was 1–12mm, an aspect ratio δ < 0.1. Thus, Stokes
et al. (2004, 2013) and Lee et al. (2014) have exploited the small depth of the flow
to develop thin-film models of particle-free and particle-laden flow in helically-wound
channels. These studies have considered limiting cases of channel geometry, such as small
curvature, torsion or slope and indicate that the assumption made by Holland-Batt (1989,
2009) of a free-vortex primary flow in the channel is not, in general, valid in these limits.
In this paper we retain the assumption of small fluid depth but consider particle-free
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flow in channels of arbitrary curvature and torsion. In future work, the model will be
extended using the approach of Lee et al. (2014) to investigate particle-laden flow.
In the study of flows in curved geometries, considerable attention has been given to

the choice of coordinate system. The natural s, r, θ (or s, x, y) coordinate system, where
s is arclength along the axis of the pipe or channel and r, θ (x, y) are polar (Cartesian)
coordinates in the cross-section, is non-orthogonal, with non-zero off-diagonal elements
in the metric tensor. To avoid the complexity of dealing with non-orthogonal coordinates,
Germano (1982, 1989) obtained an orthogonal coordinate system by rotating the θ = 0
line with position s. Zabielski & Mestel (1998) pointed out that, except in the zero-
torsion limit, this coordinate system does not allow true helical symmetry (quantities
are independent of distance s, while true helical symmetry requires that quantities not
change along any helical path with the same pitch as the channel centreline) and pro-
posed an alternative coordinate system which does allow true helical symmetry. Unlike
the problems considered by these authors, the flows of interest here have a free-surface,
for which neither of these coordinate systems are easy to use. Hence we adopt the more
intuitive non-orthogonal coordinate system previously employed by Manoussaki & Chad-
wick (2000) for the study of inviscid fluid flow in the cochlea (modelled as a rectangular
duct), and which is similar to the natural (s, x, y) system.
The structure of this paper is as follows. In section 2 we describe the coordinate system

and the mathematical model, and then solve the model exactly. Results are presented
and discussed in section 3 and our summary and conclusions are given in section 4.

2. Mathematical model

We consider steady, helically symmetric flow of an incompressible viscous fluid down
a channel of constant rectangular cross-section with width 2a, the centreline of which is
a helix of pitch 2πP and radius A, as shown in figure 1. The channel is aligned so that
its bottom is horizontal is the radial direction.

2.1. Non-orthogonal coordinates

Following Manoussaki & Chadwick (2000) and Lee et al. (2014), we employ a helical
coordinate system in which a point x is specified using three variables, (r, β, z), as follows

x(r, β, z) = r cosβ i+ r sinβ j + (Pβ + z)k. (2.1)

Here r is the radial distance from the axis of the helix, β is an angle from a reference
direction, and z is the vertical distance above the bottom surface of the channel. Using
this description, the assumption of helical symmetry implies that the flow is independent
of the angle β. The free-surface profile is given as S(r, z) = hz(r)− z = 0, where hz(r) is
the fluid depth in the vertical direction at radial position r.
The basis vectors in this coordinate system, er, eβ and ez , are non-orthogonal and

hence tensor calculus is required to determine differential operators. Once helical symme-
try has been enforced by assuming derivatives with respect to β vanish, a new coordinate
direction, n, is introduced to replace z. The new coordinate is in the direction of unit
vector en = er × eβ , orthogonal to er and eβ , so the direction en varies with position
across the channel. Figure 2 shows the coordinate system on the channel centreline and
in a vertically-cut cross-section of the channel. The normal direction is more intuitive,
particularly for very steep channels, when the axial and vertical directions can nearly co-
incide. Velocity components in the r, β and n directions are vr, vβ and vn, respectively,
and the free-surface profile is given by Sn(r, n) = hn(r)−n = 0. The helically-symmetric
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Figure 2: The coordinate system (a) on the helical centreline of radius A and pitch 2πP ,
and (b) in a vertically-cut cross-section of the channel.

(a) ǫ = 0.8, λ = 1 (b) ǫ = 0.2, λ = 1 (c) ǫ = 0.5, λ = 5

Figure 3: Channels with (a) large curvature and moderate slope, (b) small curvature and
moderate slope, (c) large slope and moderate curvature. Note each channel is the same
width, but the images are not shown at the same scale, in order to preserve detail.

Navier-Stokes equations in the r, β, n coordinate system are given in appendix A; see
Lee et al. (2014) for details of the derivation.

2.2. Thin-film equations

Since the fluid depth is assumed to be small relative to the channel half-width a, we
employ a thin-film approximation to simplify the Navier-Stokes equations. Specifically, if
h̄ is a representative fluid depth in the direction normal to the channel bottom (i.e., the
en direction), then δ = h̄/a is a measure of the aspect ratio of the flow domain, and we
assume that δ ≪ 1. We will define δ in terms of the physical parameters of the problem
in section 2.4.
Next, we nondimensionalise our governing equations using the channel half-width, a,

axial velocity scale, U (to be specified in section 2.4), and fluid viscosity, µ, as follows
(using primes to indicate dimensionless variables):

r = a(A′ + y′), n = aδn′, (vr, vβ , vn) = (δUv′, Uu′, δ2Uw′), p =
µU

aδ
p′. (2.2)

We also define n′ = h′(y′) to be the free surface. At this point it is helpful to define some
geometric parameters related to the curvature and torsion of the channel centreline. The
curvature of the projection of the channel centreline onto a horizontal plane is given by
ǫ = a/A = 1/A′, the dimensionless pitch is P ′ = P/a, and the slope of the centreline of
the channel is λ = P ′/A′. Figure 3 shows channels with different combinations of ǫ and
λ to help visualise different channel shapes.
The torsion, τ , and curvature, κ, of the helical channel at position y′ across the channel
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are given by

τ(y′) =
ǫΛ(y′)

Υ(y′)(1 + ǫy′)
, κ(y′) =

ǫ

Υ(y′)(1 + ǫy′)
=
τ(y′)

Λ(y′)
, (2.3)

where

Λ(y′) =
λ

1 + ǫy′
, (2.4)

is the slope of the channel bottom at a point y′, and for notational convenience we have
introduced

Υ(y′) = 1 + Λ2(y′). (2.5)

At leading order in δ, the Navier–Stokes and continuity equations are (dropping primes):

−∂p
∂y

+
∂2v

∂n2
+ 2τ(y)

∂u

∂n
+ Re κ(y)u2 = 0, (2.6a)

∂2u

∂n2
− Re

Fr2
τ√

τ2 + κ2
= 0, (2.6b)

− ∂p

∂n
− Re

Fr2
κ√

τ2 + κ2
= 0, (2.6c)

∂v

∂y
+

ǫv

1 + ǫy
+
∂w

∂n
= 0, (2.6d)

where

Re =
ρδUa

µ
and Fr =

U√
gaδ

(2.7)

are the Reynolds and Froude numbers respectively (note that the centrifugal term in
(2.6a) could be written in terms of the Dean number K = 2ǫRe2, as in Stokes et al.

(2013)). The boundary conditions are no-slip on the channel bottom, i.e.,

u = v = w = 0 on n = 0 (2.8)

and, on the free surface, no stress, which implies

p = 0,
∂u

∂n
= 0,

∂v

∂n
= 0 on n = h(y), (2.9)

plus the standard kinematic condition, which gives

v
dh

dy
= w on n = h(y). (2.10)

Physically, there will also be no-slip on the channel side walls (y = ±1) but we cannot
impose this condition on our solutions owing to the thin-film scaling. In practice, we
anticipate the presence of thin boundary layers close to these walls.

2.3. Solution

Expressions for the pressure, p, axial velocity component, u, and radial velocity compo-
nent, v, are obtained by integrating (2.6a)–(2.6c). We obtain:

p = − Re

Fr2
κ√

τ2 + κ2
(n− h) , (2.11)

u =
Re

2Fr2
τ√

τ2 + κ2
n (n− 2h) , (2.12)



6 D. J. Arnold, Y. M. Stokes and J. E. F. Green

v =
Re

2Fr2
κ√

τ2 + κ2
dh

dy
n(n− 2h)− Re

2Fr2
τ2√

τ2 + κ2

{

(n− h)3 + h3
}

− Re3

60Fr4
τ2κ

τ2 + κ2
n(n− 2h)

{

n3(n− 4h) + 2h2(n2 + 2hn+ 4h2)
}

. (2.13)

The continuity equation (2.6d) can be written

∂

∂y

(

[1 + ǫy]v
)

+
∂

∂n

(

[1 + ǫy]w
)

= 0, (2.14)

and an equation for the free-surface profile, h(y), is found using the integrated form of
(2.14),

∫ h(y)

0

v dn = 0 (2.15)

which is obtained by requiring that there is no net flux into or out of the flow domain.
Substituting (2.13) into (2.15) and integrating yields the differential equation for h(y),

dh

dy
=

6

35

Re2

Fr2
τ2√

τ2 + κ2
h4 − 9

8

τ2

κ
h, (2.16)

which can be used to eliminate the derivative term in (2.13).
To calculate the normal velocity component, w, we use a streamfunction to describe

flow in the channel cross-section. The streamfunction ψ(y, n) is defined by

∂ψ

∂n
=(1 + ǫy)v, (2.17a)

∂ψ

∂y
=− (1 + ǫy)w, (2.17b)

and can be found by substituting v into (2.17a) and integrating subject to ψ = 0 on
n = h(y), to give

ψ =
ǫRe3

840Fr4
τκ

τ2 + κ2
n2(n− h)(n− 2h)2(2nh− n2 + 4h2)

− ǫRe

16Fr2
τ2κ

(τ2 + κ2)3/2
n2(n− h)(2n− 3h). (2.18)

We note that ψ vanishes on the channel bottom, n = 0, as well as the free surface, n = h,
as indeed it must.
We rewrite the free-surface equation (2.16) as

dh

dy
=

6

35

Re2

Fr2
ǫΛ2

Υ3/2

h4

(1 + ǫy)
− 9

8

ǫΛ2

(1 + ǫy)Υ
h (2.19)

and seek a solution with boundary condition h(1) = hr, where hr is the fluid depth at
the outside wall of the channel. Since it is a Bernoulli differential equation, we use the
substitution

ξ(y) = h(y)−3, (2.20)

which transforms (2.19) into the linear first-order differential equation

dξ

dy
− 27

8

ǫΛ2

(1 + ǫy)Υ
ξ = −3

Re2

Fr2
ǫΛ2

(1 + ǫy)Υ3/2
, (2.21)
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which may be solved using the integrating factor Υ27/16 to give

h(y) = Υ(y)9/16
{

Υ(1)27/16h−3
r − 144

665

Re2

Fr2

(

Υ(1)19/16 −Υ(y)19/16
)

}−1/3

. (2.22)

Although in the above we have imposed a boundary condition in terms of the fluid
depth at the outside wall of the channel, in practice this is difficult to control, and a more
natural condition to specify is the fluid flux down the channel. Thus, for a prescribed flux,
we determine the corresponding value of hr to give the appropriate free-surface profile.
The dimensional flux down the channel, denoted Q, is given by

Q = −Ua2δ
∫ 1

−1

∫ h

0

u dn dy = Ua2δQ̂ (2.23)

and, on substituting for u and integrating, we find the dimensionless fluid flux

Q̂ =
1

3

Re

Fr2

∫ 1

−1

τ√
τ2 + κ2

h3 dy. (2.24)

Note that the minus sign appears in (2.23) because our axial coordinate direction, eβ ,
points up the channel, and hence fluid flowing down the channel has negative axial
velocity. In general, we cannot solve (2.24) exactly, and so cannot obtain the exact value
of hr for a chosen value, Q̂, of the flux. We solve numerically using an adaptive Gauss-
Kronrod quadrature algorithm provided by Matlab to approximate the integral, and a
bisection-type search method to find an approximate value of hr such that Q̂ is within
some specified tolerance of Q̂. We have required the relative error in Q̂ to be less than
10−8. Note that we can use the fluid depth at any location in the channel as the boundary
condition for (2.19), but choose y = 1 to improve the numerical conditioning of the search
algorithm. At y = 1 the fluid depth is most sensitive to flux, whereas at y = −1 it is,
in general, least sensitive, and so small changes in the depth at y = −1 cause very large
changes in the flux, which makes calculating the appropriate boundary condition there
more difficult than at y = 1.
The dimensional cross-sectional area of the fluid domain is denoted Ω, and is defined

as

Ω = a2δ

∫ 1

−1

h dy = a2δ Ω̂ (2.25)

where Ω̂ is the dimensionless cross-sectional area

Ω̂ =

∫ 1

−1

h dy. (2.26)

As with (2.24), we cannot in general solve this integral exactly, and must use numerical
integration.

2.4. Scaling

Thus far, we have not specified the velocity scale, U , and depth scale, δ, in our problem.
We note that the gravitational forcing term in (2.6b) may be written

Re

Fr2
Λ√

1 + Λ2
(2.27)

and hence we choose to set
Re

Fr2
λ√

1 + λ2
= 1 (2.28)
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so that the term has unit value at the channel centreline y = 0. In addition, to ensure
non-trivial free-surface profiles for any choice of ǫ and λ, we set the coefficient of h4 in
(2.19) to have unit value at y = 0, so that

6

35
Re

ǫλ

1 + λ2
= 1. (2.29)

With these scalings, the velocity scale is

U =

[

(

35

6ǫ

)2
(1 + λ2)3/2

λǫ2
gµ

ρ

]1/3

(2.30)

and the thin-film parameter is

δ =
1

a

[

35

6

(1 + λ2)3/2

ǫλ2
µ2

gρ2

]1/3

. (2.31)

Note that our thin-film assumption requires δ ≪ 1, and this limits the possible values
of the parameters. For example, for a 1m wide channel (a = 1/2m), with water (µ =
10−3 kgm−1 s−1, ρ = 103 kgm−3) and g = 9.81 m s−2, we require

ǫλ2

(1 + λ2)3/2
≫ 5× 10−12 (2.32)

to ensure that δ remains small. This inequality fails to hold in only a very small part of
the parameter space, when the channel approaches a straight (ǫ → 0), flat (λ → 0), or
steep (very large λ) geometry, which are not of interest here.
With this scaling, our free-surface equation (2.22) becomes

h(y) = Υ(y)9/16
{

Υ(1)27/16h−3
r − 24

19

(1 + λ2)3/2

ǫλ2

(

Υ(1)19/16 −Υ(y)19/16
)

}−1/3

.

(2.33)

3. Results

We now use our analytic solution to investigate the effects of ǫ, λ, and Q̂ on the
free-surface profile, and the pressure and velocity fields. In section 3.1 we consider the
free-surface profile from which we determine the fluid velocity components and pressure.
In section 3.2 we present several velocity and pressure solutions, and discuss general
features of the results. We give particular attention to large flux in section 3.3.

3.1. Free-surface profile

Figures 4 and 5 show some representative free-surface profiles for different choices of λ and
ǫ at a fixed flux Q̂ = 1. These illustrate some of the qualitatively different types of free-
surface profile that are possible with different channel geometry parameters ǫ and λ. For
sufficiently small slope the fluid depth at the inside (left) wall of the channel, hl = h(−1),
decreases with increasing curvature ǫ and the fluid depth increases monotonically across
the width of the channel from the inside to the outside wall; figure 4a. For any ǫ, hl
increases with λ (figure 5), and for ǫ not too close to unity, the fluid depth increases
monotonically across the width of the channel from inside to outside wall; figures 4a, 5a.
However, for ǫ sufficiently close to unity and sufficiently large λ, the free surface profile
changes significantly, with the fluid depth at first decreasing with distance from the inside
wall and then increasing; figures 4b,c, 5b,c; there is a build-up of fluid near the inside
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Figure 4: Free-surface profiles for fixed slope λ, for curvatures ǫ = 0.01, 0.255, 0.5, 0.745,
0.99, and flux Q̂ = 1. Arrows show direction of increasing ǫ.
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Figure 5: Free-surface profiles for fixed curvature ǫ, with slopes λ = 0.01, 0.67, 1.34, 2,
and flux Q̂ = 1. Arrows show direction of increasing λ.

wall where the channel slope is largest. For very large λ and ǫ very close to unity the
fluid depth is largest at the inside wall (where the channel bottom will be near vertical)
and decreases monotonically across the width of the channel, figures 4c, 5c.
For small ǫ, we observe that the solutions become nearly independent of λ (figure 5a),

and, indeed, this is seen from the small ǫ limit of (2.33) which is independent of λ:

h(y) =
[

h−3
r − 3(y − 1)

]

−1/3

. (3.1)

Note that in this limit, exact expressions can be obtained for the flux, Q̂, and area, Ω̂;
see Stokes et al. (2013) for details. As ǫ increases to near unity, the free surface solution
becomes more sensitive to changes in λ. This is intuitive — at large ǫ the slope of the
channel changes significantly across its width, and so the effects of changing λ will be
greater.
Increasing flux (with fixed ǫ and λ) always increases the fluid depth at any point in the

channel, and the fluid depth at the outer wall, hr, grows without bound as flux becomes
infinite; see figure 6. Increasing flux tends to increase hr more than hl, i.e., the depth at
the outside wall is much more sensitive to changes in flux.
We can explain the free-surface profiles that we observe physically, in terms of two

competing mechanisms, corresponding to the two terms on the right of the free-surface
equation (2.19). Centrifugal force pushes the fluid to the outside wall of the channel,
which is exacerbated by increasing the flux. This effect was also described by Stokes
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Figure 6: Free-surface profile for fixed slope λ and curvature ǫ, with varying flux Q̂
ranging from 10−3 to the maximum that is computationally possible. From left to right,
λ is increasing, and from top to bottom, ǫ is increasing. Increasing flux always increases
fluid depth everywhere. Figure 6a is representative of plots for all λ with ǫ≪ 1.

et al. (2013), and is related to the first term on the right of our free-surface equation.
However the model presented in the current work also includes the effect of the varying
slope across the width of the channel (neglected by Stokes et al. (2013) who assumed
constant slope). When ǫ is close to unity, and the channel is tightly wound about the
vertical axis, the channels slopes much more steeply near the inside wall than at the
outside wall. This means the axial flow direction in this region is more aligned with the
direction of gravitational acceleration, which results in a significant gravitational effect,
captured by the second term on the right of (2.19), so that the fluid effectively cascades
down the inside of the channel. This gravitational effect is magnified by increasing the
slope of the channel centreline, λ. Thus there is a balance between centrifugal effects
pushing the fluid to the outer wall, and gravitational effects pulling the fluid downwards
and to the steepest part of the channel.

3.2. Velocity and pressure profiles

A representative solution for velocity components and pressure is shown in figure 7. The
parameters used in this figure are chosen for a channel with curvature and slope that
roughly correspond to a Vickers FGL commercial spiral separator (ǫ = 0.67, λ = 0.33,
Holtham 1992). Streamlines of the secondary flow and contours of the axial velocity and
pressure are shown. The secondary flow shows a single rotating cell, cut off by the outer
wall. The streamfunction of the secondary flow, ψ, is zero on the free-surface and channel
bottom, corresponding to the top and bottom of the fluid domain, however multiple
streamlines meet the channel walls, violating the no-slip condition. As explained earlier,
this is due to the thin-film scaling. Boundary layers will exist which are not captured
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Figure 7: Streamlines of the secondary flow and contour plots of axial velocity and pres-
sure, for λ = 0.33, ǫ = 0.67 and for Q̂ = 0.4. Arrows indicate the direction of the
secondary flow in (a).

by our leading order (in δ) equations. Stokes et al. (2013) compared numerical solutions
to the full Navier-Stokes equations with their thin-film results, and found agreement
everywhere away from the edges of the channel. Imposing no-slip on the side walls of the
channel would cause streamlines to form closed curves, and we would observe a single
clockwise-rotating closed cell in the channel cross-section.

In figure 7b, the axial velocity increases as the distance from the channel bottom
increases, and the maximum axial velocity occurs at the outside wall of the channel
on the free surface. For some choices of the geometry, notably as the slope increases
significantly towards the inside wall, the maximum axial velocity u can move to the
inside wall (figure 8), or somewhere between the two walls (figure 9), although it always
occurs on the free-surface, n = h(y) (the minimum axial velocity is, of course, zero,
on the channel bottom). For any choice of parameters, at the free surface we always
have a radial velocity v > 0 across the whole width of the channel, so we always have
transport to the outside of the channel along the free surface. At the channel bottom,
we always have v = 0, but ∂v/∂n < 0 so that there we have transport to the inside wall
of the channel. Nevertheless, although a single rotating cell (as in figure 7a) is the most
prevalent type of cross-sectional flow, the formation of multiple rotating cells is possible.
Figure 8a shows a case for large λ with two clockwise rotating cells, one close to each wall,
within the outer clockwise rotating flow. This change in the flow pattern has potentially
important implications for particle segregation. Segregation requires particles of different
size/density to collect in different regions of the channel cross section and a secondary
flow with multiple rotating cells may inhibit or facilitate particle segregation. A question
still under investigation is whether more than two rotating cells can form. In visualising
a large number of cross-sectional flow profiles we have seen no evidence of more than two
cells, nor does our intuition suggest a mechanism by which they could form. However,
we cannot, as yet, prove this claim.

The case of small slope and flux is also of interest. As shown in figure 9 we observe
a free-surface with negative second derivative, and the maximum axial velocity occurs
away from the channel walls (we note that this is the only case consistent with a free
vortex primary flow approximation as assumed by Holland-Batt (1989, 2009)). As flux
increases, centrifugal force acts to push the fluid towards the outside wall, reversing the
sign of the second derivative of the free-surface profile in the vicinity of that wall.
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Figure 8: Streamlines of the secondary flow and contour plots of axial velocity and pres-
sure, for λ = 1.5, ǫ = 0.8 and for Q̂ = 0.5. Arrows indicate the direction of the secondary
flow in (a).
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Figure 9: Streamlines of the secondary flow and contour plots of axial velocity and pres-
sure, for λ = 0.15, ǫ = 0.75 and for Q̂ = 0.2. Arrows indicate the direction of the
secondary flow in (a).

3.3. Large fluid flux

In Stokes et al. (2013) it was found that as Q̂→ ∞, hl, the fluid depth at the inside wall of
the channel, and Ω̂, the fluid cross-sectional area, each approached finite limiting values,
whilst hr, the fluid depth at the outside wall, became unbounded. We now examine if
this remains true for the more general problem considered in the current paper.
Although the flux and area integrals, (2.24) and (2.26), cannot be evaluated in closed

form, elementary manipulations of the free-surface equation (2.19), allow us to express
the cross-sectional area as

Ω̂ =
1

2h2l

(

λ2 + (1− ǫ)2

λ2 + 1

)3/2

+
1

2

ǫλ2

(1 + λ2)3/2

∫ 1

−1

9

4

√
Υ

h2
+ 3

√
Υ

Λ2

1

h2
dy

− 1

2h2r

(

λ2 + (1 + ǫ)2

λ2 + 1

)3/2

, (3.2)

and the flux as

Q̂ =
3

8

λ2

1 + λ2
log

(

1 + ǫ

1− ǫ

)

− 1

3

λ2 + (1− ǫ)2

1 + λ2
log (hl)

− 2

3

ǫ

1 + λ2

∫ 1

−1

(1 + ǫy) log (h(y)) dy +
1

3

λ2 + (1 + ǫ)2

1 + λ2
log (hr) . (3.3)
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We further note that there is a maximum possible fluid depth at y = −1, hlM , such that
0 < hl < hlM where

hlM =

{

24

19

(1 − ǫ)(1 + λ2)3/2

ǫλ2
√

λ2 + (1 − ǫ)2

[

1−
(

(1− ǫ2)2 + λ2(1− ǫ)2

(1− ǫ2)2 + λ2(1 + ǫ)2

)19/16
]}−1/3

, (3.4)

which is found by considering the limit as hr → ∞ of (2.33) at y = −1.
We consider equations (3.2) and (3.3) in the limit hr → ∞. In (3.2), all three terms

are bounded in this limit, so Ω̂ is bounded. In figure 10a, the complete expression for Ω̂
(evaluated numerically) is plotted, along with the first two terms in (3.2), showing the
area reaching a limiting value (approximately 2.1 for the parameter values chosen). It
can be shown that the first three terms in (3.3) are bounded as hr → ∞, and hence

Q̂ ∼ 1

3

λ2 + (1 + ǫ)2

1 + λ2
log (hr) as hr → ∞. (3.5)

This behaviour is illustrated by figure 10b, for the case λ = 0.5, ǫ = 0.5. We have thus
confirmed that for large fluxes (Q̂→ ∞), the qualitative behaviour of hl, hr and Ω̂ is the
same as that found in Stokes et al. (2013).
The maximum fluid depth at the inner wall, hlM is plotted against ǫ for different

values of λ in figure 11. For ǫ < 1, hlM is bounded. In the limit ǫ → 0, (3.4) reduces to
hlM = 6−1/3, which is independent of λ. Limits of hlM as λ → 0 and λ → ∞ are also
plotted (dashed curves). It can be seen from the plot, and confirmed by taking limits,
that as ǫ→ 1, hlM → ∞ for any λ > 0.
Figure 12 shows the effect of increasing the flux, Q̂, on the cross-sectional area of the

flow, Ω̂. As shown above, and in Stokes et al. (2013), Ω̂ approaches an upper bound
as Q̂ becomes large. Roughly speaking, a flux of around two to three is sufficient for Ω̂
to approach its limiting value, corresponding to hl nearing its limiting value hlM , and
in the specific case ǫ = 0.5 and λ = 0.5, equivalent to hr ≈ 10. This suggests that a
flux of roughly two to three is representative of large flux. In this regime, increasing
ǫ increases the cross-sectional area. However when flux is small a different relationship
is observed. Figure 12b magnifies the 0 6 Q̂ 6 0.5 region of figure 12a, showing the
difference more clearly. We see that Ω̂ does not vary significantly until ǫ nears unity,
when it decreases. Thus for small flux, cross-sectional area is weakly dependent on ǫ over
much of the parameter space, but for large flux the dependence is stronger. Equivalent
plots, omitted for brevity, with fixed ǫ and varying λ show little variation between curves
for different values of λ, showing that cross-sectional area depends weakly on the slope
of the channel bottom.

4. Conclusions

We have considered flow in helically-wound channels of rectangular cross-section, as-
suming the flow to be helically symmetric, and that the typical depth of the fluid is small
so that a thin-film approximation is appropriate. The Navier-Stokes equations were ex-
pressed in a non-orthogonal coordinate system, then transformed to three orthogonal
directions: eβ in the direction of increasing angle β along the helical centreline, er in the
horizontal radial direction, and en normal to the bottom of the channel.
The most convenient parameters for describing the geometry of the channel were found

to be ǫ, corresponding to the curvature of the circle obtained by projecting the helical
centreline onto a horizontal plane, and λ, the slope of the channel centreline. Effectively,
these parameters correspond to the radius A and the pitch 2πP of the centreline. We have
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Figure 10: The dependence of (a) cross-sectional area Ω̂, and (b) flux Q̂ on hr with
ǫ = 0.5 and λ = 0.5. Note different x-axes. The solid curves are given by (3.2) and (3.3)
respectively; the dashed curves are (a) the first two terms, and (b) the last term of these
expressions.
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Figure 12: Fluid cross-sectional area against flux. Plotted for ǫ = 0.01, 0.15, 0.29, 0.43,
0.57, 0.71, 0.85, 0.99, with λ = 0.5. The arrow in (a) shows the direction of increasing ǫ.
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ǫ = 1/A and λ = P/A, and for physically meaningful channels we must have 0 < ǫ < 1.
For a right-hand helix we take λ > 0. The commonly used curvature and torsion of the
channel centreline may be expressed in terms of ǫ and λ. The general solution we obtain
is valid for channels with centrelines of arbitrary curvature and torsion. The case where
torsion is large at the inside wall but small at the channel centreline, corresponding to ǫ
very near 1, was identified in Stokes et al. (2013) as requiring further investigation. In that
paper, torsion and curvature were considered constant across the width of the channel,
but here we account for their variation. This explains differences observed between our
results and those of Stokes et al. (2013).
The free-surface profile is given by the solution of the ordinary differential equation

(2.16). The equation has an analytic solution, (2.22). Three parameters govern our so-
lutions: ǫ, the modified curvature, λ, the slope of the channel, and Q̂, the dimensionless
fluid flux down the channel. We use scalings to relate the Reynolds and Froude numbers
to the geometric parameters ǫ and λ in order to plot results. The three parameters are all
important, and their effects are complicated, but we can make general statements about
their effects on the solutions, and some conclusions hold independently of geometry. We
find the fluid depth at the inside wall (hl) is bounded for all curvature ǫ < 1, and the fluid
depth at the outside wall becomes unbounded (hr → ∞) as Q̂ → ∞ for any geometry.
We always have transport to the outside of the channel at the free-surface, and transport
to the inside of the channel near the bottom. Rotating cells always rotate clockwise. Most
other conclusions, however, are dependent on geometry.
The effects of geometry and flux can be characterised by considering the balance of

gravitational and centrifugal effects. The steeper the channel, the more aligned the chan-
nel bottom with the vertical direction, and hence the stronger the gravitational effects
on the flow. We have steep channels for large λ, and at the inside wall when ǫ is large,
and in these cases the free surface has a negative gradient at the inside wall. Centrifu-
gal effects are dominant when the fluid flux is large, when ǫ is small, or λ is not large.
They drive fluid to the outside wall of the channel which results in a free surface with
positive gradient near this wall. For moderate parameter values we see these two effects
competing.
For a channel with small curvature (large centreline radius), the solutions depend

weakly on the slope of the centreline. We see the fluid depth increasing monotonically
across the channel from inside to outside wall, a single clockwise rotating cell in the cross
section, and the maximum axial velocity at the outside wall. For a channel with large
curvature (small centreline radius), the solution depends strongly on the slope of the
centreline and the flux, and solutions change qualitatively as these parameters vary. For
example, in place of a single rotating cell in the cross section, two cells may develop,
which has not been previously seen from analyses assuming small torsion or small slope.
The impact of flux and geometry on the flow solution, especially for channels with

large curvature, has some practical implications. Whilst the shape of a channel (and thus
λ and ǫ) would not change during operation of a spiral separator, the flux may vary, and
in some regimes this would significantly affect the flow. This, in turn, might alter the
particle separation capabilities of the spiral. Again we point out that our analysis does
not, in general, support the approximation of the primary flow by a free vortex flow as
done by Holland-Batt (1989, 2009).
Future work will investigate channels with arbitrarily shaped cross-sections, rather

than the simple rectangular channels we have here considered. Spiral particle separators
typically feature curved cross-sections and our equations can be generalised for such
geometries. We will also extend our model to particle-laden flow in channels of arbitrary
curvature and slope (torsion) by coupling to a particle transport model as in the work
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of Lee et al. (2014) who considered monodisperse particulate flow in channels of small
slope.
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Appendix A. Orthogonal equations

The Navier-Stokes equations in the r, β, n coordinate system are presented in Lee
et al. (2014) which can be consulted for full details. For completeness, we summarise
them below. Note that whilst these equations are valid for a fluid with spatially-varying
viscosity, in the current work we consider fluids of constant viscosity, so derivatives of µ
vanish.
The continuity equation is

1

r

∂

∂r
(rvr) +

∂vn

∂n
= 0 or

∂vr

∂r
+
vr

r
+
∂vn

∂n
= 0, (A 1)

while the momentum equations are, in the er direction,

ρ
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)
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, (A 2a)

in the eβ direction,

ρ
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and in the en direction,
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