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A mathematical model is presented describing the deformation, under the combined
effects of surface tension and draw tension, of an array of channels in the drawing
of a broad class of slender viscous fibres. The process is relevant to the fabrication
of microstructured optical fibres, also known as MOFs or holey fibres, where the
pattern of channels in the fibre plays a crucial role in guiding light along it. Our
model makes use of two asymptotic approximations, that the fibre is slender and that
the cross-section of the fibre is a circular disc with well-separated elliptical channels
that are not too close to the outer boundary. The latter assumption allows us to make
use of a suitably generalised ‘elliptical pore model (EPM)’ introduced previously
by one of the authors (Crowdy, J. Fluid Mech., vol. 501, 2004, pp. 251–277) to
quantify the axial variation of the geometry during a steady-state draw. The accuracy
of the elliptical pore model as an approximation is tested by comparison with full
numerical simulations. Our model provides a fast and accurate reduction of the
full free-boundary problem to a coupled system of nonlinear ordinary differential
equations. More significantly, it also allows a regularisation of an important ill-posed
inverse problem in MOF fabrication: how to find the initial preform geometry and the
experimental parameters required to draw MOFs with desired cross-plane geometries.

Key words: interfacial flows (free surface), low-Reynolds-number flows, lubrication theory

1. Introduction
The fabrication of a microstructured optical fibre, or MOF, typically involves the

drawing down of a preform comprising a cylinder of glass or polymer 1–3 cm in
diameter containing a pattern of axial channels running through its length, usually
10–30 cm. The preform is held at one end in a movable clamp at the top of a draw
tower and fed downwards through a heated zone in which the glass softens so that it
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FIGURE 1. (Colour online) Schematic of the drawing of a multichannel MOF: a preform
with cross-sectional area S0 containing multiple channels is fed into a hot zone at speed
U0 and pulled down at a draw speed U1 to a cross-sectional area S1 over a ‘neck-down
length’ L. During the draw, the channel shapes deform due to a combination of surface
tension and draw tension.

can be drawn from below at a speed typically much larger than the feed speed. At the
base of the draw tower the (now cool) fibre is wound around a rotating drum so that
it can be conveniently stored for future use. The draw process through the neck-down
length is depicted in figure 1.

Both the draw ratio – the ratio of the draw speed to the feed speed – and the
temperature are important control parameters. The draw ratio determines the reduction
in the area of the cross-section as it travels along the ‘neck-down length’ of several
centimetres (typically of the same order as the heated zone length). To obtain a
fibre having a typical diameter of 100–200 µm from a preform with a diameter of a
centimetre, the draw ratio will typically be in excess of 4000. Large draw ratios of up
to 10 000 are common in practical fibre drawing, without the onset of draw-resonance
instability as predicted by linear stability analyses at draw ratios in excess of a little
over 20 (Pearson & Matovich 1969; Yarin, Gospodinov & Roussinov 1994; Fitt et al.
2002), with control of fibre tension, cooling of the fibre and, perhaps, other factors
having a stabilising effect (Pearson & Matovich 1969; Gospodinov & Yarin 1997;
Scheid et al. 2010). The temperature determines the material viscosity and, in turn,
the fibre tension, which must be within an appropriate range – too small and its
diameter will be difficult to control, too large and the fibre will break. In this paper
the effect of gravity is assumed to be small and is neglected.

For microstructured optical fibres of interest in applications, there is a large variation
in the number of channels, from just a few to perhaps 100 or more. However, the
number of channels is not necessarily large, which renders the proposition of a
mean-field model of the cross-plane structure unlikely to be useful in practice.
Moreover, it has been observed that the shapes of some channels are deformed
more than others during the drawing process, implying that detailed resolution of
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(a) (b)

FIGURE 2. Typical deformations of non-pressurised circular channels in a microstructured
optical fibre due to surface tension effects, calculated using the model described in § 5.
Circular channels (a) deform to approximately elliptical channels (b), with the degree and
nature of the deformation being dependent upon relative position. Such deformations must
be controlled in the fabrication process.

the evolution of the cross-plane geometry is needed, along with an understanding of
how this evolution is affected by different experimental conditions. Figure 2 shows
typical shape deformations, due to surface tension effects, of an arrangement of
initially circular channels of equal size. A key observation is that they deform to
approximately elliptical channels, with the degree and nature of the deformation
being dependent upon relative position in the array: channels in the inner ring
are drawn out in the azimuthal direction, while those in the outer ring tend to be
extended radially; similar deformations can be seen in the image in figure 1 of Issa
et al. (2004). Because even minor unwanted deformations in a small number of the
channels can severely compromise a fibre’s optical performance, it is highly desirable
to gain an improved understanding of the channel deformations. A good survey of
the applications and fabrication challenges associated with MOFs can be found in
Lyytikäinen (2004).

One attempt to predict experimentally relevant parameters from a mathematical
model has recently been made (Kostecki et al. 2014). The idea of that model is
to approximate a non-trivial MOF geometry comprising several channels with an
‘effective’ capillary tube geometry with just a single channel so that the mathematical
model of the drawing of an axisymmetric tube presented by Fitt et al. (2002) can be
used. The challenge then becomes one of finding the best way to approximate the
radius of this capillary for some given MOF cross-sectional geometry. The approach
is found to give good estimates for the required experimental draw parameters for
geometries of a few channels. However, it does not resolve details of the shape
deformations under the draw and may not be generalisable to fibres having many
channels.

The aim of this paper is to present an improved model which captures the
free-boundary evolution for multichannel fibres in more detail. Our model provides
valuable insights into how experimental variables such as fluid viscosity (controlled,
as mentioned above, by varying the glass temperature), feed and draw speeds as
well as surface tension affect the shape of the channels during the draw. For a given
preform shape and given draw parameters, the model provides predictions of how
the channels will deform. Conversely, it turns out that we can also use the model to
provide solutions to the inverse problem – designing a suitable preform shape which,
under given experimental conditions, will produce the desired fibre geometry.
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The key theoretical tool employed here is to adapt, to the cross-plane problem in
fibre drawing, a so-called ‘elliptical pore model’ (or EPM, for short) devised by one
of the authors (Crowdy 2004) to model the dynamics of a finite set of interacting
compressible two-dimensional bubbles in Stokes flow. By combining this simplified
asymptotic model of the evolution of interacting channels in the cross-plane with a
different asymptotic approximation based on the slenderness of the fibres in the axial
direction, a powerful reduction of the full three-dimensional free-boundary problem
is achieved. Here, we test the effectiveness of this scheme by comparison with full
numerical simulations of the cross-plane evolution, and examine its implications
for practical fibre drawing. Moreover, it turns out that the EPM affords a second
advantage in regularising the inverse problem of finding a suitable initial preform
geometry which, at the end of a draw, will deliver the required target fibre geometry.

In a more general set-up, differential pressurisation of the individual channels is
also used as a control device during the draw. However, precisely how such pressures
should be chosen to achieve a desired target is not fully understood, and at present
pressurisation is implemented largely on a trial-and-error basis. Channel pressurisation
is used both to prevent channels from closing up and also as a direct means to
expand the channel cross-sectional areas if it proves impossible, or inconvenient, to
manufacture an initial preform with channels of the appropriate size. Pressurisation
is usually necessary when the cross-sectional profile comprises thin bridges of glass,
since there are practical and mechanical limitations to the successful fabrication of
suitable preforms in such cases.

For now, however, we focus on an important baseline case where the gas pressure
in each channel is equal to the ambient pressure. Moreover, we take the fluid viscosity
to be constant everywhere. The assumption of constant viscosity makes the derivation
simpler and is not a serious restriction. One could solve for a variable viscosity by
coupling the flow model with an equation for energy balance, as done by Yarin et al.
(1989), Griffiths & Howell (2008) and Taroni et al. (2013). However, in Stokes,
Buchak & Crowdy (2014), we show that for known fibre tension and draw ratio,
knowledge of an axially varying viscosity is unnecessary for determining the final
geometry from a fibre draw, so an effective constant viscosity may be assumed. Our
model is also extendable to differentially pressurised channels; our investigation of
this will be published elsewhere.

2. The free-boundary problem
The following general set-up closely follows that described by Stokes et al. (2014).

A preform with cross-sectional area S0 containing M > 1 channels is fed vertically
down into a hot zone at speed U0 and pulled down at a draw speed U1 to a cross-
sectional area S1 over a ‘neck-down length’ L. The shapes of the channels deform
during the draw due to the combined effects of surface tension and draw tension. A
schematic of the drawing of such a fibre is shown in figure 1. The x-axis is directed
vertically down along the axis of the fibre.

As shown in Stokes et al. (2014), neglect of inertia is justified because the Reynolds
number typical for fibre drawing is very small, O(10−8). We also neglect gravity. Thus,
the material making up the preform is assumed to be a viscous Newtonian fluid in the
Stokes regime, and its incompressible velocity field u satisfies

−∇p+µ∇2u= 0, ∇ · u= 0, (2.1a,b)

where p is the pressure in the fluid and µ is its viscosity, here assumed to be constant
and uniform throughout the fluid. The fluid has M+ 1 free surfaces, one for each of
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the M channels, together with an outer boundary. Using k= 0 for the outer boundary
and k= 1, . . . ,M for the kth channel, the dynamic boundary condition on the kth free
surface is

σijnj =−γ κni − p(k)B ni, (2.2)

where κ is the surface curvature, γ is the surface tension, σij is the fluid stress tensor
and p(k)B (t) is the pressure on the kth boundary. Without loss of generality, we set p(0)B =
0. Under the assumption of quasi-steady flow, the normal velocity Vk of each boundary
point is given by

Vk = u · n. (2.3)

In addition, the boundary conditions at x = 0 and x = L are u = U0i and u = U1i
respectively.

Following Cummings & Howell (1999), we introduce a small parameter ε
characterising the slenderness of the fibre,

ε =
√

S0

L
� 1, (2.4)

which is found to be well satisfied for fibres typically encountered in practice. We
also define the dimensionless surface tension γ ∗ in terms of the physical parameters
of the problem,

γ ∗ = γL
µ
√

S0U0
. (2.5)

Cummings & Howell (1999) showed that for a slender fibre (ε � 1), the three-
dimensional problem splits into two simpler problems: a one-dimensional problem in
the axial (i.e. x) direction (‘stretching’) and a two-dimensional problem in the cross-
plane (‘sintering’). The cross-plane problem turns out to be simply the classical two-
dimensional problem of surface-tension-driven Stokes flow with unit cross-sectional
area, surface tension and viscosity, evolving with respect to a reduced time variable
τ to be introduced shortly.

The stretching problem is governed by a pair of differential equations in the axial
coordinate x and time t. Generalisation of the derivation of Cummings & Howell
(1999) to allow for the presence of pressurised channels, conservation of mass and
momentum in each cross-section requires respectively

St + (uS)x = 0, (2.6)

3(Sux)x + 1
2
γ ∗

M∑
k=0

(Γk)x =
M∑

k=0

±(p(k)B )xAk. (2.7)

Here, S(x, t) is the cross-sectional area of the fluid region, u(x, t) is the axial fluid
velocity, and Ak(x, t), Γk(x, t) and p(k)B (x, t) are the area, perimeter and pressure
associated with the kth boundary. Introducing Lagrangian coordinates x̃ and t̃,

t= t̃, x=
∫ t̃

0
u(x̃, T) dT + x̃, (2.8)

the reduced time τ is defined by (Cummings & Howell 1999; Griffiths & Howell
2008)

τ = γ ∗
∫ t̃

0

dt̃√
S
. (2.9)
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In steady fibre drawing, this reduced time τ characterising the cross-plane evolution
is related to the x coordinate by

∂x
∂τ
= u
√

S
γ ∗

. (2.10)

In (2.6)–(2.10), distances in the axial direction have been scaled by L, distances in
the cross-plane have been scaled by

√
S0, the axial velocity has been scaled by U0,

and time and pressure have been scaled by L/U0 and µU0/L respectively.
In the next section we summarise results from a companion paper (Stokes et al.

2014), where it is demonstrated that the solution to the axial problem for arbitrary
cross-plane geometries can be given in terms of explicit formulae. It should be noted
that the formulation of Stokes et al. (2014) allows for an axially varying viscosity
profile, while here we focus on the case where the fluid viscosity is uniform. Should
it be desirable to consider a non-constant viscosity, the required modifications to the
model are as in Stokes et al. (2014).

3. Explicit formulae for stretching and model predictions
In this section, we focus on the special case in which none of the channels are

pressurised relative to the ambient pressure, therefore

p(k)B (x, t)= 0, k= 0, 1, . . . ,M. (3.1)

In steady fibre drawing, it is expedient (Stokes et al. 2014) to introduce an
important function

H(τ )= exp
(
− 1

12

∫ τ

0
Γ̃ (τ ′) dτ ′

)
, (3.2)

where Γ̃ (τ ) is the total boundary perimeter in the cross-plane, scaled by
√

S0S(τ ). The
total boundary perimeter Γ̃ (τ ) can be readily computed as the sum of the perimeters
of the individual boundaries once the solution for the cross-plane problem, with total
area normalised to be unity, has been found. With H(τ ) known from (3.2), for a
fluid with constant uniform viscosity the cross-section S(τ ) and axial position x(τ )
are given explicitly as

S(τ )=
(

1− σ
∗

γ ∗

∫ τ

0
H(τ ′) dτ ′

)2/
H(τ )2, (3.3)

x(τ )=− 1
σ ∗

log(H(τ )
√

S(τ )). (3.4)

The parameter σ ∗ is the scaled fibre tension related to the physical tension σ by

σ = 6µU0S0

L
σ ∗. (3.5)

Formulae (3.3) and (3.4) give the complete solution, parametrised by τ , to the three-
dimensional fibre drawing problem from a solution of the cross-plane problem.

It is interesting to point out that, in devising a scheme to apply the predictions
of the model described in Fitt et al. (2002) for the pulling of a capillary tube –
that is, a fibre with just one central channel – to the drawing of MOFs with several
channels, Kostecki et al. (2014) were compelled to study the multichannel geometry
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to find some quantity that best approximates the single internal channel radius
appearing in the equations of the Fitt model. They found that, among several other
apparently reasonable options, the best choice is to use the total perimeter length
of the collection of channels in the MOF cross-plane. Intuitively, this empirical
observation is consonant with the fact that the total cross-plane perimeter plays a
crucial role in our own formulation just described.

According to the approach advocated by Stokes et al. (2014), τ = 0 labels the initial
channel configuration, and one chooses the value τ = τL corresponding to the desired
fibre configuration. In this way τL is the duration of the ‘sintering’ process. By τ = τL,
the cross-section must reach the scaled axial distance to the end of the draw, x= 1,
and the axial fluid velocity must reach the specified scaled draw speed, u=U1/U0=D,
where D is the draw ratio. These boundary conditions give two constraints on the four
parameters τL, γ ∗, D and σ ∗,

σ ∗ = log

( √
D

H(τL)

)
,

H(τL)√
D
= 1− σ

∗

γ ∗

∫ τL

0
H(τ ′) dτ ′. (3.6a,b)

From (2.5) and (3.5), the ratio of the dimensionless parameters γ ∗ and σ ∗ is related
to the ratio of the physical tensions γ and σ by

σ

γ
= 6
√

S0
σ ∗

γ ∗
. (3.7)

As discussed in Stokes et al. (2014), this is an important result. For drawing of a
particular fibre from a given preform, τL and D are known, and since the physical
surface tension γ can be considered to be known a priori, (3.6b) and (3.7) can
be solved for the required physical fibre tension σ . Conversely, when D and σ are
measured, (3.6b) and (3.7) can be solved for τL, which gives the final fibre geometry.
Thus, use of the measurable and controllable physical fibre tension σ circumvents
the need for specific knowledge of the unknown fluid viscosity µ and neck-down
length L for the draw, both of which can vary with the draw parameters. This was
also noted by Chen & Birks (2013).

If desired, the ratio µ/L can be computed by combining (3.5) and (3.6a). Further,
an estimate of the fluid viscosity µ can be obtained if, as done by previous authors
(Fitt et al. 2002), the neck-down length L is assumed to be equal to the length of the
heated zone. This assumption then permits the physical geometry to be determined
over the neck-down length. However, we emphasise that it is usually the final
geometry that is of interest rather than the geometry throughout the neck-down zone,
so that γ ∗ and σ ∗ need not be computed separately, and there is no need to know or
determine the viscosity µ or to make any assumptions about the neck-down length L.
The slightly more complex case of axially varying viscosity is considered in Stokes
et al. (2014), leading to the same result for any viscosity profile.

The conditions (3.6a,b) may be written more succinctly (Stokes et al. 2014) as the
single constraint

1
Q
+ log Q

P
= 1, (3.8)

where

P = γ ∗∫ τL

0
H(τ ′) dτ ′

, Q=
√

D
H(τL)

. (3.9a,b)
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FIGURE 3. The balance of tensions as given by the curve (3.8). The region Q > 1
corresponds to positive draw tension. Increasing P , and hence surface tension so that the
cross-plane deformations happen over a shorter time scale, requires a higher Q (essentially,
draw ratio) to achieve the same target geometry.

The choice of τL picks out the final geometry and, in turn, gives the denominators in
the definitions (3.9) of P and Q. The variable P gives a measure of the surface
tension while Q= exp(σ ∗) is a measure of the draw tension.

Formula (3.8) represents the balance between draw tension and surface tension
required to achieve a desired geometry in a constant-viscosity fluid with no channel
pressurisation. A graph of Q against P is shown in figure 3. From it we learn that
small changes in P (surface tension) can lead to large corresponding changes in Q,
and hence draw ratio D, for the same desired final configuration. The logarithmic
dependence of draw tension σ ∗ on Q means, however, that the corresponding change
in draw tension is less sensitive to changes in P .

4. The cross-plane problem
To model the drawing of MOFs of general shape it is necessary to solve for the

evolution of a given cross-plane geometry evolving under the effect of surface tension.
We now briefly describe the free-boundary cross-plane problem and the formulation
of a numerical method that we have devised for its solution. This numerical method
is interesting in itself and will be described in detail elsewhere (Buchak & Crowdy
2014). Its main use for the present purposes is simply to test the accuracy of an
approximate (elliptical pore) model to be presented in § 5. A boundary integral
approach to the same numerical problem has been proposed by Chakravarthy & Chiu
(2009), but it differs in several respects from the approach adopted here.

The cross-plane problem for steady fibre drawing is governed by the Stokes
equations,

−∇p+µ∇2u= 0, ∇ · u= 0, (4.1a,b)

with boundary conditions

σijnj =−γ κni − p(n)B ni, Vn = u · n, (4.2a,b)
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where now the flow is two-dimensional and the boundaries are closed curves in the
cross-plane. Lengths are scaled by

√
S0S(τ ), velocities by

√
S0U0γ

∗/L and pressures
by µU0γ

∗/L
√

S(τ ). The fluid region evolves in the reduced time τ defined in (2.9)
and has unit area, unit surface tension and unit viscosity (our numerical method can
be applied to more general two-dimensional Stokes flow, so for this reason we retain
the constants µ and γ in the following description).

Two-dimensional incompressible flow can be formulated in terms of a streamfunction
ψ(x, y), satisfying

∇4ψ = 0, (4.3)

where ∇2 denotes the two-dimensional Laplacian operator in the cross-plane.
Introducing the complex variable z as the cross-plane coordinate in the usual way,
the general solution to (4.3) can be written

ψ = Im[zf (z, τ )+ g(z, τ )], (4.4)

where f (z, τ ) and g(z, τ ) are two functions analytic in the fluid. The fluid velocity
(u, v), vorticity ω, pressure p and rate-of-strain tensor eij are given by (Langlois 1964;
Crowdy 2003a)

p
µ
− iω= 4f ′(z, τ ), (4.5)

u+ iv =−f (z, τ )+ zf ′(z, τ )+ g′(z, τ ), (4.6)

e11 + ie12 = zf ′′(z, τ )+ g′′(z, τ ). (4.7)

From these results it can be shown that the boundary conditions (4.2) on each
boundary n (n= 0, . . . ,M) are

f (z, τ )+ zf ′(z, τ )+ g′(z, τ )=− 1
2 iγ zs + 1

2 p(n)B z+ An(τ ), (4.8)

Re
{

dz
dτ

izs

}
=Re

{(−f (z, τ )+ zf ′(z, τ )+ g′(z, τ )
)

izs
}
, (4.9)

where zs = dz/ds denotes the derivative with respect to arclength s of the boundary
z(s). The set of functions {An(τ ) | n=0, . . . ,M} arises from an integration with respect
to arclength on each boundary and must be found as part of the cross-plane solution.

The system (4.1) and (4.2) is a highly nonlinear two-dimensional free-boundary
problem. Remarkably, several exact solutions to it are known for special geometries
(Hopper 1990; Richardson 1992; Tanveer & Vasconcelos 1995; Cummings, Howison &
King 1999; Crowdy 2003a,b). Numerical methods must be used, however, for general
initial conditions. One option is to make use of standard boundary integral methods
(Pozrikidis 1992; Chakravarthy & Chiu 2009), but we eschew this approach in favour
of one based on a conformal mapping representation of the boundaries. One reason is
that the boundary integral formulation for compressible bubbles, with changing area,
suffers from certain technical difficulties involving the appearance of hypersingular
integrals in the standard formulation (Pozrikidis 2001, 2003); a second reason is that
it is precisely such conformal mapping formulations that give rise to the known exact
solutions mentioned above, in particular those for compressible bubbles given by
Crowdy (2003a) and which lie at the heart of the model to be described in § 5.
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4.1. Numerical method
To track the fluid boundaries in the cross-plane we introduce a τ -dependent conformal
mapping z(ζ , τ ) from a canonical circular region in a complex ζ -plane to the evolving
fluid region. This canonical preimage region is inside the circle |ζ − δ0(τ )| = q0(τ )
but outside the circles |ζ − δn(τ )| = qn(τ ) (n = 1, . . . , M), where the circle centres
δn(τ )∈C and radii qn(τ )∈R evolve in time. For convenience, we take δ0(τ )= 0 and
q0(τ )= 1. The conformal mapping can be represented in general as

z(ζ , τ )=
M∑

n=0

∑
k

a(n)k (τ )

(
ζ − δn(τ )

qn(τ )

)k

, (4.10)

where for the outer boundary (n = 0) we take k = 0, . . . , ∞, while for the inner
boundaries (n = 1, . . . , M) we take k = −1, . . . , −∞. The coefficients {a(n)k (τ )} as
well as the parameters {δn(τ ), qn(τ ) | n= 1, . . . ,M} characterising the preimage circles
must be found. With the introduction of this conformal mapping we can now define
the composed functions

F(ζ , τ )≡ f (z(ζ , τ ), τ ), G(ζ , τ )≡ g′(z(ζ , τ ), τ ), (4.11a,b)

which are determined, at each τ value, by the stress boundary condition (4.8) provided
that some additional degrees of freedom are chosen correctly (Buchak & Crowdy
2014). Once F(ζ , τ ) and G(ζ , τ ) are known, the normal velocity of the boundary can
be computed from the kinematic condition (4.9) and the boundary position updated in
τ using a fourth-order Runge–Kutta scheme. A detailed explanation and performance
evaluation of this numerical spectral method for computing the cross-plane evolution
will be given elsewhere (Buchak & Crowdy 2014).

To validate the numerical method, we checked it against known analytical solutions
for the two-dimensional sintering of N equal circular cylinders arranged in a doubly
connected annular arrangement (Crowdy 2003b). We also verified that our method
successfully captures the evolution of a thin viscida of fluid, as predicted by a set
of asymptotic equations derived by Griffiths & Howell (2007).

The numerical scheme just described can, in principle, be used to solve the cross-
plane problem for any given initial geometry. Here, however, we use it only to test
the validity and accuracy of the model introduced in the next section.

5. The elliptical pore model
How can we find initial geometries that, under suitable draw conditions, will

produce an MOF with the desired target geometry? Previous authors (Yarin 1995;
Griffiths & Howell 2007, 2008) and the present authors (Stokes et al. 2014) have
addressed this question for special geometries, but it is desirable to be able to handle
more general geometries relevant to MOF applications.

Since this is clearly an inverse problem, one option is to consider running the
two-dimensional free-surface Stokes flow problem backwards in time, starting with
the desired configuration, with the hope of backing out an appropriate initial
geometry. However, a little consideration reveals that this inverse problem is
ill-posed: surface tension smoothes out ripples in an interface so, in reverse time,
any numerical method will be subject to contamination by the growth of initially
small numerical inaccuracies. The authors have given a concrete illustrative example
of this ill-posedness (Stokes et al. 2014); Yarin (1995) has remarked that ‘computers
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are practically useless in solving such problems’. Griffiths & Howell (2008, 2009)
have acknowledged the difficulty of a backwards-time calculation. It is therefore
crucial, in order to solve this inverse problem in any meaningful way, to strategically
constrain the class of possible solutions by adding additional information on the type
of initial condition one seeks.

Yarin (1995) found that truncation of a Fourier series provided the necessary
constraint for solving the inverse problems there considered. Griffiths & Howell
(2008, 2009), in their consideration of the drawing of thin-walled non-axisymmetric
tubes, presented an asymptotic model of the evolution of their cross-plane geometries
which allows the solution to the cross-plane problem to be written down in analytical
form by, in essence, tracking only the centreline of a thin viscida. This approach
has the subsidiary – and highly desirable – advantage that time can be reversed in
a stable manner and predictions made as to initial conditions giving rise to required
end-state geometries. In our own prior work (Stokes et al. 2014) we made use
of various known exact solutions of the cross-plane problem for axisymmetric and
non-axisymmetric tubes (of arbitrary wall thickness) to isolate solutions of this inverse
problem.

For the geometries typically associated with multichannel MOFs, the models
described above cannot be applied. Therefore, we now present a different asymptotic
model of the cross-plane flow which we have found to be suited to broad classes
of multichannel MOF geometries. The model affords us similar advantages to the
models of Griffiths & Howell (2008) and Stokes et al. (2014) in that it admits an
analytic formulation (thereby obviating the need for a full numerical simulation of
the kind expounded in § 4) and it can be run backwards in time in a stable manner
to give predictions for initial conditions giving rise to the required MOF geometries
at the end of the draw.

The main idea is to employ a so-called elliptical pore model (henceforth, EPM)
of two-dimensional interacting bubbles in two-dimensional Stokes flows expounded
earlier, and in a different context, by one of the authors (Crowdy 2004). The basis
of the EPM rests on the mathematical observation (Crowdy 2003a) that an isolated
compressible elliptical bubble (or ‘pore’) in a general time-dependent linear Stokes
flow remains precisely elliptical in shape under evolution according to the Stokes
equations. Given this surprising fact, it was proposed (Crowdy 2004) to model
multibubble interactions – in the spirit of inner–outer matched asymptotic expansions
– by assuming that, in a far-field sense, each compressible bubble which is generally
shrinking under the effects of surface tension will be well modelled as an effective
point sink centred at its centroid. Hence, provided that all bubbles are sufficiently
far apart (relative to a typical length scale of the bubbles), any given bubble will
evolve as an elliptical bubble in the time-dependent irrotational linear strain produced
by the superposition of point sinks representing the flow induced by its neighbours.
Numerical evidence given by Crowdy (2004) confirmed that this model gives good
agreement with the full dynamical evolution of certain test cases.

5.1. Generalised EPM
The original EPM of Crowdy (2004) proposed to treat the pores, at long-range
distances, as pure point sinks in an unbounded region. For MOFs we need to extend
this model in two ways. First, to more accurately model the channel interactions,
we include contributions from another type of Stokes flow singularity – the stresslet
(Pozrikidis 1992) – which we describe below. Second, the bounded geometry of an
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Elliptical channel

FIGURE 4. Schematic illustrating the idea of the generalised EPM. Each channel, labelled
by n, in the fibre cross-section is modelled as an elliptical bubble in an ambient flow
characterised by a local strain rate kn, vorticity ωn and pressure pn (not shown). This
local flow is induced by the other channels and the outer boundary, assumed to be well
separated from channel n.

MOF cross-section requires us to incorporate the effects of an outer boundary in our
model.

The components of our model are sketched in figure 4. The cross-section
of an MOF is characterised by M elliptical channels with centroids located at
Zn(τ )∈C (n= 1 . . . M) in the cross-plane. We assume that the outer boundary begins
and stays circular and centred at the origin as it evolves – an assumption consistent
with many MOF geometries used in practice which often comprise rotationally
symmetric arrays of channels. Hence, the outer boundary can be described by

|z| = R(τ ), (5.1)

for some radius R(τ ) to be determined.
Each channel is modelled, in its far field, as the combination of a source of strength

mn(τ ) and a stresslet of strength λn(τ ); note that it is easily shown that the net force
on the fluid due to the presence of the channel is zero, thereby precluding any use of
Stokeslet singularities to model them. In terms of the Goursat functions introduced in
(4.4), a point source/sink of strength mn at Zn is represented as

f (z, τ )= 0, g′(z, τ )= mn

2π(z−Zn)
, (5.2a,b)
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which, from formula (4.6), gives the velocity field

u+ iv = mn

2π(z−Zn)
. (5.3)

A point stresslet of strength λn is represented as

f (z, τ )= λn

2π(z−Zn)
, g′(z, τ )= λnZn

2π(z−Zn)2
, (5.4a,b)

which produces the velocity field

u+ iv =− λn

2π(z−Zn)
− λn(z−Zn)

2π(z−Zn)
2 . (5.5)

We have not found this complex variable form of the stresslet singularity documented
in the standard textbook literature, but it has been used previously by one of the
authors (Crowdy & Or 2010) in modelling low-Reynolds-number swimmers near walls.
Together, f (z, τ ) and g′(z, τ ) give a velocity field that decays like |z|−1 in the far field.
Since the channels generally shrink in size, we expect mn < 0. The stresslet strengths
λn(τ ) are generally complex quantities (reflecting an amplitude and orientation).

The scalings for lengths, velocities and pressures are the same as in § 4. To keep
the formulation of the model as general as possible, we allow each channel to be
pressurised with a given pressure p(n)B (τ ), and use p(0)B (τ ) to denote the ambient
pressure exterior to the fibre. For the specific purposes of the present paper, however,
we later choose p(n)B (τ ) = 0 for n = 0, . . . , M (pressurisation effects are studied
separately in a forthcoming paper (Chen et al. 2015)).

5.2. Global flow
The EPM assumes the large-scale description of the flow to be given by (4.4) with

f (z, τ )=
M∑

n=1

λn(τ )

2π(z−Zn(τ ))︸ ︷︷ ︸
stresslets

+ 1
4

P(τ )z︸ ︷︷ ︸
outer boundary effect

, (5.6)

g′(z, τ )=
M∑

n=1

mn(τ )

2π(z−Zn(τ ))︸ ︷︷ ︸
sinks

+
M∑

n=1

λn(τ )Zn(τ )

2π(z−Zn(τ ))2︸ ︷︷ ︸
stresslets

. (5.7)

The values of mn and λn are determined below by considering the evolution of each
individual channel. The original EPM formulation of Crowdy (2004) contained only
the sink terms labelled in (5.7), but inclusion of the additional stresslet terms in (5.6)
and (5.7) means that all physically admissible singularities with velocities decaying
like |z|−1 are now incorporated into the model. Because the cross-section of an MOF
is a bounded region, the term for the uniform pressure in (5.6) is required to account
for the influence of the outer boundary on the inner channels.
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5.3. Outer boundary evolution
For the flow described by (5.6) and (5.7), the dynamic (4.8) and kinematic (4.9)
boundary conditions on the outer boundary give respectively

P(τ )− p(0)B +
M

πR2
= 1

R
, (5.8)

dR
dτ
= M

2πR
, (5.9)

where

M =
M∑

n=1

mn (5.10)

is the combined sink strength of the channels and where, for consistency with the
assumption of a purely circular outer boundary, we need

1
R

M∑
n=1

λn = 0. (5.11)

The latter condition is certainly expected to be satisfied by MOFs of practical
relevance, involving rotationally symmetric arrays of channels (the modelling of more
complicated outer boundary shapes is reserved as a topic for further investigation).
Equation (5.8) relates a ‘bulk pressure’ P(τ ) to the ambient pressure p(0)B (τ ), while
(5.9) gives the evolution of the outer boundary. These equations are equivalent to
modelling the effect of the channels on the outer boundary as a point source/sink
of strength M (τ ) situated at the centre of the outer boundary circle. In turn, the
internal channels feel the effect of the outer boundary through a time varying bulk
pressure P(τ ) coupled to the outer boundary motion through (5.8).

Equations (5.8)–(5.11) are derived in detail in appendix A.

5.4. Evolution of channels
To determine how the elliptical channels evolve, we must resolve local details of the
flow. Following Crowdy (2004), the evolution of channel n can be approximated by
studying the local field near Zn. Taylor expansion of (5.6) and (5.7) produces

f (z) =
(

1
4

PZn +
∑
j6=n

λj

2π(Zn −Zj)

)
+
(

1
4

P−
∑
j6=n

λj

2π(Zn −Zj)2

)
(z−Zn)

+
(∑

j 6=n

λj

2π(Zn −Zj)3

)
(z−Zn)

2 + · · · ,

g′(z) =
(∑

j6=n

mj

2π(Zn −Zj)
+
∑
j 6=n

λjZj

2π(Zn −Zj)2

)

+
(
−
∑
j6=n

mj

2π(Zn −Zj)2
−
∑
j6=n

λjZj

π(Zn −Zj)3

)
(z−Zn)+ · · · .


(5.12)
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A local expansion of the complex velocity u + iv about the centre Zn of the nth
channel can then be determined from (4.6). The velocity of the channel centroid is
given by the constant term in this expansion,

dZn

dτ
= u(Zn)=−

∑
j6=n

λj(Zn −Zj)

2π(Zn −Zj)2
+
∑
j 6=n

mj

2π(Zn −Zj)
−
∑
j6=n

λj

2π(Zn −Zj)
. (5.13)

The linear terms in the expansions of f (z) and g′(z), with the origin moved to Zn,
determine how the nth channel shape evolves. A simple calculation leads to

1
4
(pn − iωn)= 1

4
P−

∑
j6=n

λj

2π(Zn −Zj)2
, (5.14)

kn =−
∑
j6=n

mj

2π(Zn −Zj)2
−
∑
j6=n

λj(Zj −Zn)

π(Zn −Zj)3
, (5.15)

giving the ambient pressure, vorticity and linear strain rate ‘seen’ by the nth channel
in its far field. It should be noted that all quantities (5.13)–(5.15) are invariant under
a change of origin.

To close the model, we must determine how the shape of the nth channel evolves in
response to the far-field conditions (5.14) and (5.15). Following Crowdy (2004), the
elliptical cross-section of the nth channel is described by a time-dependent conformal
mapping zn(ζ , τ ) of a parametric circle |ζ | = 1. Each has the form

zn(ζ , τ )=Zn(τ )+ αn(τ )

ζ
+ βn(τ )ζ , (5.16)

where Zn(τ ) is the centroid position while αn(τ ) ∈ R and βn(τ ) ∈ C are parameters
encoding its orientation, area and eccentricity, with |βn|<αn. It is easy to check that
(5.16) transplants the interior of the unit ζ -disc to the exterior of an ellipse. Indeed,
if an and bn are the semi-major and semi-minor axes of the elliptical cross-section of
the channel, then

an = αn + |βn|, bn = αn − |βn|, (5.17a,b)

while its area is
πanbn =π(α2

n − |βn|2). (5.18)

The orientation angle of the semi-major axis of the ellipse to the horizontal axis in
the cross-plane is (1/2) arg[βn].

The evolution of a compressible elliptical bubble in an ambient linear flow was
found in analytical form by Crowdy (2003a) (see also Pozrikidis (2003) for a purely
numerical treatment of the same problem). Those results can be applied to the cross-
section of an elliptical channel with far-field conditions on f (z) and g(z) taken to be

f (z)∼ 1
4
(pn − p(n)B − iωn)z+ λn

2πz
+ · · · , (5.19)

g′(z)∼ knz+ mn

2πz
+ · · · , (5.20)
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where the coefficients pn − iωn and kn are read off from (5.14) and (5.15). The
dynamic and kinematic boundary conditions (4.8) and (4.9) determine the evolution
of the parameters αn(τ ) and βn(τ ) (Crowdy 2003a),

∂αn

∂τ
=−αnIn(0)− 1

2
αn(pn − p(n)B ), (5.21)

∂βn

∂τ
=−βnIn(0)+ 1

2
βn(pn − p(n)B )+ 2knαn + iωnβn, (5.22)

with mn(τ ) and λn(τ ) for each channel related to αn(τ ) and βn(τ ) by

mn

π
= d

dτ
(α2

n − |βn|2), (5.23)

λn

π
= βn

∂αn

∂τ
− αn

∂βn

∂τ
+ iαnβnωn + 2αnβnIn(0)− 1

2
α2

nI′′n (0). (5.24)

Expressions for In(0) and I′′n (0) are given in appendix B. It is apparent from (5.23)
and (5.24) that the coefficient λn may be complex but mn must be real, showing
that the channel acts like a superposed stresslet and a source/sink, but has no rotlet
contribution.

It is natural to ask what the effect would be of expanding f (z, t) and g′(z, t) in
(5.12), and hence the velocity field, beyond the linear terms included above. In that
case, it is no longer true that an initially elliptical channel sitting in such a higher-
order, now nonlinear, ambient flow will remain elliptical. However, some important
mathematical generalisations can still be made, and this is discussed further in § 10.

It is instructive to point out that, for a single circular channel at the centre of
a circular fibre (i.e. a concentric annular tube), the equations just described retrieve
exactly the equations for a pressurised annular fibre that one would obtain by a direct
analysis of the equations of motion with radial symmetry (that is, without proceeding
via a complex variable and conformal mapping formulation). In other words, the EPM
is exact in this case, not an approximation. This is shown in detail in appendix C.
The EPM can therefore be understood as a generalised system for the case where
the cross-plane comprises more than one channel. It is an approximate system in that
case, but one that gives excellent agreement with the exact dynamics provided that
the channels are well separated and sufficiently far from the other boundary, as we
survey in the next section.

6. Effectiveness of the EPM

The model just described leads to a reduction of the full nonlinear free-boundary
problem to a coupled system of ordinary differential equations governing the evolution
of the parameters Zn(τ ), αn(τ ), βn(τ ) and R(τ ). A linear system of equations must
be solved at each time step in order to calculate the time derivatives of the parameters.
Appendix B illustrates how this can be implemented. We have also made available
freely downloadable MATLAB scripts (http://wwwf.imperial.ac.uk/∼dgcrowdy/) for
general use; these scripts carry out the prescription given in appendix B.

Henceforth we impose zero channel pressurisation (3.1). As a first check we verified
that the model agreed with a known exact solution for a concentric circular geometry
(equations (3.2) of van de Vorst (1993), with Ri = 0.5 and Ro = 1).

http://wwwf.imperial.ac.uk/~dgcrowdy/
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R

FIGURE 5. The configuration used to test the EPM in figures 6–8. The geometry is
characterised by M, the number of channels, and r = |Zn|/R, the ratio of the radius of
the channel centroids to the radius of the outer boundary. Here, R is chosen so that the
fluid region has unit area.

The numerical method of § 4 can be used to test the EPM more generally. We take
as a first test configuration the geometry sketched in figure 5, comprising M elliptical
channels characterised by the ratio r= |Zn|/R specifying how close the channels are
to the outer boundary. In figure 6, we compare our model with the full solution for
a hypothetical MOF whose preform is given by this geometry. (The initial map from
a circular domain to the initial configuration is obtained using an extension of the
method of Fornberg (1980) developed by Kropf (2009).) Although surface tension
causes the shape and size of the channels to change, it is apparent that they remain
nearly elliptical in shape. It is also evident that the EPM accurately predicts the time
evolution of these ellipses.

Quantitative measures of the accuracy of the EPM are shown in figures 7, 8,
where we plot various quantities associated with one of the channels for the test
configuration. The agreement is best when the channels are not too close to each
other, or to the outer boundary, which is to be expected given the nature of our
approximations.

In figure 9, we illustrate the accuracy of the EPM for a hexagonal array, a more
realistic geometry for an MOF. In this example, differential straining in the cross-
plane leads to certain channels becoming more eccentric than others. In particular,
the channels along the innermost ring tend to become extended along the azimuthal
direction, while those at the corners of the hexagon on the outermost ring become
extended radially. The channels remain roughly elliptical under evolution, and their
movement and deformation are captured well by the EPM. This figure shows that the
agreement between the model and the full solution is good for a realistic MOF.

7. Preliminary experimental validation of the EPM
The authors are currently engaged in a suite of experimental fabrication runs

aimed at testing the scope of the mathematical models presented here and in our
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FIGURE 6. Snapshots of the initial configuration (a) and two later configurations (b,c) of
an MOF whose initial geometry is shown in figure 5, with M= 4 and r= 0.4: (a) τ = 0,
(b) τ = 0.040, (c) τ = 0.080. The solid lines show the evolution according to the EPM;
the superposed dashed lines are the full solution using the method of § 4. The middle and
right-hand columns show close-ups at each time.

related modelling work (Stokes et al. 2014; Chen et al. 2015). Full details of
those results will be presented elsewhere, but it is appropriate to include here
preliminary experimental evidence that the EPM (and future variants thereof) has the
potential to faithfully predict the kind of qualitative deformations seen in real fibre
draws.

For our tests, we chose a preform consisting of six circular channels arranged in
a triangle with a circular outer boundary. This configuration is shown in figure 10(a),
along with the predicted configurations at τ =0.025,0.050 and 0.075 in figure 10(b–d).
This same initial configuration was used for an experiment, with six holes of diameter
2.8 mm being drilled into an F2 glass cylinder with an outer diameter of 30 mm.
The resulting preform was then drawn into fibre using a fixed feed speed and various
tensions and draw speeds. Photographs of the cross-section of the fibre were taken for
each set of draw parameters. Two photographs, corresponding to two different choices
of the draw parameters, are shown in figure 10(e,f ).

The qualitative agreement is generally good, although it should be noted that,
in the second experimental cross-section, the channels close to the centre are
larger than those nearer the edge. This may be due to self-pressurisation, perhaps
compounded by a radial temperature gradient; neither of these possibilities has been
incorporated into our model. Although not a quantitative test, the agreement shows
that the overall channel deformation characteristics predicted by the model are also



Elliptical pore regularisation of the inverse problem for MOF fabrication 23

4 6 8 10 12 4 6 8 10 12

4 6 8 10 124 6 8 10 12

0

0

0.2

0.4

0.6

0.8

1.0

M

–5

0

5

10

M

–1.0

–0.8

–0.6

–0.4

–0.2

0

–0.10

–0.15

–0.20

–0.25

–0.30

–0.05

(a) (b)

(c) (d)

FIGURE 7. Testing the accuracy of the model. Instantaneous rates of change of the
centroid location (more precisely, its modulus), area A, ratio ε of major to minor axes
of a channel and radius of the outer boundary for the MOF illustrated in figure 5, as the
number of channels M is varied, for r = |Zn|/R = 0.4. The solid lines show the value
of each quantity according to the EPM; the dashed lines show the value obtained from
the full numerical solution. The agreement between the EPM and the full solution is best
when M is moderate, that is, when the channels are not too close to each other.

obtained experimentally in fibre drawing, giving confidence in our modelling approach.
Quantitative comparisons between the model and experiment are part of ongoing work
to be reported in the future.

8. The scope of the EPM
The EPM is only technically valid when the channels are well separated and

sufficiently far from the outer boundary, but we have found that its predictions
compare favourably with a full numerical solution even for channels that are so close
together that the underlying asymptotic separation of ‘inner’ and ‘outer’ scales is not
expected to pertain. However, in such cases, we have also observed that the EPM
needs to be used carefully. For configurations of a large number of close-together
channels, we discovered during our test runs that the linear system for the time
derivatives of the channel parameters (given in appendix B) can become singular,
with a rank deficiency of 1. When this occurs during a simulation, the vector of
parameters describing the instantaneous configuration can change by an arbitrary
amount in a certain direction (the nullspace direction). An example of such a singular
configuration is shown in figure 11(a), with an example of how it can suddenly
reconfigure in figure 11(b). We do not understand the reason for this singularity, but
it is important to emphasise that the singularity is not real – we have confirmed
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FIGURE 8. Instantaneous rates of change of the quantities plotted in figure 7 as r=|Zn|/R
is varied, for M = 4 channels: (a) centroid location, (b) area, (c) axis ratio, (d) outer
boundary radius. The solid lines show the value of each quantity according to the EPM;
the dashed lines show the value obtained from the full numerical solution. The agreement
between the EPM and the full solution is best when r is small, that is, when the channels
are far from the outer boundary.

that nothing similar occurs in the full numerical simulations – but, rather, it is an
artefact of the approximations made in the EPM when it is used outside of its range
of validity.

This singularity appears to occur in a variety of geometries with a large number of
channels whenever the channels are sufficiently close together. It does not appear to
be possible to identify in advance whether a given initial configuration will become
singular. Because of this, when applying the EPM to geometries with close-together
channels, we recommend that the EPM solution be checked to ensure that a singularity
has not been crossed. One option is to check the time derivatives for any sudden
jumps. Alternatively, the simulation can be run from the final configuration with time
reversed and the result compared with the initial configuration. If using a fixed time
step, it should be small enough to ensure that the singularity has not been skipped
over.

In summary, the EPM agrees well with full numerical simulation within its domain
of validity, with identifiable problems occurring outside it. The EPM is therefore a
reliable, accurate and fast finite-dimensional reduction of the full infinite-dimensional
free-boundary problem in the cross-plane.

Several numerical simulations of fibre drawing have appeared in the literature
(Xue et al. 2005a,b,c; Chakravarthy & Chiu 2009), mainly for MOFs having small
numbers of channels. Such approaches are computationally expensive for the complex
structures typically seen in MOFs. In contrast, the EPM can be readily solved
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FIGURE 9. Snapshots of the time evolution of an MOF obtained using the EPM (solid
lines) and using the numerical method (dashed lines): (a) τ = 0, (b) τ = 0.025, (c) τ =
0.050. The middle and right-hand columns show close-ups at each time.

without the need for effecting a full numerical simulation. This significantly reduces
the required computational resources, with the saving becoming more significant, and
valuable, as the number of channels increases.

9. Regularisation of the inverse problem

Beyond its advantages in reducing the computational demands for the ‘forward
problem’, the generalised EPM has a second, arguably more important, advantage: it
provides a stable means of finding solutions of the inverse problem discussed earlier.
Simply running the full numerical simulation backwards in time rapidly leads to
the growth of small numerical inaccuracies that pollute the computation and lead to
unrealistic initial geometries. The EPM model can, on the other hand, be successfully
run backwards in time – at least until the geometry becomes unphysical, usually
by dint of overlapping channels. In this way, the EPM generates physically realistic
initial profiles that are viable candidates for realisation as an actual preform. The
EPM therefore provides a natural physically based ‘regularisation’ of this ill-posed
inverse problem. (Mathematically, the EPM provides a rational way of remaining
close to a ‘slow manifold’ with polluting higher-order modes filtered out.)

In this section, we illustrate this calculation for several example target geometries.
In all examples to follow, we use a surface tension γ = 0.25 N m−1, typical for
silicate glasses (Boyd et al. 2012). Rather than simply fixing a value of the draw
ratio D, we instead fix the outer fibre diameter at the top of the draw to be 1.02 cm
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FIGURE 10. Comparison of the EPM with experiment. (a–d) A circular preform with six
circular channels (a), and its evolution predicted by the EPM at different times: (a) τ = 0,
(b) τ = 0.025, (c) τ = 0.050, (d) τ = 0.075. These configurations correspond to possible
fibres drawn from this preform. (e,f ) Photographs of the fibre cross-section from an
experimental draw of a preform with the configuration shown in (a), for two different
values of the draw speed and fibre tension. The feed speed was held constant. The scale
bars show 50 µm.

and that at the bottom of the draw to be 160 µm; these are values typically used
in real fibre draws. We fix these diameters in order to more closely emulate what
is done in practice: the outer diameter at the top of the draw is determined by the
preform diameter while the outer diameter at the bottom of the draw is the desired
fibre diameter. The draw ratio D can then be easily calculated from the preform and
fibre geometries.

In figures 12(a–d), 13(a–d) and 14(a–f ) we pick a target fibre geometry and run
the EPM backwards in τ time. This allows us to explore possible preform geometries
capable of producing this target by picking different values of τL, i.e. the duration of
the EPM calculation. The parameter τL should be viewed as ‘labelling’ the possible
initial geometries. Because the EPM can be run in either direction, the target fibre
geometry is recovered by running any of these initial geometries forwards.
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(a) (b)

FIGURE 11. The EPM singularity for close-together channels. For the hexagonal array of
three rings of channels with channel radii 0.054945 and radial separation 0.138756 (a), the
linear system for the time derivatives of the channel parameters is singular. As a result,
during a simulation, the configuration can ‘jump’ by an arbitrary multiple of the nullspace
(b), which is not physically realistic.

With τL chosen for each example, both the initial and final geometries are known,
and so the draw ratio D can be calculated. Equations (3.6b) and (3.7) then give
the value of the tension σ required for this draw. In figures 12(e,f ), 13(e,f ) and
14(g,h), D and σ are plotted as functions of τL. These are the parameters of interest
to experimentalists. Figure 15 shows the profile of the draw for one of the preforms
in figure 14.

In these examples, it is evident that the preform configurations corresponding to
higher τL are more different from the target fibre configuration – the channels are
larger, closer together and more elliptical, characteristics that might make them more
difficult to fabricate. On the other hand, the draw tension σ decreases significantly
with increasing τL, meaning that these configurations would be easier to draw. This
suggests that the best choice of initial configuration will be a compromise between a
preform that is easy to fabricate and a tension that is easy to achieve.

How well does the EPM solve the inverse problem? Starting with the configuration
from figure 14(f ), we compared the forward-time evolution of this preform obtained
using the EPM with that given by a full numerical simulation. Figure 16 shows
snapshots of both. The full numerical simulation gives a final configuration that
closely approximates the final EPM configuration, which is the original fibre geometry
from figure 14. Thus, the example preform from figure 14 produces a fibre whose
channels are at the desired positions and which closely approximate the target circles.

Experimentally, complex preform geometries are becoming easier to achieve with
the growing availability of procedures such as the three-dimensional printing of dies
(Ebendorff-Heidepriem et al. 2014). It is important to remark that the EPM has
no theoretical limit on the number of channels – the addition of a new channel
simply adds 12 more (real) ordinary differential equations to the system outlined in
appendix B.

10. Discussion
A reduced model, dubbed the EPM, has been introduced to facilitate fast and

accurate simulations of multichannel microstructured optical fibres. Consisting only
of a system of ordinary differential equations, the model is ideally suited to MOFs
with a large number of channels and, for a wide class of geometries, obviates the
need for full numerical simulations.

Significantly, the EPM can also be run backwards in time in a stable manner to give
solutions to the inverse problem of predicting the experimental draw parameters and
initial preform geometry required to fabricate a chosen target multichannel geometry.
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FIGURE 12. Simple fibre geometry with six channels (a), with three example preform
geometries that can be used to produce this fibre: (b) τL = 0.020, (c) τL = 0.050,
(d) τL = 0.075. Each preform geometry is obtained by starting with the fibre geometry
and running the EPM backwards over a time given by τL. This τL is the reduced time
over which sintering will deform that preform into the desired fibre. (e,f ) Values of the
draw ratio D and physical draw tension σ necessary to draw a preform corresponding
to τL into the desired fibre. The values for the examples chosen in the upper plots are
marked with crosses.

Mathematically, the EPM provides a means to solve the inverse problem by tracking
a relevant slow manifold and filtering off higher modes that would typically pollute a
full backwards-time simulation.

One apparent limitation of our modelling approach is the restriction to elliptical
channels, but we would like to emphasise that generalisations are possible (and
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FIGURE 13. A more complicated fibre geometry, with preform geometries calculated by
running the EPM backwards in the same manner as in figure 12. The same quantities are
plotted.

are under active investigation). The EPM is predicated on the fact, established by
Crowdy (2003a), that a compressible elliptical channel – that is, one whose evolving
shape is described by a conformal mapping of the form (5.16) – remains elliptical
under evolution in a linear Stokes flow. As noted in § 7 of Crowdy (2004), similar
mathematical features also hold for channels described by generalised conformal
mappings of the form

zn(ζ , τ )=Zn(τ )+ αn(τ )

ζ
+ βn(τ )ζ + · · · + γn(τ )ζ

N, (10.1)
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FIGURE 14. A more realistic fibre geometry (a), with preform geometries calculated by
running the EPM backwards, like in figures 12 and 13: (b) τL = 0.010, (c) τL = 0.020,
(d) τL=0.030, (e) τL=0.035, (f ) τL=0.040. (g,h) Values of the draw ratio D and physical
draw tension σ necessary to draw a preform corresponding to τL into the desired fibre.
The values for the examples chosen in the upper plots are marked with crosses.

situated in higher-order nonlinear ambient flows. Indeed, based on this idea, Crowdy
(2004) modelled the evolution of a doubly periodic array of shrinking channels,
which adopt the fourfold rotational symmetry of a square as they close up, and
found that it gives excellent agreement with the full numerical boundary integral
simulations of Pozrikidis (2003). The EPM is, therefore, just the first in a hierarchy
of generalised models in which shapes of more complicated geometrical form can
also be simulated (including MOFs with cross-plane geometries comprising arrays of
triangular or rectangular channels). Work on extensions of the EPM in this direction
will be presented elsewhere.

In practice, pressurisation of the channels is often used as a device to control
channel shape evolution. It is therefore important to incorporate such differential
channel pressurisation into the model. Work on this is also in progress and will be
reported in a forthcoming publication (Chen et al. 2015).
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FIGURE 15. The profile of the draw for the preform shown in figure 14(f ). The
configuration at the bottom is the fibre geometry from figure 14. Equation (3.4) is used to
obtain the relation between the reduced time and the axial coordinate, with σ ∗ obtained
by solving (3.6a).

In some circumstances inertia and/or gravity may be of importance, and Cummings
& Howell (1999) show that inclusion of these effects modifies only the one-
dimensional axial stretching problem, with the two-dimensional cross-plane problem
remaining unchanged. Stokes et al. (2014) showed that inclusion of inertia prevents
the solution from being written in terms of the function H(τ ), as in (3.3) and (3.4),
but that, even so, the stretching problem is still coupled to the cross-plane problem
by the total boundary length, and, for a given preform and surface tension, the
final fibre geometry is still determined by the draw ratio and the fibre tension. On
inclusion of gravity in the model there is additional fibre tension due to the weight
of the fibre hanging below axial position x, so that the fibre tension is, properly,
position-dependent. This makes solution of the stretching problem more complicated,
especially as the geometry within the neck-down region will be important, but the
coupling to the cross-plane problem remains unchanged. Importantly, with inclusion
of inertia and/or gravity, solution of the inverse problem is still dependent on the
ability to run the cross-plane problem backwards as done in the present work with
both inertia and gravity neglected. Work on inclusion of gravity in the model is in
progress and will be reported in a future publication.

Another mechanism sometimes used for control of the fibre draw process is
rotation of the fibre during drawing. Besides giving the resulting fibre a twisted
geometry (Voyce, Fitt & Monro 2004, 2008), this allows control over channel
inflation. Fibre rotation is something we have not yet considered and so remains for
future investigation.
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FIGURE 16. Snapshots of the forward-time evolution of the preform shown in figure 14(f )
obtained using the EPM (solid lines) and using the numerical method (dashed lines):
(a) τ = 0, (b) τ = 0.020, (c) τ = 0.040. The middle and right-hand columns show close-ups
at each time.
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Appendix A. Derivation of outer boundary evolution

Here we show that (5.8)–(5.10) follow from our model of a circular outer boundary
influenced by a collection of sources and stresslets located near the centre. Starting
with a large-scale flow described by

f (z, τ )=
M∑

n=1

λn

2π(z−Zn)
+
∞∑

n=0

fnzn, (A 1)

g′(z, τ )=
M∑

n=1

mn

2π(z−Zn)
+

M∑
n=1

λnZn

2π(z−Zn)2
+
∞∑

n=0

gnzn, (A 2)
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which is more general than the flow assumed in (5.6) and (5.7), the coefficients
of powers of z are equated in the dynamic boundary condition (4.8) on the outer
boundary |z| = R. To leading order in the quantities Zn/R, the equations for z3, z2,
z1, z0 and z−1 are respectively

f3 = 1
2πR4

M∑
n=1

λn, (A 3)

f2 = 0, (A 4)

f1 + f1 = 1
2R
+ 1

2
p(0)B −

1
2πR2

M∑
n=1

mn, (A 5)

f0 + 2R2f2 + g0 = A1, (A 6)

3R4f3 + R2g1 =− 1
2π

M∑
n=1

λn, (A 7)

where we have made use of the result from (5.23) that the mn are real. The equations
for z4 and higher require f4, f5, . . .= 0, while the equations for z−2 and lower require
g2, g3, . . .= 0. The degrees of freedom associated with the Goursat description of the
flow field and the arbitrary rigid motion of the free-boundary problem may be fixed
by setting f0 = 0, g0 = 0 and Im{f1} = 0 (Buchak & Crowdy 2014). Defining P to be
the pressure near the centre induced by the outer boundary,

P= 4Re{f ′(0)} = 4f1, (A 8)

the flow field is

f (z, τ )=
M∑

n=1

λn

2π(z−Zn)
+ 1

4
Pz+ 1

2πR4

(
M∑

n=1

λn

)
z3, (A 9)

g′(z, τ )=
M∑

n=1

mn

2π(z−Zn)
+

M∑
n=1

λnZn

2π(z−Zn)2
− 2

πR2

(
M∑

n=1

λn

)
z, (A 10)

with A1 = 0, P given by (5.8) and M defined by (5.10). Equating the coefficients of
powers of z in the kinematic boundary condition (4.9), the equation for z0 gives (5.9),
while the equations for z2 and z−2 both give condition (5.11).

Appendix B. Implementation of the generalised EPM
The model described in § 5 requires solution of, at each time step, a linear system of

complex equations for the first-order time derivatives of Zn, αn, βn and R. This linear
system is determined by the current values of Zn, αn, βn and R. Writing the complex
unknowns as a vector U of 5M components and the real unknowns as a vector V of
2M + 3 components,

U =


Żn

β̇n
pn − iωn

kn
λn

 , V =


α̇n
mn

Ṙ
P
M

 , (B 1a,b)
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the system takes the form

AU + BU +CV =D, (B 2)
EU + E U + FV =G, (B 3)

where A, B, C and D encode the 5M complex equations
equation (5.13)
equation (5.22)
equation (5.14)
equation (5.15)
equation (5.24)


(

U
V

)
=


· · ·
· · ·
· · ·
· · ·
· · ·

 , (B 4)

and E, F and G describe the 2M + 3 real equations
equation (5.21)
equation (5.23)
equation (5.8)
equation (5.9)
equation (5.10)


(

U
V

)
=


· · ·
· · ·
· · ·
· · ·
· · ·

 . (B 5)

We solve this system by rewriting it as a system of real equations for Re{U}, Im{U}
and V . The function In(ζ ), appearing in (5.21), (5.22) and (5.24), is defined by (2.17)
in Crowdy (2003a),

In(ζ )= 1
4πi

∮
|ζ ′|=1

dζ ′

ζ ′

(
ζ ′ + ζ
ζ ′ − ζ

)
1

|znζ (ζ ′)| . (B 6)

Hence,

In(0)= 1
4πi

∮
|ζ ′|=1

dζ ′

ζ ′
1

|znζ (ζ ′)| , I′′n (0)=
1
πi

∮
|ζ ′|=1

dζ ′

ζ
′3

1
|znζ (ζ ′)| . (B 7a,b)

The authors have prepared freely downloadable MATLAB files (http://wwwf.imperial.
ac.uk/~dgcrowdy/) that compute the evolution of a user-defined initial configuration of
channels.

Appendix C. Governing equations for pressurised annular fibre
Here, we show that, for a single circular channel centred at the origin, the EPM

retrieves the exact equations for the cross-plane evolution.
Equations (5.8)–(5.10) give the evolution of the outer boundary, assuming no outer

boundary pressure,

P+ m1

πR2
= 1

R
, (C 1)

dR
dτ
= m1

2πR
. (C 2)

For a single channel with no other channels to interact with, (5.14) and (5.15) give
simple expressions for the far-field pressure, vorticity and strain rate,

1
4(p1 − iω1)= 1

4 P, (C 3)
k1 = 0. (C 4)

http://wwwf.imperial.ac.uk/~dgcrowdy/
http://wwwf.imperial.ac.uk/~dgcrowdy/
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Likewise, (5.13) gives the velocity of the centroid,

dZ1

dτ
= 0. (C 5)

Assuming that the channel is initially circular and centred at the origin, it will be
described by the map (5.16) with Z1 = 0,

z1(ζ , τ )= α1(τ )

ζ
+ β1(τ )ζ , (C 6)

with β1(0)= 0. Equations (5.21) and (5.22) give the evolution of α1(τ ) and β1(τ ),

dα1

dτ
=−α1I1(0)− 1

2
α1(p1 − p(1)B ), (C 7)

dβ1

dτ
=−β1I1(0)+ 1

2
β1(p1 − p(1)B )+ 2k1α1 + iω1β1. (C 8)

Because β1(0)= 0 and k1= 0, it is clear that dβ1/dτ = 0, so β1(τ )= 0 and the channel
will remain circular for all time. The map z1(ζ , τ ) takes the simpler form

z1(ζ , τ )= α1(τ )

ζ
. (C 9)

The integral I1(0), which appears in the equation for dα1/dτ , can be evaluated
explicitly for this simple z1(ζ , τ ),

I1(0)= 1
4πi

∮
|ζ ′|=1

dζ ′

ζ ′
1

|znζ (ζ ′)| =
1

4πi

∮
|ζ ′|=1

dζ ′

ζ ′
|ζ ′|2
α1
= 1

2α1
. (C 10)

This gives a simplified equation for dα1/dτ ,

dα1

dτ
=−1

2
− 1

2
α1(p1 − p(1)B ). (C 11)

Finally, with β1(τ )= 0, (5.23) gives a simple expression for m1,

m1

π
= d

dτ
(α2

1). (C 12)

Equations (C 1)–(C 3), (C 11) and (C 12) can be combined into two equations in the
unknowns α1(τ ) and R(τ ),

dα1

dτ
=−1

2
− 1

2
α1

(
− 1

R2

d
dτ
(α2

1)+
1
R
− p(1)B

)
, (C 13)

dR
dτ
= 1

2R
d

dτ
(α2

1). (C 14)

Equation (C 14) can be rewritten as

d
dτ
(R2)= d

dτ
(α2

1), (C 15)
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which is just conservation of mass. Since our cross-plane problem has unit fluid area,
it integrates to

π(R2 − α2
1)= 1. (C 16)

Now, letting α1 = ρR, (C 13) becomes, after using (C 15) to eliminate d(α2
1)/dτ ,

dρ
dτ
=− 1

2R
(1+ ρ)+ 1

2
ρp(1)B . (C 17)

Equation (C 16) becomes πR2(1− ρ2)= 1. Using this to eliminate R,

dρ
dτ
=−
√

π

2
(1+ ρ)3/2(1− ρ)1/2 + 1

2
ρp(1)B . (C 18)

Equation (C 18) is derived by direct means in Chen et al. (2015), where p(1)B =p∗Hχ/γ
∗,

p∗H being the pressure applied in the channel. For the case of no channel pressurisation,
p(1)B = 0, it is also readily obtained from equations (4.4a,b) from Stokes et al. (2014).
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