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The use of channel pressurisation in drawing microstructured optical fibres (MOFs)
potentially allows for fine control of the internal structure of the fibre. By applying
extra pressure inside the channels it is possible to counteract the effect of surface
tension which would otherwise act to close the channels in the fibre as it is drawn.
This paper extends the modelling approach of Stokes et al. (J. Fluid Mech., vol. 755,
2014, pp. 176–203) to include channel pressurisation. This approach treats the
problem as two submodels for the flow, one in the axial direction along the fibre
and another in the plane perpendicular to that direction. In the absence of channel
pressurisation these models decoupled and were solved independently; we show
that they become fully coupled when the internal channels are pressurised. The
fundamental case of a fibre with an annular cross-section (containing one central
channel) will be examined in detail. In doing this we consider both a forward
problem to determine the shape of fibre from a known preform and an inverse
problem to design a preform such that when drawn it will give a desired fibre
geometry. Criteria on the pressure corresponding to fibre explosion and closure of
the channel will be given that represent an improvement over similar criteria in the
literature. A comparison between our model and a recent experiment is presented to
demonstrate the effectiveness of the modelling approach. We make use of some recent
work by Buchak et al. (J. Fluid Mech., vol. 778, 2015, pp. 5–38) to examine more
complicated fibre geometries, where the cross-sectional shape of the internal channels
is assumed to be elliptical and multiple channels are present. The examples presented
here demonstrate the versatility of our modelling approach, where the subtleties of
the interaction between surface tension and pressurisation can be revealed even for
complex patterns of cross-sectional channels.
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1. Introduction
Microstructured optical fibres (or MOFs) are thin strands of glass, distinguished

from solid optical fibres by the cross-sectional structure running along their length.
The design of this cross-sectional structure, which acts to change the refractive
index from that of the pure glass, gives the fibre certain optical and physical
properties that are desirable in a range of applications (see, for instance, Monro
& Ebendorff-Heidepriem 2006). In the context of this work we focus on fibres
with internal air channels. These fibres typically have diameters of hundreds of
micrometres, with the internal channels being of even smaller diameter (typically
of the order of the wavelength of light). These fibres are manufactured by slowly
feeding a preform of suitable geometry (typically 1–3 cm in diameter) into a heated
region within a furnace and then stretching the molten glass to the dimensions of a
fibre. A diagram of this process is shown in figure 1, where the preform is fed into
the furnace with feed speed U0 and the stretched fibre is drawn off with speed UL
by winding the fibre onto a spool at some distance away from the neck-down region
over which the stretching occurs. This neck-down region is comparable in length, but
not necessarily identical, to the heated region of the furnace.

The process of drawing a preform into a fibre may significantly deform the internal
geometry, so that the resulting cross-section of the fibre is not simply a rescaled
version of the preform. Rather it will be modified under the influence of effects such
as surface tension and channel pressurisation so that the relative position and shape
of the channels is altered from the preform to the fibre. In modelling this process
and the associated deformation of the geometric configuration there are two broad
objectives: firstly, given a known preform, to determine the shape of the resulting fibre
(the forward problem); secondly, to determine the preform design and draw parameters
that are required to produce a desired fibre geometry (the inverse problem).

It is possible to control the change in internal geometry by carefully selecting the
operational draw parameters (such as draw speed UL and furnace temperature). An
extra degree of control, one that will be the focus of this work, may be obtained by
the active pressurisation of channels. Here, the internal channels are held at a higher
pressure than the ambient environment. This acts to expand channels in the cross-
sectional geometry, opposing surface tension which tends to shrink these small-scale
structures as the fibre is drawn. While it is known that the cross-sectional geometry
is very sensitive to the pressure, recent experimental work by Kostecki et al. (2014)
has shown that it is feasible to use active pressurisation to achieve fine control of the
geometry. Such pressurisation is necessary, for instance, in designs that feature internal
channels of very small diameter, which are pressurised so that they are not closed
completely by surface tension. Pressure is also applied to expand a preform geometry,
an example being a fibre that features narrow walls between the channels (see the
experimental work of Kostecki et al. (2014) for examples). Such a design would be
difficult to achieve without pressurisation since it is problematic to manufacture a
preform with very thin walls.

A number of previous studies have investigated the effect of active pressurisation,
including Fitt et al. (2002) who modelled a fibre with an annular cross-section and
Chen & Birks (2013) who recognised the importance of fibre tension in determining
channel deformation in this fundamental case. Fitt et al. (2002) found a closed-form
solution for this simple geometry where channel pressurisation was considered in
the absence of surface tension. They also derived a closed-form solution where both
effects were included under the assumption that the inner channel diameter was
small compared to the outer diameter of the fibre, but did not draw any conclusions
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Neck-down
region

FIGURE 1. Schematic diagram of the neck-down region.

about the competition between the two effects without this restriction. The case of
an annular fibre will be reconsidered in detail in the present work without any such
restriction on the relative size of the inner channel.

Channel pressurisation may be introduced in more subtle ways. Self-pressurisation,
for instance, is introduced if there is a difference between the enclosed volume of
air entering at the top of the neck-down region and the volume drawn off in the
fibre, so that the deformation of the internal geometry can effectively induce extra
pressurisation. Although the mechanism behind this effect, as considered in detail by
Voyce et al. (2009) for preforms that are sealed at both ends, will not be considered
here, there is a natural overlap between active and self-pressurisation and the model
presented here might be used, in conjunction with experimental results, to determine
the magnitude of self-pressurisation.

In modelling the fibre drawing process a Lagrangian framework will be adopted.
Earlier authors have made use of Eulerian approaches in modelling fibre drawing, in
particular Yarin, Gospodinov & Roussinov (1994) and Fitt et al. (2002), and this
approach is suited to examining certain aspects of these problems. Lagrangian
coordinate systems, exploiting the slenderness of the geometry, have also been used
to model extensional flows more generally (Wilson 1988; Yarin 1993; Stokes, Tuck
& Schwartz 2000; Wylie, Huang & Miura 2011). In particular, Dewynne, Howell &
Wilmott (1994) introduced a Lagrangian approach to model the stretching of solid
fibres and showed that the three-dimensional fibre drawing problem may be written
in terms of a one-dimensional extensional flow in the direction of the fibre axis and a
two-dimensional Stokes-flow free-boundary problem in the cross-plane perpendicular
to this axis. A limitation of that work was the neglect of surface tension. Cummings
& Howell (1999) built on this approach by including surface tension. An important
feature of their work was the scaling of the cross-plane problem with the square root
of its area and the introduction of a Lagrangian ‘reduced time’ variable that reduced
it to a classical Stokes-flow free-boundary problem in a domain of unit area with
unit surface tension. This problem gives the deformation of the cross-section due to
surface tension. The extensional and cross-plane models are coupled, but crucially
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the cross-plane flow may be solved completely independently of the axial flow. The
approach of Cummings & Howell (1999) was used by Griffiths & Howell (2007,
2008) to study the stretching of thin-walled viscous tubes and they derived elegant
asymptotic solutions of these problems.

The modelling approach used in the present work will build on recent work by some
of the current authors (Stokes et al. 2014; Buchak et al. 2015), who demonstrated the
utility of this approach for fibres of arbitrary cross-plane geometry. The key feature
of their model, which led to this result, was writing the extensional flow model in
terms of the reduced time variable rather than the Eulerian spatial coordinate. This
very general approach is a particularly important advance for modelling the drawing
of MOFs, which feature very complicated cross-sectional geometries that have many
internal interfaces. Note that the model of Griffiths & Howell (2007, 2008) is, in fact,
a specific example of the underlying mathematical structure of the more general fibre
drawing problem as detailed in full by Stokes et al. (2014).

The key result of Stokes et al. (2014) is to show that it is possible to explicitly
describe the solution to the axial stretching problem in terms of the cross-sectional
geometry. For any cross-sectional geometry this solution can be expressed in terms of
a single function

H(τ )= exp
(
− 1

12

∫ τ

0
Γ̃ (τ ′) dτ ′

)
, (1.1)

where τ is the Lagrangian reduced time coordinate and Γ̃ is the total circumference
of all cross-sectional boundaries scaled with the square root of cross-sectional
area, which is calculated from the solution to the cross-plane problem. Once this
intermediate quantity H(τ ) has been determined, all other axial quantities may be
described in terms of it, namely the cross-sectional area S, the axial velocity u
and the axial coordinate x. For the isothermal case (with constant viscosity), these
quantities are

S(τ )= 1
H(τ )2

(
1− σ

∗

γ ∗

∫ τ

0
H(τ ′) dτ ′

)2

, (1.2)

u(τ )= 1
S(τ )

, (1.3)

x(τ )=− 1
σ ∗

log
(

H(τ )
√

S(τ )
)
. (1.4)

In the above expressions γ ∗ is a scaled surface tension parameter, σ ∗ is a scaled
fibre tension parameter and the ratio between these two parameters is proportional
to the dimensional fibre tension. Knowledge of this dimensional quantity is of great
practical use in fibre drawing since it allows an experimentalist to predict from the
model the change in internal geometry due to the tension in the fibre, which is an
easily measurable quantity in an experimental setting.

In Buchak et al. (2015) this model is used for MOFs having complex cross-plane
geometries with many elliptical internal air channels, by using a generalisation of
the elliptical pore model of Crowdy (2004) to solve the cross-plane problem. This
provides a fast and accurate reduction of the full free-boundary problem to a coupled
system of nonlinear ordinary differential equations and, more significantly, regularises
the ill-posed inverse problem of determining the initial preform geometry and draw
parameters to draw a MOF with a desired cross-plane geometry.
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The current work will extend that of Stokes et al. (2014) and Buchak et al. (2015)
by including channel pressurisation. As will be seen, the inclusion of this effect
changes the mathematical structure of the model since it is no longer possible to
solve the cross-plane problem independently of the axial flow. As a consequence, the
approach outlined above involving H(τ ) is not valid, since the two sub-models for the
axial and cross-plane flows are now fully coupled and must be solved simultaneously.
Details of the extended model with channel pressurisation included are given in § 2.

In § 3 the model is applied to the case of a fibre with an annular cross-section.
Our Lagrangian approach reveals several new details of this fundamental case with
pressurisation, without the restrictions of previous studies such as Fitt et al. (2002),
who made several assumptions about the magnitude of various physical parameters
which we do not. In particular, our model gives a criterion for fibre explosion on
application of sufficiently large pressure (that is, the boundary of the inner channel
expands to the point where it meets the outer boundary), namely

pH >
4
3

1
S0

√
1− ρ0

1+ ρ0

(
σ

√
1− ρ0

1+ ρ0
+ 2
√

πγ
√

S0

)
, (1.5)

where ρ0 is the aspect ratio of the preform, S0 is the cross-sectional glass area of the
preform, pH is the pressure applied to the channel, σ is the fibre tension and γ is the
surface tension.

Several cases for fibres with multiple pressurised channels are considered in § 4.
It is assumed that the cross-sectional shapes of the channels are ellipses and the
cross-plane problem with pressurised channels is solved, as described in Buchak
et al. (2015), using the generalised elliptical pore model. One example will be
of particular interest to experimentalists, where we consider an inverse problem to
optimally design a preform for a multi-hole fibre such that the preform design features
(nearly) circular channels. This is an important practical consideration when preforms
are to be fabricated by drilling holes in a billet of glass (where drilled holes are, by
nature, circular) or by stacking capillaries with circular inner channels.

Our results are summarised and conclusions given in § 5.

2. Formulation

A schematic diagram of the fibre drawing process is given in figure 1. This shows
the ‘neck-down’ region over which the preform is stretched to the dimensions of a
fibre. As indicated in the diagram, the modelling approach adopted here will allow
for multiple channels running down the length of the fibre, and these channels may
be held at a pressure different to the ambient environment.

As in figure 1, the axial coordinate x is directed along the axis of the fibre in
the direction of the stretching, with the coordinates y and z in the cross-sectional
plane perpendicular to this axis. The velocities in these directions are u, v and w,
respectively, and p is pressure in the fluid (as opposed to the pressure in the channels).
The cross-sectional area of the fibre varies in the axial direction and this area is
denoted by S(x), while the total length of all boundaries in a cross-section at position
x is denoted by Γ (x). The modelling region is from x= 0 to x= L, where L is the
‘neck-down’ length. Several boundary conditions are imposed on the flow, namely that
u= U0, S = S0 at x= 0 and u= UL at x= L. Where, as in the inverse problem, the
desired structure of the final fibre, rather than that of the preform, is known, the area
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at the end of the draw S= SL at x= L is imposed instead of the condition on the area
at x= 0. A key parameter is the draw ratio, defined as

D= UL

U0
, (2.1)

and it is typically the case that D> 1 for fibre drawing. There are N internal channels
and so it is necessary to consider N+1 free boundaries (including the outer boundary).
The cross-sectional areas enclosed by each boundary are denoted as A (k) for k =
0 . . . N, where A (0) is the area enclosed by the outer boundary, which includes the
internal holes, and A (k) is the area of the kth channel. Similarly, the pressure in the
ambient environment is p(0) and the applied pressure in the kth channel is p(k) for
k= 1 . . .N.

Following Dewynne, Ockendon & Wilmott (1992), Cummings & Howell (1999),
Griffiths & Howell (2008) and Stokes et al. (2014), it is assumed that the fibre
geometry is slender (that is

√
S � L). This assumption allowed those authors to

introduce a slenderness parameter ε=√S0/L and obtain a leading-order approximation
to the Navier–Stokes equations consisting of two coupled models for the flow in the
axial and cross-plane directions. The same approach is adopted here. The spatial
coordinates, time, velocities, pressure and other variables are scaled as

(x, y, z)= L(x∗, εy∗, εz∗), (2.2)

t= L
U0

t∗, (2.3)

(u, v,w)=U0(u∗, εv∗, εw∗), (2.4)

p= µ0U0

L
p∗, (2.5)

S= S0S∗, (2.6)
Γ = εLΓ ∗, (2.7)

where the dimensionless quantities are denoted with asterisks. In addition the physical
parameters, i.e. surface tension γ and fluid viscosity µ, are scaled thus:

γ = µ0U0
√

S0

L
γ ∗, (2.8)

µ(x)=µ0µ
∗(x), (2.9)

where µ0 is a typical value for viscosity in the flow. In the examples considered
in §§ 3 and 4 it will be assumed that µ∗(x) = 1. As seen in work by Taroni et al.
(2013), for instance, the axial variation of viscosity may be modelled with a great
deal of sophistication by accounting for conduction in the glass, but this is not the
focus of the present study. As in Stokes et al. (2014) the final fibre geometry may
be determined from the measured fibre tension and does not depend on a specific
viscosity profile over the neck-down length but, rather, the harmonic mean of the
viscosity over this length. Thus, without loss of generality so far as determining the
geometry of the final fibre is concerned, we may set µ∗(x) = 1 so that µ0 is the
harmonic mean of µ(x), 0 6 x 6 L.

The axial and cross-plane models, resulting from the above scalings, are restated
below with the effect of channel pressurisation included. As will be seen in §§ 2.1
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and 2.2 below, the axial model is unchanged (at least in the case where the additional
pressure is assumed, as it will be throughout this paper, to be independent of axial
position), while there is an additional term in the stress condition on each boundary
in the cross-plane model due to the internal pressure (see equation (2.2) in Buchak
et al. 2015).

2.1. Leading-order axial model
The derivation of the equations governing the axial flow for fibres with unpressurised
channels is given in detail by Stokes et al. (2014). Since the derivation of this model
is essentially the same for pressurised channels this will not be repeated in full
here with the key additional steps outlined below and some further detail given in
appendix A.

The assumption of slender geometry allows a leading-order approximation in the
slenderness parameter ε2 to the full Navier–Stokes equations. The leading-order
equations for conservation of mass and conservation of axial momentum, for small
Reynolds number, are

Su= 1, (2.10)

(3µ∗Sux)x + 1
2
γ ∗Γx − p∗(0)x A (0) +

N∑
k=1

p∗(k)x A (k) = 0, (2.11)

where the asterisks on the dimensionless variables have been dropped, but are retained
on the quantities µ∗, γ ∗ and p∗(k). In the present work we only consider channels
held at a fixed (constant) pressure. Although axially varying pressurisations are not
considered here, they may be of interest in modelling self-pressurisation effects, as
described by Voyce et al. (2009), for instance. Since the pressurisations are constant,
the two last terms in (2.11) vanish, and after integration over x the equation for axial
momentum becomes

−3µ∗
DS
Dt
+ γ

∗

2
Γ = 6σ ∗, (2.12)

where σ ∗ is a dimensionless parameter relating to fibre tension. By convention the
dimensional tension in the fibre is σ and these two quantities are related via

σ = 6µ0U0S0

L
σ ∗. (2.13)

Even though the problem is steady it is convenient to write (2.12) with a derivative
following the motion since a Lagrangian coordinate system will later be introduced.
Both (2.10) and (2.12) are identical to those obtained with no channel pressurisation;
see Stokes et al. (2014).

A Lagrangian coordinate system is introduced, identical to that used in Cummings
& Howell (1999), Griffiths & Howell (2008) and Stokes et al. (2014). The time
coordinate is t= t̃ and the axial coordinate is transformed via

x=
∫ t̃

0
u(x̃, T) dT + x̃, (2.14)

where x̃ is the usual Lagrangian coordinate following the axial motion. The cross-
plane lengths y and z are scaled with the square root of cross-sectional area χ =√

S(x, t) so that these, as well as the total circumference Γ , are transformed with

y= χ ỹ, z= χ z̃, Γ = χΓ̃ . (2.15a−c)
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As in Cummings & Howell (1999), Griffiths & Howell (2008) and Stokes et al. (2014)
a reduced time τ is introduced; this is defined by

τ = γ ∗
∫ t̃

0

dt̃
µ∗χ

. (2.16)

The value of the reduced time at the end of the draw, τ(x = 1) = τL, may be
thought of as the total deformation time of the draw. In Stokes et al. (2014) this
deformation time was shown to be simply proportional to the change in initial and
final geometries, where this change was only due to surface tension. With channel
pressurisation included the interpretation of τL is a little more subtle, since it will
also take into account the action of this pressurisation against surface tension. This
will be discussed in more detail in § 3.2.

Equations (2.10) and (2.12) may now be rewritten in terms of the Lagrangian
reduced time coordinate τ to give

χ 2(τ )u(τ )= 1, (2.17)
dχ
dτ
− χ

12
Γ̃ (τ )=−σ

∗

γ ∗
, (2.18)

which is the same form given in Stokes et al. (2014). In that work, (2.18) was solved
by introducing an integrating factor (an integral expression involving Γ̃ (τ )). In turn
the solution to the whole problem was then described in terms of this integrating
factor. This is not possible here since, unlike the case of fibre drawing without hole
pressurisation and as was mentioned in the introduction and will be seen in § 2.2
below, the axial quantity χ now appears explicitly in the model for the cross-plane
flow, meaning that the two models are fully coupled and this integrating factor
approach, which relies on evaluating Γ̃ (τ ) independently of the axial flow, is no
longer appropriate.

Finally, an expression for the physical coordinate x is derived from the definition
of reduced time (2.16), namely

dx
dτ
= µ

∗(x)
γ ∗χ

. (2.19)

This conversion back to the physical coordinate x completes the axial model. Note
that this last equation (2.19) is the only place in the axial model that features the
viscosity µ∗(x). Hence, the role of the axially varying viscosity µ∗(x) is to position
a solution at a particular τ at a point in x. Since the primary goal of this modelling
is to investigate how the geometry of the final fibre differs from that of the initial
preform, the precise detail of how this change occurs over the neck-down region is
a subsidiary concern. As demonstrated in Stokes et al. (2014), the geometry change
between the preform and the fibre is related to the harmonic mean of the viscosity
profile. This may be seen by rearranging (2.19) and integrating to give an expression
for the modelling parameter γ ∗, namely

γ ∗ =
∫ τL

0

1
χ

dτ
/∫ 1

0

1
µ∗(x)

dx, (2.20)

where we have used the fact that x(τL) = 1 from the definition of reduced time.
The integrals on the right-hand side of the above expression are the inverse harmonic
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means of the square root of cross-sectional area χ(τ) and viscosity µ∗(x), respectively.
Thus, it is this integrated form of viscosity, rather than the full µ∗(x) profile in
the neck-down region, that is required to determine the difference in the geometry
between the preform and fibre. In practice, as established by Stokes et al. (2014) (and
in a more restricted form by Chen & Birks (2013)), knowledge of the fibre tension σ
circumvents the need to know about viscosity. This is an important practical advance
since, when actually performing a fibre draw, it is possible to measure fibre tension
directly, but knowledge of the viscosity can only be imperfectly inferred from the
furnace temperature. Put a different way, the fibre tension may be thought of as a
measure of the integral viscosity or temperature over the neck-down region, which
cannot be measured directly during fibre drawing.

2.2. Leading-order cross-plane model
The inclusion of channel pressurisation leads to a slightly altered version of the cross-
plane model as compared to the unpressurised version of Stokes et al. (2014), with
an extra term appearing in the leading-order stress conditions on the interfaces of the
pressurised channels. In the notation here we allow for N internal channels and have
a pair of interfacial stress conditions for each channel, namely

(−p+ 2µ∗vy)G(k)
y +µ∗(vz +wy)G(k)

z =−(γ ∗κ (k) + p∗(k))G(k)
y , (2.21)

µ∗(vz +wy)G(k)
y + (−p+ 2µ∗wz)G(k)

z =−(γ ∗κ (k) + p∗(k))G(k)
z , (2.22)

on each boundary G(k) = 0 with interfacial curvature κ (k), for k = 0 . . . N. In this
notation G(0) = 0 is taken to be the outer boundary where, by definition, there is no
applied pressure and it is always the case that p(0) = 0. Aside from this modification,
the derivation of the governing equations for the cross-plane flow proceeds in much
the same way as in Stokes et al. (2014). The model describes the flow in a cross-
section with Lagrangian label x̃. The velocity and pressure variables in this cross-
section are scaled thus:

p=−ux(x̃, t̃)+ γ ∗√
S(x̃, t̃)

p̃, (2.23)

v =−1
2

ux(x̃, t̃)y+ γ ∗

µ∗(x̃, t̃)
ṽ, (2.24)

w=−1
2

ux(x̃, t̃)z+ γ ∗

µ∗(x̃, t̃)
w̃, (2.25)

where each of these expressions is split into the solution for zero surface tension
and a part due to surface tension (as in Cummings & Howell 1999). With the
scalings (2.15a−c) the cross-section now has unit area. The leading-order equations
for conservation of mass and momentum are

ṽỹ + w̃z̃ = 0, (2.26)
ṽỹỹ + ṽz̃z̃ = p̃ỹ, (2.27)
w̃ỹỹ + w̃z̃z̃ = p̃z̃. (2.28)
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The stress conditions (2.21)–(2.22) on the boundaries G(k) = 0 become, after scaling
and writing κ (k) = κ̃ (k)/χ as per (2.15a−c),

(−p̃+ 2ṽỹ)G
(k)
ỹ + (ṽz̃ + w̃ỹ)G

(k)
z̃ =−

(
κ̃ (k) + p∗(k)

γ ∗
χ

)
G(k)

ỹ , (2.29)

(ṽz̃ + w̃ỹ)G
(k)
ỹ + (−p̃+ 2w̃z̃)G

(k)
z̃ =−

(
κ̃ (k) + p∗(k)

γ ∗
χ

)
G(k)

z̃ (2.30)

and the kinematic conditions in this coordinate system are

G(k)
τ + ṽG(k)

ỹ + w̃G(k)
z̃ = 0. (2.31)

Equations (2.26)–(2.31) constitute a Stokes-flow free-boundary problem in a region of
unit area, with unit surface tension and unit viscosity.

The terms involving p∗(k) in the stress conditions (2.29) and (2.30) are the key
difference between the present model which includes channel pressurisation and the
model of Stokes et al. (2014). In both stress conditions the p∗(k) are multiplied by
the axial variable χ , the presence of which means that the cross-plane and axial
problems are fully coupled; in contrast to the version of the model without channel
pressurisation it is no longer possible to solve the cross-plane problem independently
of the axial flow. Although the now fully coupled axial and cross-plane problems
must be solved simultaneously, many of the other results given in Stokes et al. (2014)
remain useful for the present problem, since the model for the axial flow is identical.

3. Case study: circular tubes

A fundamental design in the study of MOFs is the circular capillary with a single
circular channel running down its length such that the cross-section is a concentric
annulus. Fibres of this type are referred to as tubular or annular. They are the simplest
possible type of fibre containing a holey structure, and although they are not optically
useful it is instructive to study this simple case before proceeding to more complicated
geometries. Additionally, drawn capillary tubes are used in fabrication of MOFs in the
process of capillary stacking, where a large number of tubes are joined together to
form a preform, which may then be drawn to give a MOF with many holes.

There have been numerous previous studies of similar fibres including those by
Yarin et al. (1994) and Griffiths & Howell (2007, 2008), who considered thin-walled
tubes with no pressurisation of the internal channel. A model by Fitt et al. (2002),
which did not adopt a Lagrangian framework as we have done but is otherwise
equivalent to the model presented here, considered among other factors the role
of channel pressurisation. That study proposed criteria for both the explosion of a
pressurised fibre and the closure of the central channel, assuming the diameter of
the central channel to be small compared with the diameter of the fibre and that
surface tension is small. The model we here present does not require these limiting
assumptions about the relative magnitude of the various physical parameters so that
improved criteria will be derived with ultimately a less restrictive choice of pressures.

Polar coordinates (r, θ) are here adopted for solving (2.26)–(2.31) for the cross-
plane flow in an annular domain of unit area. The outer radius of the annulus is
r = R(τ ) and the inner radius is r = ρ(τ)R(τ ), so that ρ(τ) is the ratio of the inner
and outer radii. Since Γ̃ (τ ) is the total perimeter length of an annulus of unit area,
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it follows that the axial momentum equation (2.18) may be rewritten in terms of ρ to
give

dχ
dτ
=
√

π

6
χ

√
1+ ρ
1− ρ −

σ ∗

γ ∗
. (3.1)

Here, ρ is a function of reduced time τ satisfying either a boundary condition on the
initial (preform) geometry, ρ(0)=ρ0, or a condition on the final geometry of the fibre,
ρ(τL)=ρL. It is necessary to solve the cross-plane problem to determine the evolution
over reduced time τ of this geometry parameter ρ.

The cross-plane model (2.26)–(2.31), rewritten in polar coordinates for this annular
(axisymmetric) geometry, is

1
r
∂

∂r
(rv)= 0, in S,

∂p
∂r
+ 1

r
∂

∂r

(
r
∂v

∂r

)
− v

r2
= 0, in S, (3.2a,b)

−p+ 2
∂v

∂r
=−κ, on G(0) = 0, (3.3)

−p+ 2
∂v

∂r
=−κ − p∗H

γ ∗
χ, on G(1) = 0, (3.4)

∂G(k)

∂τ
+ v = 0, on G(k) = 0, for k= 0, 1, (3.5)

where the outer and inner boundaries are represented as G(0)= r−R and G(1)=ρR− r.
Note that the applied pressure p∗(1) = p∗H only appears in the stress condition for the
inner boundary. Solving for the velocity and pressure, we obtain

v = ρR
2r(ρ − 1)

(
1− p∗H

γ ∗
ρRχ
ρ + 1

)
, (3.6)

p= 1
R(1− ρ) −

p∗H
γ ∗

ρ2χ

1− ρ2
(3.7)

and on substituting for v in the two kinematic conditions (3.5) we find

dR
dτ
=− ρ

2(1− ρ) +
p∗H
γ ∗

ρ2Rχ
2(1− ρ2)

, (3.8)

d(ρR)
dτ
=− 1

2(1− ρ) +
p∗H
γ ∗

ρRχ
2(1− ρ2)

. (3.9)

These expressions are manipulated using the fact that the annulus has unit area, that
is πR2(1− ρ2)= 1, to give a single differential equation for ρ,

dρ
dτ
=−
√

π

2
(1+ ρ)3/2(1− ρ)1/2 + 1

2
p∗H
γ ∗
ρχ. (3.10)

This, together with the axial momentum equation (3.1) and the equation for the
Eulerian coordinate x (2.19), completely describes the drawing process. It is
convenient to define α = π−1/2(1 − ρ)1/2(1 + ρ)−1/2 and rewrite equations (3.10)



148 M. J. Chen and others

and (3.1) as

dα
dτ
= 1

2
− 1

8πα
(1−π2α4)

p∗H
γ ∗
χ, (3.11)

dχ
dτ
= 1

6
χ

α
− σ

∗

γ ∗
. (3.12)

There are effectively two free parameters in these equations: the ratio of pressure
to surface tension and the ratio of fibre tension to surface tension; henceforth these
parameters will be written as

P = p∗H/γ
∗, (3.13)

T = σ ∗/γ ∗. (3.14)

In examining the behaviour of the system we will often refer to these ratios rather
than the parameters individually. Note that, aside from these ratios, the surface
tension parameter γ ∗ and the viscosity µ∗(x) appear only in (2.19), the equation
for the physical coordinate x. In all of the subsequent analysis we set µ∗(x) = 1,
equivalent to an assumption of constant viscosity, and γ ∗ is obtained via (2.20) once
χ(τ) is known. As discussed earlier, the assumption of constant viscosity is made
without any loss of generality so far as the final fibre geometry is concerned. We
here note that with this assumption the evolution of the geometry over the neck-down
region 0 < x < 1, i.e. from the preform to the fibre, for a constant viscosity is an
approximation to the actual evolution of the geometry. This geometry evolution,
however, is not important and is not shown. All results shown in this paper are
for the final fibre or the initial preform and are valid in the case of a non-constant
viscosity.

Applying the chain rule to (3.11) we obtain the autonomous ODE

dα
dχ
= 3α − (3/4π)(1−π2α4)Pχ

χ − 6T α
(3.15)

and, as will be seen in § 3.2, this equation is particularly useful for solving the inverse
problem. Similarly, (2.19) and (2.20) may be rewritten in terms of χ instead of τ
where χ(τL)= 1/

√
D.

Finally, as suggested by the form of (3.15), it is possible to rewrite the problem as
an autonomous system with a slightly different form:

dα
dξ
= 3α − 3

4π
(1−π2α4)Pχ, (3.16)

dχ
dξ
= χ − 6T α, (3.17)

where this system is simply (3.11)–(3.12) rewritten with a change of independent
variable from τ to ξ = ∫ τ0 1/(6α(τ ∗)) dτ ∗. This representation of the governing
equations will be used in § 3.1 to examine the behaviour of the system in the (χ, α)
phase plane and in computing solutions where α→ 0+ (the thin wall limit ρ→ 1).
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FIGURE 2. Bifurcation plot for PT versus the χc values of the two stationary points.
Here the χc value of the non-zero point has been computed with T = 2.

αc χc PT < 2π/3 PT > 2π/3

0 0 Unstable node Saddle
π−1/2(1− (2π/3)(1/PT ))1/4 6T αc — Unstable node

TABLE 1. Summary of the position and behaviour of the two relevant stationary points.

3.1. Analysis of the (χ, α) phase plane

There is no closed-form solution to the system of governing equations (3.11)–(3.12),
or equivalently (3.15) or (3.16)–(3.17), and a numerical solution will ultimately be
obtained. However, first it is revealing to analyse the critical points and associated
local trajectories in the (χ, α) phase plane of this system. This will provide an
overview of the behaviour of solutions in the region of the phase plane associated
with fibre drawing, that is for 0< χ < 1 and 0< α < 1/

√
π (hereafter referred to as

the ‘fibre drawing region’).
The stationary points (χc, αc) are found by setting dα/dτ = 0 and dχ/dτ = 0

in (3.11) and (3.12), which after some manipulation gives a quintic polynomial in αc,
the solutions of which are straightforward to obtain. Of these solutions only those that
are purely real and lie in the fibre drawing region are relevant to this analysis. There
are two such values of αc and these are given in table 1 along with the corresponding
values of χc. Note that the second of these points may be complex, meaning that a
bifurcation exists since this point is only purely real for PT > 2π/3. The bifurcation
point is displayed in figure 2 where the purely real χc values of the two stationary
points in table 1 are displayed over a range of PT values; here the χc value for
the second of these points has been calculated with T = 2. This second point only
lies in the fibre drawing region when χc < 1, as indicated by the horizontal dotted
line in figure 2, and this only occurs for a small range of PT values immediately
after the bifurcation point.

The behaviour of trajectories near the stationary points is characterised via an
eigenvalue analysis of (3.16) and (3.17). These behaviours are summarised in table 1
and are indicated by solid and dashed lines in figure 2. The eigenvector for the
stationary point at the origin which is directed towards the fibre drawing region is
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FIGURE 3. Plot of trajectories in the (χ, α) plane, for T = 2, where the origin is (a) an
unstable node for P = 0.5 or (b) a saddle for P = 2; the arrows indicate the direction of
increasing τ , the dotted lines are turning points in the trajectories, the angled dashed line
is the linear approximation of the separatrix and the vertical dashed line is at χ = 1/

√
D=

0.475. (Note that this is an unrealistically small value of D, which has been selected for
illustrative purposes since a realistic value of this parameter would place the dashed line
at the left edge of the figure, obscuring the intersection between the dashed line and some
of the trajectories.) The feasible values for α0 and αL are shown in (c) for the two values
of P . The inset plot is a detail of the portion of the P = 2 curve near αL = 0 (fibre
explosion) indicated by the dashed lines, showing the non-uniqueness of the solutions near
that value; here the inset axes span 2.5× 10−5 in α0 with 0<αL < 6× 10−2, so that the
inset curve is magnified more in the horizontal than in the vertical direction.

relevant to the discussion here and is given locally by

αs(χ)= c1 − 1
6T

χ, with c1 =
√

1+ 9
2π

PT . (3.18)

Where this point is an unstable node, trajectories in this direction move away from the
origin; where the origin is a saddle point, αs(χ) approximates the stable separatrix of
this saddle.

The turning points of the trajectories lie at the points where (3.16) and (3.17) are
separately equal to zero (equivalent to the nullclines where dα/dχ = 0 and dχ/dα= 0,
respectively). These turning points occur at

χ = 6T α, (3.19)

which in the (χ, α) plane is equivalent to dχ/dα = 0, and

χ = 4πα

(1−π2α4)P
, (3.20)

which is equivalent to dα/dχ = 0.
Some example trajectories in the (χ, α) phase plane for T = 2 are shown in

figure 3(a,b) for P = 0.5 and 2, respectively. These values are either side of the
bifurcation displayed in figure 2, so that in figure 3(a) the origin is an unstable
node (where, effectively, in this regime, surface tension dominates pressurisation),
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and for the larger P value in figure 3(b) the origin is a saddle point (a regime
where pressurisation dominates surface tension). The turning points given by (3.19)
and (3.20) are displayed as dotted lines and αs(χ) from (3.18) is shown as an angled
dashed line (obscured by the trajectories in figure 3a, but visible near the origin in
figure 3b).

A solution to the fibre drawing problem consists of the part of a trajectory that
spans from χ = 1 to χ = 1/

√
D in a direction of increasing τ , as indicated by the

arrows in figure 3. As can be seen in figure 3(a) not all trajectories have a part that
constitutes such a solution. Thus, the range of feasible values for preform geometry
α0=α(1) and fibre geometry αL=α(1/

√
D) for a particular choice of draw parameters

(in this case D, T and P) that correspond to valid solutions is potentially restricted.
The feasible values of α0 and αL for the two values of P are shown in figure 3(c),

where each point on these curves corresponds to a valid solution. In both cases the
feasible values of α0 do not extend over the full range of values that are possible in
principle (0 < α0 < 1/

√
π, corresponding to 1 > ρ0 > 0), showing that there are no

feasible fibre geometries for this choice of draw parameters if the preform has a hole
that is either too small or too big. For P = 2 the full physically valid range of αL is
feasible, but for P = 0.5 this is not the case. For instance, at this smaller value of
pressure, fibre explosion (where αL = 0 at χ = 1/

√
D) does not occur, whereas it is

possible for the larger value of pressure. As shown on the inset in figure 3(c), there
is some non-uniqueness for the larger value of pressure, where for a very small range
of α0 near the value for fibre explosion it is possible to obtain two different values
of αL.

Identifying the point of fibre explosion is of practical interest, since in an
experiment this is a catastrophic event. As was seen in figure 3, fibre explosion
only occurs when the origin is a saddle point and α0 is below some critical value.
This value is well approximated by the intersection of αs(χ) and χ = 1, since
explosion occurs for trajectories that lie below the separatrix, which, it can be shown,
lies below the line αs(χ). Thus, the criterion for explosion is given as α0 < αs(1),
which may be rewritten in terms of the pressurisation to give

P >
8π

3
α0(3T α0 + 1). (3.21)

As stated above, this criterion effectively indicates when a trajectory starting at α0 lies
below the stable separatrix, assuming that the separatrix is well approximated by the
linear expression given in (3.18), and this assumption is justified for typical values
of the fibre drawing parameters. Note that this criterion is different in character to
the criterion proposed by Fitt et al. (2002) for fibres with a small-diameter channel.
That criterion is equivalent to α′(1) > 0, in the notation of this paper, and posits
that an initial expansion of the hole at the preform end of the neck-down will
lead to explosion of the fibre. This does not account for the situation, often seen
experimentally, where an initial increase in aspect ratio due to the pressurisation is
followed by a decrease in aspect ratio as the glass is stretched to the dimensions
of a fibre and surface tension becomes dominant; that is, an initial increase in the
aspect ratio of the tube is not necessarily catastrophic. Additionally, our criterion
makes no assumptions about the relative diameter of the internal channel or the
magnitude of surface tension. For convenience, the criterion (3.21) is rewritten in
terms of dimensional variables in (1.5).

Similarly, we now propose a criterion for hole closure, where αL = 1/
√

π. We use
(3.15) to obtain the first three terms in a Taylor series expansion of α(χ) about the
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point (1/
√

D, 1/
√

π). This expansion is then evaluated at (1, α0) and rearranged to
obtain the criterion on pressure, namely that hole closure occurs for

P <
a2
√

D
9(D− 1)

(
a(α0 − 1/

√
π)+ 3(

√
D− 1)

)
+ 2

3
π
√

D

(
1+ 3

√
D√
π

T

)
, (3.22)

with a = −√π + 6T
√

D. As with the proposed explosion criteria, (3.22) is
straightforward to implement in an experimental setting since it simply involves
evaluating an expression of easily interpreted draw and geometry parameters.
An expression in terms of dimensional quantities is obtained by substituting
P = pH

√
S0/γ and T = σ/(6γ√S0).

3.2. Forward and inverse problems in dimensional variables
Trajectories of the type discussed in § 3.1 are now considered over a range of tensions
and pressurisations as we apply our model to the forward and inverse problems. The
forward problem predicts the final fibre for a known preform and a set of drawing
parameters, while the inverse problem involves running the model backwards in τ to
determine the shape of a preform and the draw parameters required to give a specified
final fibre.

It is appropriate to discuss the solution to these problems in terms of the
dimensional draw parameters, namely

pH = γ√
S0

P, (3.23)

σ = 6γ
√

S0T , (3.24)
µ0

L
= γ

U0
√

S0

1
γ ∗
, (3.25)

where (3.23) and (3.24) are obtained by substituting (2.8) into (2.5) and (2.13), and
(3.25) is a rearrangement of (2.8). Note that the dimensional channel pressurisation
and tension are proportional to the dimensionless ratios P and T , given in (3.13)
and (3.14). Thus, knowledge of γ ∗ outside of these ratios is only necessary if the
quantity µ0/L is of interest.

Six parameters are required to completely describe either the forward or inverse
problem: the initial and final geometry parameters ρ0 and ρL, the draw ratio D, the
scaled surface tension γ ∗ and the two ratios of fibre tension and hole pressurisation
to surface tension, T and P . Note the last three of these parameters directly relate
to physical quantities via (3.23)–(3.25), which makes it straightforward to choose
physically meaningful values of these parameters. When solving the system it is
necessary to specify four of the six parameters, with the model output determining
the other two (typically γ ∗ and either ρL or ρ0 for the forward or inverse problem,
respectively). Additionally, the total deformation time τL is recorded since this
quantity is a useful measure of the competition between the stretching and the effects
of surface tension and pressurisation.

The surface tension parameter γ ∗ is determined via (2.20), which is straightforward
to evaluate once we have found χ(τ) from the model (and have a known viscosity
profile µ∗(x), which for all the examples shown here is chosen to be µ∗(x)= 1). If
we are concerned with knowing the geometry of the solution at each point throughout
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FIGURE 4. (a) Contours of ρL against fibre tension σ with channel pressurisations pH =
0, 200, . . . , 2000 Pa (bottom to top) for the forward problem with ρ0= 0.2. (b) Contours
of ρL against τL over a range of constant pH = 0, 200, . . . , 2000 Pa (bottom to top) for
the forward problem with ρ0 = 0.2. The remaining parameters for the displayed solutions
are D= 3000, S0 = 7.54× 10−5 m2, U0 = 1.4 m min−1 and γ = 0.23 N m−1. The crosses
in (a) indicate the critical value of tension predicted by (3.21) (for the larger pressures
where explosion is possible at low tension) or by (3.22) (for pH = 0 and 200 Pa where
hole closure may occur). The circles are for the explosion criterion given by Fitt et al.
(2002) for an initially small hole.

the neck-down region then we must additionally solve for the scaled axial coordinate
x from (2.19), which positions the solutions from the Lagrangian time coordinate τ in
physical space. When µ∗(x)= 1 it is convenient to solve (2.19) for a scaled coordinate
γ ∗x, namely

d(γ ∗x)
dτ

= 1
χ
, (3.26)

where γ ∗ is then chosen such that x(τL)= 1 when χ(τL)= 1/
√

D.
The solutions to a suite of forward problems are displayed in figure 4, where each

point along these curves represents a solution for a choice of drawing parameters.
These were obtained by the numerical solution (using MATLAB) of the governing
equations (3.11) and (3.12) for increasing τ . The aspect ratio of the preform is
ρ0 = 0.2, corresponding to α0 ≈ 0.4607, and the draw ratio is fixed at D= 3000. The
draw parameters σ and pH are specified (via T and P) over the range indicated
in the figure. The surface tension is γ = 0.23 N m−1, the cross-sectional area of the
preform is S0 = 7.54 × 10−5 m2 and the feed speed is U0 = 1.4 m min−1. Having
specified these parameters, the numerical method will solve for the fibre geometry
ρL (shown in figure 4a), γ ∗ and the total deformation time τL (the latter is shown in
figure 4b).
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The solutions for no applied pressure (pH = 0) are, as expected, identical to those
of Stokes et al. (2014): for low fibre tension the surface tension dominates and acts
to close the geometry, while at higher fibre tension, where surface tension has less
opportunity to act, ρL approaches the initial value ρ0. Not surprisingly, applying active
pressurisation, holding other parameters constant, will ‘open’ the geometry (that is,
increase ρL from the unpressurised value). For smaller tension values it is clear that
application of pressure will, in general, result in fibre explosion, i.e. ρL = 1. Note
that in the regime of small tension most of the (σ , ρL) curves are nearly vertical
and the solutions are very sensitive to the choice of tension σ ; a small change in
tension will be the difference between a successful fibre and explosion. However, for
sufficiently small pressure, pH , surface tension will prevent fibre explosion or even win
and completely close the channel.

Figure 4(b) shows the competition between surface tension and pressurisation in
terms of the deformation time τL. If ρL < ρ0 is desired then application of pressure
will increase the time τL needed to achieve this, or even make it impossible. If ρL>ρ0

is desired then the pressure pH must be above some threshold value sufficient to
overcome surface tension (dependent on the initial geometry), and the deformation
time τL needed reduces as pH increases above this threshold; τL also becomes very
sensitive to pH as pH becomes large.

The critical tension values from the criteria for explosion (3.21) and hole closure
(3.22) at each choice of pressurisation are shown as crosses on the solution curves in
figure 4(a); here the crosses on the pH = 0 and 200 Pa curves are from the closure
criterion and the crosses on the remaining curves are from the explosion criterion.
The circles are the critical values from the criterion given by Fitt et al. (2002)
for the expansion of an initially small hole. Recall that both explosion criteria are
approximate and predict the value of pressurisation pH for which explosion is likely
to occur given the other draw and geometry parameters or, as shown in figure 4(a),
they may be used to predict the critical value of the fibre tension below which
explosion is likely to occur given the pressure pH and other draw and geometry
parameters. As a result, in figure 4(a) the ρL values that correspond to the predicted
critical values of σ are less than ρL = 1. The predictions from (3.21) give a lower
critical tension value at all values of pressure pH compared to that given by Fitt, so
that using our criterion with, for example, pH = 2000 Pa allows a much wider range
of ρL, which more accurately reflects the feasible geometries given by the numerical
solution. Fitt et al. (2002) also proposed a criterion for hole closure (not shown in
figure 4a) that predicts hole closure at tensions below the value indicated by the
numerical solution. Our closure criterion (3.22) tends to slightly overestimate the
critical tension associated with hole closure, which is preferable to the Fitt criterion
since underestimating tension will result in a fibre with no air channel.

There are circumstances where the choice of tension to achieve a certain geometry
ρL with a given pressure pH is not unique. This is seen on the (σ , ρL) curve for pH =
400 Pa. Here there is a local minimum in the curve and either side of this value there
are two possible tension values for each choice of ρL < ρ0, where the low-tension
solution corresponds to a larger τL value, i.e. a longer deformation time.

To solve the inverse problem and find a preform and draw parameters to yield a
desired fibre, it is easiest to use (3.15) and solve this ‘backwards’, from χ = 1/

√
D

to χ = 1, to find the preform geometry ρ0. Some solutions to the inverse problem
are shown in figure 5, where preform geometry ρ0 is plotted against fibre tension σ
(figure 5a) and deformation time τL (figure 5b) for a range of pressurisations pH . The
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FIGURE 5. (a) Contours of ρ0 against fibre tension σ with channel pressurisations pH =
0, 100, . . . , 1000 Pa (top to bottom) for the inverse problem with ρL = 0.6. (b) Contours
of ρ0 against τL over a range of constant pH = 0, 100, . . . , 1000 Pa (top to bottom) for
the inverse problem with ρL = 0.6. The remaining parameters for the displayed solutions
are D= 3000, S0 = 7.54× 10−5 m2, U0 = 1.4 m min−1 and γ = 0.23 N m−1.

draw ratio is again set at D= 3000 (dictated by the desired change in cross-sectional
area from preform to fibre) and the geometry of the final fibre is set at ρL = 0.6.

For the unpressurised (pH = 0) case two ρ0 solutions exist for each value of σ ; one
solution approaches the geometry of the fibre at high tension and the other approaches
ρ0 = 1, corresponding to very thin-walled preforms. These latter solutions have been
computed using (3.16) and (3.17), since χ is not monotonically decreasing. The
existence of these solutions is mathematically interesting, but in practice preforms
with very thin walls are impossible to manufacture and only the smaller ρ0 is a
feasible option. Aside from the case pH = 0, non-uniqueness of ρ0 is seen for pH > 0
only over a finite range of tensions. In fact, with reference to our earlier analysis
of the (χ, α) plane in § 3.1, we have non-uniqueness for PT < 2π/3, i.e. from
(3.23)–(3.25), (pH/γ )(σ/γ ) < 4π, when the origin in the (χ, α) plane is an unstable
node; this is most easily seen in the curve for P = 0.5 in figure 3(c). Thus for
pH significantly above zero the tension must be near zero, which is completely
impractical. For the values of pH > 0 used in figure 5(a) the curves have not been
computed for such small values of σ (since no feasible solutions exist there) and
no non-uniqueness is seen. Nevertheless, for a non-zero choice of pH there are two
choices of ρ0 at sufficiently low tension, corresponding to thin-walled and thick-walled
preforms.

In general, for a given fibre geometry ρL, the aspect ratio of the required preform
ρ0 reduces as the pressure pH increases, holding other draw parameters constant. For
small values of pressurisation (for instance pH = 100 Pa) the surface tension will
still dominate so that the preform geometry must have a larger ratio between the
inner and outer boundaries than that of the fibre. The larger values of pressurisation
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FIGURE 6. (a) Comparison between the model output (circles) and experimental data
(crosses, with ±5 % measurement error) for the fibre geometry ρL against the applied
pressure pH . (b) The measured fibre tension versus the applied pressure pH , shown as
crosses with a ±2 g measurement error. The remaining parameters are ρ0 = 0.17, U0 =
1.4 mm min−1, UL = 5.6 m min−1, D= 4000 and γ = 0.23 N m−1.

here considered all lead to preforms whose geometries are more closed than the
desired fibre, with pressurisation overcoming surface tension. Additionally there is
some non-uniqueness present in some of these pressurised solutions (namely for
pH = 100, 200 Pa), where identical preforms may be drawn at two different tension
values, σ , to give the same fibre. Note that the solutions at lower tensions are
associated with a viscosity that is too low for a fibre to be drawn, where typically
glass is malleable enough for fibre drawing when the viscosity µ0 is in the range
O(104 Pa s) < µ0 <O(105 Pa s).

The termination of the curves for low values of tension σ is associated with the
influence of an unstable node on trajectories in the fibre drawing region. For pH = 100
and 200 Pa the curves terminate at the value of σ at which the stationary point at the
origin changes in character from a saddle to an unstable node; trajectories sufficiently
near the origin are then ‘attracted’ to the unstable node as they are run backwards in
τ and so do not reach χ = 1. The curves for the remaining values of pressurisation
terminate when the second stationary point given in table 1 (also an unstable node)
enters the fibre drawing region. Again, as the trajectories near this point they are
attracted to it rather than reaching χ =1, and so do not constitute a valid fibre drawing
solution. These low tensions correspond to viscosities that are at least an order of
magnitude smaller than is required for fibre drawing.

3.3. Comparison with experiment
Experimental validation of the above model for drawing annular fibres with channel
pressurisation is ongoing. The results from an initial experiment are extremely
promising and these are presented here as confirmation that pressurisation has been
included correctly in the model. This experiment involved drawing to fibre an annular
preform made of F2 glass, a lead-silicate glass from the Schott Glass Company
(2015), which has previously been used in experimental fibre drawing studies as a
less expensive alternative to pure silica glass (Ruan et al. 2007; Monro et al. 2010).

The preform geometry, which was measured prior to drawing, was ρ0 = 0.17.
The furnace temperature was set at T = 900 ◦C, the preform feed speed was U0 =
1.4 mm min−1 and the surface tension for F2 glass is taken to be γ = 0.23 N m−1

(see Boyd et al. 2012). In the experiment the fibre was initially drawn without
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pressurisation (that is with pH = 0) with a draw speed of UL = 5.6 m min−1 selected
to achieve an outer fibre diameter of approximately 160 µm, thus the draw ratio
was D = 4000. Over the course of the experiment pressurisation was increased in
increments of 1000 Pa up to a maximum of pH = 4000 Pa. After each change in
pressurisation the fibre was drawn for around 30 m to ensure a steady state had been
reached.

The experimental values for the fibre geometry ρL are shown as crosses in
figure 6(a). At each pressurisation the ρL value is the average of three measurements
taken from the portion of the fibre drawn at the steady state. There is excellent
agreement between the experimental values and the model output, shown as circles
in figure 6(a), with the model accurately capturing the expansion of the geometry as
the pressurisation is increased.

A key point of difference between this experiment and previous studies (the
experimental results presented in Fitt et al. (2002), for instance) is that the equipment
used here is capable of measuring the fibre tension. As demonstrated in § 2 and in
Stokes et al. (2014), fibre tension is crucial in determining the fibre geometry, and by
measuring this quantity it is possible to avoid the need to know about the temperature
or viscosity of the glass, which are not measurable during a fibre draw. As shown in
figure 6(b), the fibre tension increased slightly throughout the draw as pressurisation
was increased. This is due in part to the fibres with a larger ρL also having a larger
outer diameter, which leads to a lower glass temperature, owing to the lower thermal
mass associated with the relatively thinner walls in the neck-down.

The preform used in this experiment was produced by an extrusion process and
features a slight taper in outer diameter, as is typical of preforms that are produced
in this way due to the gravity stretching that occurs during extrusion. As a result of
this slight variation, it is not possible to know precisely the diameter of the preform
that corresponds to a given point on the fibre; this is crucial since the preform area S0
appears in the non-dimensionalisation of fibre tension (2.13). Since it is not possible
to directly measure this area, we instead compute S0 from the measured fibre area SL,
via (2.1) and (2.10), so that

S0 =DSL, (3.27)

where both the fibre area SL and the draw ratio D are known accurately.

4. Case study: multi-hole fibres
The annular case of the previous section is the simplest possible geometry

containing an internal channel. Although this fundamental case is instructive, the
modelling approach is capable of handling much more complicated cross-sectional
geometries. Two such cases are considered here: a forward problem drawing a
preform with four channels and an inverse problem to draw a fibre with an array of
54 channels. The cross-sectional shape of the channels is assumed to be elliptical,
in line with experimental observations of the deformation of circular channels (see,
for instance, Stokes et al. 2014; Buchak et al. 2015). Imposing such a restriction
has the benefit of avoiding the stability issues associated with the ill-posed nature
of the inverse problem, as discussed in Stokes et al. (2014). This restriction also
means that the highly efficient elliptical pore model of Buchak et al. (2015) can be
used to solve for the flow in the cross-plane. This Stokes-flow free-boundary problem
may now feature many interfaces and a flow domain that is more complicated than
the simple case of § 3, and this method makes the solution of this difficult problem
computationally tractable.
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The method of Buchak et al. (2015) generalises the elliptical pore model (EPM)
approach of Crowdy (2004) by including an external boundary so that the method is
applicable to fibre drawing. The key assumptions behind the EPM are that the cross-
sectional shapes of the channels are elliptical for all time, and that the channels do
not lie too close together in the cross-plane. As demonstrated in Buchak et al. (2015),
the solutions from this asymptotic approach are in very close agreement with results
from a full numerical solution that does not impose these restrictions.

The inclusion of pressurisation in the internal channels is described in Buchak
et al. (2015) but not fully implemented, and none of the examples in that work
include pressurised channels. As with the annular example in § 3, the inclusion of
pressurisation requires the simultaneous solution of the cross-plane and axial models.
The relevant governing equations are given in § 5 of Buchak et al. (2015) and these
are reused here, via a publicly available MATLAB implementation of that work (Buchak
& Crowdy 2014), with the addition of the two differential equations governing the
axial stretching (2.17) and (2.18) and, for completeness, the relation between the
physical position x of the cross-section and reduced time τ (2.19). The relevant
system of differential equations from Buchak et al. (2015) is reported below and we
refer interested readers to that work for full details of the derivation.

In summary, the parameters that describe the cross-sectional geometry are the radius
of the outer boundary R(τ ), the position in the complex plane of each channel in the
cross-section Zn(τ ), plus real parameters αn(τ ) and complex parameters βn(τ ), for n=
1 . . . N, which describe the size, aspect ratio and rotation of each of the N elliptical
channels. The αn and βn relate to the semi-major axis an and semi-minor axis bn of
the nth channel via

an = αn + |βn|, bn = αn − |βn| (4.1)

and the area of the channel is

An =πanbn =π(α2
n − |βn|2). (4.2)

In the following discussion the solution will sometimes be discussed in terms of the
area of the channels as well as the ratio between the semi-major and semi-minor axes
an/bn.

The differential equations governing the evolution of the channel positions Zn, the
channel geometry parameters αn and βn and the outer boundary radius R are

dZn

dτ
=−

∑
j6=n

λj(Zn −Zj)

2π(Zn −Zj)2
+
∑
j6=n

mj

2π(Zn −Zj)
−
∑
j6=n

λj

2π(Zn −Zj)
, (4.3)

dαn

dτ
=−αnIn(0)− 1

2
αn(pn −P (n)χ), (4.4)

dβn

dτ
=−βnIn(0)+ 1

2
βn(pn −P (n)χ)+ 2knαn + iωnβn, (4.5)

dR
dτ
= M

2πR
. (4.6)

In the above equations, λj and mj are the strengths of the point stresslet and the
point sink, respectively, located at the centre of the jth channel. These determine the
ambient pressure pn, linear strain rate kn and vorticity ωn ‘seen’ by the nth channel
in its far field. M is the sum of point sink strengths and In(0) is an integral given
in appendix B of Buchak et al. (2015). The pressure in the nth channel is P (n) and
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FIGURE 7. (a) Geometry of the four-hole preform; (b–f ) fibre geometries obtained
using a tension of 30 g with the given pressure pH ((b) 0 Pa, (c) 200 Pa, (d) 400 Pa,
(e) 600 Pa, (f ) 800 Pa), corresponding to the crosses in (g,h); (g) contours of channel
area A(τL) against fibre tension σ with channel pressurisations pH = 0, 100, . . . , 1000 Pa
(bottom to top); (h) contours of channel aspect ratio against fibre tension σ with channel
pressurisations pH = 0, 100, . . . , 1000 Pa (bottom to top). In (g,h) the horizontal dashed
lines show the values of the respective parameters for the preform shown in (a). The
remaining parameters for the displayed solutions are D = 3000, S0 = 3.03 × 10−4 m2,
U0 = 1.4 m min−1 and γ = 0.23 N m−1.

χ is the square root of the cross-sectional glass area (thus coupling this model to the
axial flow model).

Additionally, it is worth noting that for a single, centred circular channel (namely
the circular tube case of § 3) the elliptical pore model retrieves (3.10) exactly (see
appendix C in Buchak et al. (2015) for this alternative derivation).

Two examples from Buchak et al. (2015) are reconsidered here with channel
pressurisation included; these are a forward problem for a four-holed preform and an
inverse problem for a fibre with a hexagonal array of channels. Although the model
allows pressurisation to be specified on a per-channel basis, this is not practically
possible with existing fibre drawing equipment, and so in both cases it will be
assumed that p(k) = pH for k 6= 0 and p(0) = 0.

The geometry of the four-holed preform is shown in figure 7(a), where the four
identically shaped elliptical channels are arranged in a symmetric pattern and the
initial preform area is S0 = 3.03 × 10−4 m2 (for a preform radius of 1 cm). The
drawing of this preform was computed for a fixed draw ratio of D = 3000 over
a range of tensions and channel pressurisations with the surface tension parameter
γ = 0.23 N m−1. As in the annular case there is the possibility that surface tension
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will dominate and close the channels, or that the inclusion of too high a pressure
will expand the channels to the point where their boundaries overlap.

In figure 7(g,h) the area A(τL) and aspect ratio b(τL)/a(τL) of the channels of the
drawn fibre, where both of these quantities are identical for each of the four channels
so that the subscripts have been dropped, are plotted against tension σ as curves
of constant pressure (for pH = 0 . . . 1000 Pa). The dashed lines here represent the
initial values of these two quantities in the preform. The five crosses in each figure
correspond to the five solutions displayed in figure 7(b–f ), namely the fibre geometries
that result from the preform being stretched with a tension of σ =30 g for pH=0, 200,
400, 600 and 800 Pa.

Where no pressurisation is applied the channels almost close due to the effect of
surface tension and are slightly more elliptical than the initial configuration (figure 7b).
As the pressurisation is increased, the channels in the resulting fibres, as shown in
figure 7(c–f ), are much more open and more circular. For the case pH= 800 Pa shown
in figure 7(f ) the area of the channels is more than two orders of magnitude larger
than in the unpressurised case and the channels are nearly circular in shape with
an aspect ratio close to b(τL)/a(τL) = 1. As can be seen from figure 7(g,h), this is
broadly the effect of increasing pressurisation for any tension, namely larger and more
circular channels.

As tension σ is increased, the geometry tends towards that of the preform, since
both surface tension and pressurisation have less opportunity to act. At low tensions
the solutions for small pressurisations are dominated by surface tension and the holes
may even close completely. At larger pressurisations and low tension the pressure may
expand the channels to the point where their boundaries overlap, analogous to the
fibre explosion of the annular fibre. The switch between the two behaviours occurs
here between pH = 300 and 400 Pa, which mirrors the type of behaviour seen for the
annular case in, for instance, figure 4(a).

The termination of each of the curves in figure 7(h) corresponds to either the closure
or overexpansion of the holes. Note that the tick on the end of the larger pressure
curves represents a small region where the geometry is slightly elliptical, but at 90◦
to the original orientation in the preform. Such solutions only occur where boundaries
are nearly overlapping and it is unclear whether these solutions are significant or an
artifact of the elliptical pore model (which is expected to be inaccurate where the
pores are too close together).

Another case considered by Buchak et al. (2015) was an inverse problem to find
the preform and draw parameters required to obtain the fibre configuration shown in
figure 8(a), a hexagonal array of 54 small circular channels. Here the draw ratio is set
at D= 3000, the area of the preform is S0 = 7.18× 10−5 m2 and the surface tension
parameter is γ = 0.23 N m−1. Five preform configurations are shown in figure 8(b–f )
where these correspond to the crosses in figure 8(g,h) and are for pressurisations
of pH = 0, 1000, 2000, 3000 and 4000 Pa with a tension of σ = 35 g. As can be
seen from these five configurations, the size of the preform channels decreases as
the pressurisation is increased. The aspect ratio of the channels in the displayed
configurations is difficult to see by eye. In general, compared to the unpressurised
case, as pressurisation is increased the preform channels become more circular.

If too large a pressurisation is applied the model may give a preform where, as a
consequence of solving backwards in τ , some channels are completely closed. Such
a preform is not a valid solution to the inverse problem since it will not result in
the desired fibre when drawn. To detect whether this has occurred we now consider
the minimum area An, across all channels n = 1, 2, . . . , 54, for each choice of
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FIGURE 8. (a) Geometry of the fibre with a hexagonal array of channels; (b–f ) preform
geometries required when using a tension of 35 g with the given pressure pH ((b) 0 Pa,
(c) 1000 Pa, (d) 2000 Pa, (e) 3000 Pa, (f ) 4000 Pa), corresponding to the crosses in (g,h);
(g) contours of the minimum channel area An(0) against fibre tension σ with channel
pressurisations pH = 0, 500, . . . , 4000 Pa (top to bottom); (h) contours of mean channel
aspect ratio against channel pressurisation pH for fibre tensions σ = 30, 35, 40, 45 and
50 g (bottom to top). The remaining parameters for the displayed solutions are D= 3000,
S0 = 7.18× 10−5 m2, U0 = 1.4 m min−1 and γ = 0.23 N m−1.

parameters. These values of minimum area are shown against tension for a variety of
pressurisations in figure 8(g).

Figure 8(h) shows the mean aspect ratio of the channels against pressurisation,
where each curve is at a constant tension. This averaged quantity is of particular
interest if a preform with circular channels is desired. This is of practical importance
since preforms with circular channels can be fabricated through processes such as
the stacking of many smaller capillary tubes or by drilling channels directly into a
preform, as outlined by Monro & Ebendorff-Heidepriem (2006). For each choice of
fibre tension in figure 8(h) there is a corresponding choice of pressurisation that gives
a preform design where the mean aspect ratio reaches a maximum value close to 1.
Thus, the curves in figure 8(h) demonstrate that it is possible, by carefully tuning the
draw parameters, to achieve a situation where both the preform and fibre have circular
channels (or at least very close to circular). Note that the gradient discontinuities in
the curves in figure 8(b) are real, probably due to taking the average of the channel
aspect ratios.
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5. Conclusions

The key result of this paper has been to model the effect of channel pressurisation
in the drawing of microstructured optical fibres by extending the work of Stokes et al.
(2014). Where the pressurisation was assumed to be axially constant this led to a small
but significant change to the model governing the flow in the cross-plane, namely an
extra term in the dynamic boundary conditions, involving the cross-sectional area χ .
This is a quantity from the axial model so that, in contrast to Stokes et al. (2014), the
models for the axial and cross-plane flows become fully coupled and must be solved
simultaneously.

Much of our work has focused on applying the model to a fibre with an annular
cross-section. Although this is the simplest example of a fibre containing a holey
structure, the effect of pressurisation on this case is extremely instructive, and many
of the results for this simple geometry were echoed in the more complex geometries
considered in § 5. As expected, including pressurisation opened the fibre geometry in
the forward problem, and in the inverse problem it allowed preforms to be designed
with geometries that featured smaller holes (and thus thicker walls) than in the
unpressurised case. Another consequence of including pressurisation was that the
non-uniqueness seen in the unpressurised inverse problem across the full range of
fibre tension was restricted to a very small range of small (and impractical) fibre
tension. Furthermore, new criteria for fibre explosion (3.21) and hole closure (3.22)
have been obtained that are an improvement over similar criteria given by Fitt et al.
(2002). Here, our criteria do not assume that the hole geometry is small and our
fibre explosion criterion is genuinely for explosion of the fibre at the end of the draw
rather than for expansion at the start of the draw.

The excellent agreement between our model and the experimental results in § 3.3
for drawing an annular preform over a range of pressurisations is strong validation of
the modelling approach and confirms that channel pressurisation has been included in
the model correctly. Further experiments will include drawing fibres of more complex
geometry with channel pressurisation.

The results for geometries with multiple channels presented in § 4 may be of interest
to experimentalists. In drawing the preform with elliptical holes we saw that including
pressurisation opened the channels in the fibre, and where sufficient pressurisation
was applied the balance between surface tension and the pressurisation resulted in
fibres with channels that were more circular than those in the preform. Similarly, in
designing a preform to give a fibre with an array of small circular holes we saw that
including pressurisation allowed for preform designs featuring holes that were close
to circular; such designs are potentially easier to manufacture. An experimental study
involving drawing preforms of this type with or without pressurisation would be of
great interest to validate this modelling.
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Appendix A. Derivation of the axial momentum equation
The axial momentum equation (2.12) is derived in a similar way to the equivalent

expression in Cummings & Howell (1999). Here we allow for pressurised internal
channels and, although in the above sections it is assumed that the channels were
held at constant pressures, for maximum generality we now permit axial variation in
these pressurisations. As in Stokes et al. (2014) the effects of inertia and gravity are
neglected. The relevant expression is then obtained by integrating and manipulating
the first-order components in the slenderness parameter ε2 of the conservation of
momentum equation and the x-stress boundary condition on the interfaces (see
Cummings & Howell (1999) for full details of these equations). This yields a very
similar expression to that given in appendix A of Cummings & Howell (1999),
namely

(3µSu0x)x =−1
2
∂

∂x

∫∫
S
(∇2A) dy dz+

N∑
k=0

∮
G(k)

(
γ κ

(k)
0 + p(k)

‖n(k)‖ G(k)
x

)
ds, (A 1)

where n(k) = G(k)
y j + G(k)

z k. The only difference between (A 1) and the version given
in Cummings & Howell (1999) is that in the above expression the second term on
the right-hand side now features a balance between surface tension and the pressures
p(k)(x). This term is also now taken as a sum over all the boundaries G(k) = 0, for
k= 0, . . . ,N. In the following expressions the total area of the cross-plane S is taken
to be S=A (0) −∑N

k=1 A (k), that is the area enclosed by the outer boundary less the
sum of the areas enclosed by the internal boundaries. Similarly, the total circumference
is Γ =∑N

k=0 Γ
(k), where Γ (k) is the length of the kth boundary and the axial derivative

of this quantity Γx =
∑N

k=0 Γ
(k)

x is simply the sum of the derivatives of the individual
boundary lengths.

The first term on the right-hand side of (A 1) involves an Airy stress function A
and full details of the manipulations involving this function are omitted for reasons
of space. It is sufficient to state that, by treating the stress boundary conditions in the
cross-plane as in § 3 of Cummings & Howell (1999), we obtain

∂A

∂n̂(k)
=−γ − p(k)(y j + zk) · n̂(k), (A 2)

where n̂(k) is a unit vector normal to the interface G(k) = 0. The area integral in the
first term on the right-hand side of (A 1) may be rewritten as a contour integral via
the divergence theorem, into which (A 2) is then substituted. The contour integrals of
the various parts of the resulting expression may then be evaluated to give∫∫

S
(∇2A) dy dz=−γΓ − 2p(0)A (0) + 2

N∑
k=1

p(k)A (k). (A 3)

Note that in manipulating the above expression care must be taken to correctly sign
the normal vectors and the sub-parts of the area integral.

The second term on the right-hand side of (A 1) is evaluated as

N∑
k=0

∮
G(k)

(
γ κ

(k)
0 + p(k)

‖n(k)‖ G(k)
x

)
ds=−γΓx − p(0)A (0)

x +
N∑

k=1

p(k)A (k)
x . (A 4)
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This is obtained by noting that the part of this term involving surface tension and
curvature is identical to that in Cummings & Howell (1999) and their result is used
here without rederivation. The part of (A 4) due to the pressurisations has been
evaluated via a transport theorem given by Dewynne et al. (1994) (which is not
restated here for brevity).

Finally, the expressions (A 3) and (A 4) are substituted back into (A 1) and the result
may be slightly rearranged to give

(3µSu0x)x + 1
2
γΓx − p(0)x A (0) +

N∑
k=1

p(k)x A (k) = 0, (A 5)

which is a very general form of this equation, since it allows for axial variation in
the pressurisations.
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