
J. Fluid Mech. (2016), vol. 790, pp. 308–338. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.11

308

Gravitational extension of a fluid cylinder
with internal structure

Hayden Tronnolone1,†, Yvonne M. Stokes1, Herbert Tze Cheung Foo2

and Heike Ebendorff-Heidepriem2

1School of Mathematical Sciences, The University of Adelaide, North Terrace,
Adelaide, SA 5005, Australia

2Institute for Photonics and Advanced Sensing, School of Chemistry and Physics,
The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia

(Received 10 July 2015; revised 1 December 2015; accepted 4 January 2016)

Motivated by the fabrication of microstructured optical fibres, a model is presented
for the extension under gravity of a slender fluid cylinder with internal structure. It
is shown that the general problem decouples into a two-dimensional surface-tension-
driven Stokes flow that governs the transverse shape and an axial problem that
depends upon the transverse flow. The problem and its solution differ from those
obtained for fibre drawing, because the problem is unsteady and the fibre tension
depends on axial position. Solutions both with and without surface tension are
developed and compared, which show that the relative importance of surface tension
depends upon both the parameter values and the geometry under consideration. The
model is compared with experimental data and is shown to be in good agreement.
These results also show that surface-tension effects are essential to accurately
describing the cross-sectional shape.

Key words: interfacial flows (free surface), low-Reynolds-number flows, slender-body theory

1. Introduction

Microstructured optical fibres (MOFs) are a new design of optical fibre which
promise the realisation of fibres with effectively any desired optical properties. This
flexibility is due to a unique design which employs a series of air channels aligned
along the fibre axis to form a waveguide around the core, rather than enclosing the
central core with a cladding layer of different material, as is used in regular optical
fibres (Knight 2003; Monro & Ebendorff-Heidepriem 2006). Microstructured optical
fibres are typically fabricated in two stages. The first stage consists of the construction
of a preform between one and three centimetres in diameter, which is a macroscopic
version of the final fibre, having the same internal structure. In the second stage,
referred to as fibre drawing, the preform is heated and pulled from one end to reduce
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FIGURE 1. Schematic of the extrusion process. The billet is heated and forced through
the die by the ram. The blocking elements within the die give rise to the pattern of air
channels in the preform.

the outer diameter to between 100 and 200 micrometres and the internal air channels
to only a few micrometres to nanometres across. In order to attain the required final
geometry it is important to be able to construct a precise preform.

There are several methods available for constructing the preform, including drilling
a solid rod or stacking an assembly of capillary tubes. Of particular interest is
preform extrusion, which has been shown to be a flexible method of fabrication
(Ebendorff-Heidepriem & Monro 2012). In this method, depicted in figure 1, a piece
of material, referred to as a billet and typically a glass, is placed in an extrusion
tower and heated. A ram forces the material through a die that contains a number
of blocking elements, which form the negative of the desired pattern of air channels.
After the molten material passes through the die it leaves the heated region and
solidifies. While the desired geometry is specified by the die design, the flow of the
molten material in the time between exiting the die and solidification can greatly
deform the resulting air channels (Ebendorff-Heidepriem & Monro 2007). These
deformations include changes in the shape and location of the air channels, both of
which can render the preform useless. In addition, gravity acts to stretch the extruded
preform, which results in a taper. At present, such distortions are accounted for by
using repeated trials until the desired geometry is attained.

There exists a significant body of work focusing on the second stage of fibre
fabrication, the drawing of fluid fibres. Much of this theory stems from the work
of Trouton (1906), who developed a model for the steady stretching of a viscous
fibre under gravity. Matovich & Pearson (1969) later extended this model to include
surface-tension effects, while Schultz & Davis (1982) provided a systematic derivation
of this model, making use of a small aspect ratio, and computed higher-order
corrections that justified the use of a one-dimensional model. Yarin, Gospodinov
& Roussinov (1994) found numerical solutions for the drawing of thin-walled
cylinders with surface tension and gravity, while Fitt et al. (2002) investigated the
steady-state drawing of capillary tubes through several limiting cases. A review of
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comparisons between experimental data and slenderness models for fibre drawing has
been given by Denn (1980), which showed that one-dimensional models provide a
good approximation. Xue et al. (2005a,b, 2006) have used finite element simulations
to study several fibre-drawing problems, both steady state and time-dependent. Yarin
(1995) has studied the formation of preforms using layers of materials driven by
surface tension without gravity, making use of Fourier expansions to solve the
resulting equations. This work assumed that the boundaries of each layer can be
represented by small perturbations to circles and made use of a transformed time to
link the transverse flow to a uniform axial stretching. It is noted that the equations
may also be applied to single-layer preforms. A similar approach to those described
above has been used to construct an area-averaged extrusion model (Lin & Jou 1995).

Each of the studies discussed above employed an Eulerian coordinate system;
however, many studies of extensional flow, including the present work, make use of
a Lagrangian coordinate system (Wilson 1988; Kaye 1991). Lagrangian descriptions
have been used to study the gravitational stretching of axisymmetric slender drops
neglecting surface tension and inertia (Wilson 1988; Stokes 2000), with inertia (Stokes
& Tuck 2004) and with surface tension (Wilson 1988; Stokes, Bradshaw-Hajek &
Tuck 2011). Similar equations also arise in the study of thin sheets of fluid (Wilmott
1989; Stokes 1999). A slenderness model with a Lagrangian coordinate has been used
to study a fibre stretched at both ends (Dewynne, Ockendon & Wilmott 1989, 1992);
the initial cross-sectional geometry was arbitrary but connected and it was assumed to
vary gradually with axial position. A detailed derivation of the leading-order model for
drawing, including the effects of both inertia and gravity, has been given by Dewynne,
Howell & Willmot (1994). Surface tension was neglected in the main text of the paper
and it was shown that to leading order the cross-section retains its original shape
while its size reduces due to axial stretching. The effect of surface tension is discussed
in the appendix but at a magnitude that did not enter the leading-order analysis so
that there was no change to the model for the cross-sectional area and axial velocity
derived in the paper. It was, however, noted that inclusion of surface tension means
that the cross-section no longer retains its initial shape and the shape evolution must
be determined by a higher-order transverse-flow model.

Cummings & Howell (1999) extended the work of Dewynne et al. (1994) to
consider surface tension of a magnitude that modifies the leading-order analysis and
obtained fully coupled axial- and transverse-flow models in a Lagrangian reference
frame, where the transverse-flow model is a two-dimensional Stokes-flow problem
with a modified kinematic condition. They made the critical observation that a
transformation of the time variable reduces the transverse-flow model to a classical
two-dimensional Stokes-flow problem with unit surface tension that is independent
of the axial-flow model. This transverse model can be solved once for a given
initial cross-sectional shape, and yields the evolution of the geometry (shape) of the
cross-section. The area of each cross-section evolves according to the one-dimensional
axial-flow model, which has an additional term (not found in the Dewynne et al.
(1994) model) that depends upon surface tension and the boundary length from the
transverse-flow problem. Cummings & Howell (1999) do not describe their method
of solution of the axial-flow problem using the boundary length from the transverse
problem except to indicate that this was done by transformation back to the physical
time and Lagrangian space variables. A similar method has been used to model
the drawing of a thin-walled tube (a viscida) by Griffiths & Howell (2007, 2008,
2009). Chakravarthy & Chiu (2009) applied the slenderness model of Cummings &
Howell (1999) in the Eulerian reference frame to the drawing of fibres with multiply
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connected cross-sectional geometries, and investigated the relative effects of surface
tension, axial inertia and gravity. The transverse and axial problems, which in the
Eulerian formulation are fully coupled, were solved simultaneously via a numerical
procedure. Stokes et al. (2014) investigated the drawing of a preform into a fibre
neglecting gravitational effects and showed that the Lagrangian formulation of the
problem, together with application to the axial problem of the time transformation
introduced by Cummings & Howell (1999), enabled an explicit description of the
solution to the axial stretching problem in terms of the evolution of the cross-sectional
geometry given by the solution of the transverse problem for any initial geometry.

As a first step to understanding MOF preform extrusion we here consider the
simpler problem of the stretching under gravity of a cylindrical fluid region with
internal structure and surface tension. It will be assumed that the molten material
can be modelled as a Newtonian fluid and that, over the time scales of interest,
inertia is negligible. We demonstrate that the results of Stokes et al. (2014) may be
extended to model the stretching under gravity of a slender fluid region of arbitrary
cross-section, so that the transverse flow decouples from the axial flow in an identical
manner and evolves as a two-dimensional Stokes flow with unit surface tension. The
key differences are that the axial flow is no longer steady and the area evolution
equation depends upon the initial position of each cross-section.

A particular focus of the present work is to analyse the interaction between
gravitational and surface-tension forces. Specifically, we wish to determine if and
when surface-tension effects are important. It has been shown by Wylie, Huang &
Miura (2011) that for the pulling by a fixed force of a solid axisymmetric viscous
thread with small inertia the effect of surface tension is negligible. Experiments by
the authors reported here show that the inner boundaries of fluid regions with interior
structure undergo some deformation that is not explained by axial stretching but is
explained by surface tension. As an example of these experiments, figure 2 shows
a preform that originally contained three circular inner boundaries that was fixed at
one end and heated so that it stretched under gravity. It should be noted that the
central hole has become elliptical. This is similar to the deformations observed in
MOF preform extrusion (Monro & Ebendorff-Heidepriem 2006). Shown overlaid on
this image is the best match produced by our model, which shows good qualitative
agreement. The model and this experiment will be discussed further below.

It will be shown that the importance of surface tension depends upon both the
relevant dimensionless parameters and the geometry under consideration. Furthermore,
the influence of surface tension on both the axial and transverse flows must be
considered, and is investigated through several limiting cases. Particular attention is
given to geometries with internal structure.

This paper is structured as follows. Section 2 considers the derivation of a model
for a stretching fluid region. General solutions are presented both with and without
surface-tension effects. In § 3 we present solutions for several example geometries
with no internal boundaries and use these to illustrate the effect of surface tension.
Solutions with internal holes are discussed in § 4 and are compared with experimental
data. The implications of these results are discussed in § 5, along with future work to
be undertaken.

2. The mathematical model
2.1. Formulation

Consider a tube with some internal structure, as shown in figure 3, which is labelled
by a Cartesian coordinate system in which the x-axis is directed vertically down
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FIGURE 2. Photograph of a cross-section from a cylinder with three holes that has
stretched under gravity. The diameter of the cylinder is approximately 677 µm, while the
region inside the square from the photograph in (a) is shown approximately eight times
larger in (b). The central hole appears to show deformation consistent with surface-tension
effects. This is similar to behaviour observed in MOF preform extrusion. Shown overlaid
is the best match from the model, which displays good qualitative agreement.
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FIGURE 3. A typical cylinder with internal structure. A Cartesian coordinate system is
employed in which the x-axis is directed along the axis of the cylinder, while the y-
and z-axes are oriented in the transverse direction. The length and cross-sectional area
are denoted L(t) and S(x, t) respectively. The total boundary length of each cross-section
is denoted Γ (x, t). The cylinder is aligned such that gravity acts in the direction of
increasing x.

along the cylinder axis, while the y- and z-axes lie in the transverse plane. The
corresponding velocity vector is denoted (u, v, w) and the pressure p. The length is
denoted L(t), while the cross-section at position x and time t has area S(x, t). The
total perimeter of each cross-section is denoted Γ (x, t). Since the cylinder is fixed at
the top we specify that u(0, t)= 0, while the initial profile S0(x)= S(x, 0) and initial
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Parameter Symbol Approximate value Units

Surface tension γ 0.2–0.3 N m−1

Viscosity µ0 106.5–108.5 Pa s
Density ρ 2.5–6× 103 kg m−3

Cross-sectional area S 5–8× 10−5 m2

Initial length L 0.03–0.04 m

TABLE 1. Typical parameter values for gravitational extension of a fluid cylinder.

length L0 = L(0) are also known. We point out that both the initial cross-sectional
area and the shape may vary with position x, i.e. they are not necessarily uniform.

Table 1 shows some typical parameter values for the gravitational extension problem
here considered, which are also relevant to MOF preform extrusion. The area S
represents a typical cross-sectional area; often S0 is constant and S = S0. The length
scale L is usually the initial length of the cylinder, i.e. L = L0. From these values
we observe that the slenderness parameter ε =√S /L is no larger than 0.3 and we
shall assume that ε is O(10−1). We thus introduce the scaled quantities denoted by
carets:

(x, y, z)=L (x̂, εŷ, εẑ), t= L

U
t̂, (u, v,w)=U(û, εv̂, εŵ),

S=S Ŝ, Γ = εL Γ̂ , p= µ0U
L

p̂.

 (2.1)

Here, U=ρgL 2/µ0 is a velocity scale chosen to balance viscous stresses and gravity,
where ρ is the fluid density, µ0 is a typical viscosity and g is gravity. At leading
order in ε the temperature is constant within any cross-section (Huang et al. 2007),
so that the temperature of the cylinder is assumed to vary with axial position and time.
Since the viscosity depends only upon temperature we assume that the viscosity is also
constant within any cross-section and write µ(x, t)=µ0µ

∗(x̂, t̂), where µ∗ is the scaled
quantity. The surface tension γ and density ρ are both assumed to be independent of
temperature and are taken to be constant along the length of the tube. In order for
surface-tension effects to appear in the leading-order problem we introduce the scaled
surface tension γ ∗ = γ /µ0Uε, which is assumed to be O(1).

Since the viscosity depends upon the temperature we must solve for the latter
in order to determine the former. This necessitates the inclusion of an energy
conservation equation coupled to the fluid flow equations, such as the one-dimensional
models employed by Yarin et al. (1989), Huang et al. (2007), Griffiths & Howell
(2008) and Taroni et al. (2013), and the deformation and stretching of the cylinder
will depend on the temperature, which will depend on the cylinder geometry. This
is a non-trivial matter, and the addition of a coupled energy equation to the model
is left to future work. For this study we focus on the solution of the momentum
equations, giving these and, as much as possible, expressing solutions in terms of a
general viscosity function µ∗(x, t). Ultimately, for generating results we will assume
that the viscosity is constant so that µ∗ ≡ 1. Moreover, we will show that we are
able to use experimental data to validate our flow-modelling approach and investigate
the importance of surface tension in a way that accounts for the temperature varying
viscosity independently of the model, albeit, as will be seen, the x dependence of the
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cylinder geometry as given by model and experiment cannot be compared, which, in
any case, was not possible due to a lack of the experimental measurements needed
for this.

Returning to the flow model, each of the unknown variables is expanded as a power
series in ε2. As per Cummings & Howell (1999), this expansion results in coupled
systems for the axial and transverse flows, which are discussed in the following
subsections.

2.2. Axial problem
The axial flow is described by equations governing conservation of both mass and
momentum expressed in terms of the area Ŝ and boundary length Γ̂ . These equations
have been previously derived by Cummings & Howell (1999). Dropping carets from
scaled variables but retaining asterisks on scaled parameters for later convenience, the
mass and momentum equations are respectively

St + (uS)x = 0, (2.2)

ReS(ut + uux)− (3µ∗Sux)x = Sg∗ + γ
∗

2
Γx. (2.3)

Here, we have introduced the Reynolds number Re= ρUL /µ0 and scaled gravity

g∗ = ρgL 2

µ0U
= Re

Fr2
, (2.4)

where Fr=U/
√

gL is the Froude number. Setting U = ρgL 2/µ0 (as given earlier)
yields g∗ = 1. This choice also yields the dimensionless parameters

Re= ρ
2gL 3

µ2
0

, γ ∗ = γ

ρgL
√

S
. (2.5a,b)

The dimensionless surface tension γ ∗ is an inverse Bond number. Using the typical
parameter values from table 1, Re is at most O(10−9), justifying neglect of the
inertial terms on the left-hand side of (2.3) until a sufficiently long time has elapsed
that accelerations throughout the fluid cylinder approach gravitational acceleration,
when this approximation is no longer valid (Stokes & Tuck 2004; Wylie et al. 2011).
However, as this is not a feature of the problems and time scales of interest here
we consider only the case of negligible inertia. The dimensionless surface tension is
O(10−1), and, while this appears small, we do not drop this term in the governing
equations in order to investigate the effect of surface tension. It will later be shown
that surface tension must be included in order to capture the behaviour observed in
experiments.

Introducing the material derivative DS/Dt= ∂S/∂t+ uSx, we write (2.2) in the form

DS
Dt
=−Sux, (2.6)

which is substituted into (2.3) to eliminate the axial velocity u. It is useful to introduce
the axial Lagrangian coordinate ξ = x(ξ , 0), where x(ξ , t) is the position of cross-
section ξ at time t and ξ is the initial position of each cross-section; the relation
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FIGURE 4. The axial coordinate x, shown on the left-hand side of the diagram, is
converted to the Lagrangian coordinate ξ , shown on the right, defined by the initial
position of each cross-section so that ξ = x(ξ ,0). By requiring conservation of mass within
the shaded region and taking the limit as its length is reduced to zero we obtain the
relationship between the two coordinates.

between x and ξ is illustrated in figure 4. As per Stokes & Tuck (2004), conservation
of mass requires that the Eulerian and Lagrangian coordinates are related by

S(ξ , t)
∂x
∂ξ
= S(ξ , 0), (2.7)

or, equivalently,

x(ξ , t)=
∫ ξ

0

S0(ξ
′)

S(ξ ′, t)
dξ ′. (2.8)

Writing (2.3) in terms of the Lagrangian variable and integrating with respect to ξ
yields

3µ∗
DS
Dt
=−V(ξ)+ γ

∗

2
Γ − c(t), (2.9)

where

V(ξ)=
∫ 1

ξ

S0(ξ
′) dξ ′ (2.10)

is the dimensionless weight of fluid between cross-section ξ and the lower end of
the cylinder. The function c(t) is a possibly time-dependent axial tension within the
fluid that is determined by the boundary condition at the bottom of the cylinder.
For a uniform initial geometry S(ξ , 0) ≡ 1, so that V(ξ) = 1 − ξ . In the case of a
solid axisymmetric cylinder (2.9) is identical to that found by Stokes et al. (2011,
equation (8), p. 324). In the absence of any external pulling of the cylinder, we assume
that c(t) = 0 (corresponding to zero stress) and that any change in cross-sectional
area at the very bottom of the cylinder where V(ξ) = 0 is due to surface tension.
As will be seen in § 4, experiments show that the cross-sectional area at the very
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bottom of the cylinder changes very little with time. In some practical applications the
cylinder is pulled with a constant force and c(t) will be a positive constant, although
a time-dependent force is also possible for preform extrusion which motivates this
work, as well as for fibre drawing.

We also note that under the slenderness assumption the sides of the fluid region are
taken to have small slope so that there is no axial contribution to the curvature. At the
free end of the cylinder ξ = 1; however, surface tension will work to round the sharp
corners and this free end will no longer be flat. In this study we ignore this effect,
which occurs over a long time relative to the stretching time, noting that it will have
a negligible impact on the rest of the fluid away from ξ = 1.

At present, (2.9) involves two dependent unknown variables S and Γ . For a general
geometry there is no simple relationship between the area of each cross-section and
the total boundary length, so that at present the problem is not closed. In order to
relate these two quantities we must make use of the transverse problem, discussed in
the following subsection.

2.3. Transverse problem
Again following Cummings & Howell (1999), the transverse-flow problem is readily
solved by considering the flow at each Lagrangian coordinate ξ and scaling the cross-
plane coordinates by

√
S(ξ , t), so that (y, z)=√S(ỹ, z̃) and Γ =√SΓ̃ (ξ , t). We also

rescale the pressure and velocity, defining

p= p̄+ γ ∗√
S

p̃, (v,w)= (v̄, w̄)+ γ
∗

µ∗
(ṽ, w̃), (2.11a,b)

where p̄ and (v̄, w̄) comprise the zero-surface-tension eigensolution given by Dewynne
et al. (1994), who showed that with no surface tension each cross-section changes
in scale but not shape. Then, only the components of the pressure and velocity due
to surface tension (p̃, ṽ and w̃) will feature in the transverse problem. We emphasise
that, because the initial cross-sectional shape may vary with axial position, there
is, potentially, a different transverse problem for every cross-section ξ , because the
initial condition is different. This means that every dependent variable in the transverse
problem must be labelled by ξ , a feature of the transverse-flow model developed here
that is not seen in the model of Stokes et al. (2014) for fibre drawing, nor even in that
of Cummings & Howell (1999) which includes gravity. For a uniform cross-sectional
geometry the transverse-flow problem is the same for every cross-section.

Following each cross-section, the transverse flow due to surface tension is governed
by the equations

ṽỹ + w̃z̃ = 0, (2.12a)
ṽỹỹ + ṽz̃z̃ = p̃ỹ, (2.12b)

w̃ỹỹ + w̃z̃z̃ = p̃z̃, (2.12c)

(µ∗
√

S/γ ∗)Gt + ṽGỹ + w̃Gz̃ = 0 on G= 0, (2.12d)
Gỹ(−p̃+ 2ṽỹ)+Gz̃(ṽz̃ + w̃ỹ) = −κ̃Gỹ on G= 0, (2.12e)
Gỹ(ṽz̃ + w̃ỹ)+Gz̃(−p̃+ 2w̃z̃) = −κ̃Gz̃ on G= 0, (2.12f )

where G = 0 is the boundary of each cross-section, which may consist of multiple
pieces that are not connected. Equations (2.12a–c) are simply the two-dimensional
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Stokes equations, while (2.12e,f ) are the dynamic boundary conditions for unit surface
tension. The remaining kinematic condition (2.12d) is transformed into a standard
kinematic boundary condition by introducing the reduced time (Griffiths & Howell
2008; Stokes et al. 2014)

τ(ξ, t)= γ ∗
∫ t

0

1

µ∗
√

S
dt′, (2.13)

which is here labelled with cross-sectional position ξ , yielding

Gτ + ṽGỹ + w̃Gz̃ = 0 on G= 0. (2.14)

Thus, with this transformation, the cross-flow becomes a classical unit-surface-tension-
driven free-boundary Stokes-flow problem with unit area. There are a variety of
methods available for solving such a problem. For example, Hopper (1990) presented
exact solutions for a selection of connected domains, while problems featuring
domains of higher connectivity may be solved using numerical methods (Buchak
et al. 2015).

The key observation to be made is that the transverse problem for cross-section
ξ is independent of the axial flow. The consequence of this is that, for any given
geometry, we can solve the transverse-flow problem for each ξ without any knowledge
of the axial flow, and this solution alone governs the shape of the cross-section. Any
change over time in the viscosity of the cross-section µ∗(ξ , t) is accounted for by
the new time variable τ . This decoupling of the transverse flow from the axial flow
also occurs in fibre drawing (Stokes et al. 2014), but is in contrast to the work of
Chakravarthy & Chiu (2009), who did not transform to reduced time and instead used
an unmodified kinematic condition, equivalent to (2.12d), which does depend on the
axial problem. Once each transverse problem is solved we can readily calculate the
scaled boundary length Γ̃ (ξ , τ ). The process of coupling the two problems and using
viscosity information to determine the physical geometry is discussed below.

2.4. Coupling
To make use of the transverse solution for cross-section ξ , we first transform (2.9) to
reduced time τ . Making this transformation, the time-dependent tension c(t) becomes
a function B of both ξ and τ ; at a given t, the reduced time τ varies with ξ so that
c(t) = B(ξ , τ ). With the scaled boundary length Γ̃ (ξ , τ ) known from the transverse
problem, the unscaled boundary length is given by Γ (ξ, τ ) = √S(ξ , τ ) Γ̃ (ξ , τ ).
Making these substitutions yields

3γ ∗√
S

DS
Dτ
=−V + γ

∗

2

√
SΓ̃ − B. (2.15)

We define

6σ ∗(ξ , τ )= V(ξ)+ B(ξ , τ ), (2.16)

which represents the total dimensionless tension, due to gravity and any additional
pulling, acting on cross-section ξ at reduced time τ . Finally, introducing χ =√S and
rearranging yields

Dχ
Dτ
− 1

12
χΓ̃ =−σ

∗

γ ∗
. (2.17)
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This is a linear ordinary differential equation in χ , which corresponds to that seen in
fibre drawing, except that σ ∗ is not constant but dependent on ξ and τ . As in Stokes
et al. (2014), it may be solved by introducing the integrating factor

H(ξ , τ )= exp
(
− 1

12

∫ τ

0
Γ̃ (ξ , τ ′) dτ ′

)
, (2.18)

which yields the solution

χ(ξ, τ )= 1
H

(
χ0(ξ)− 1

γ ∗

∫ τ

0
σ ∗H dτ ′

)
. (2.19)

Here, we have introduced χ0(ξ) = χ(ξ, 0), which is the initial value of χ . For a
cylinder with initially uniform cross-section, χ0(ξ) =

√
S0(ξ) ≡ 1. While (2.19) is

similar in form to that previously obtained for the drawing of fibres (Stokes et al.
2014, equation (2.19), p. 183), it differs significantly in that σ ∗ is not a constant but,
in general, a function of both ξ and τ because of the inclusion of gravity and the
time-dependent tension B(ξ , τ ). Ultimately, we will assume that B(ξ , τ ) is constant,
in which case (2.19) differs from the solution for fibre drawing only because σ ∗ and,
possibly, χ0 depend on ξ , so that a different solution χ is obtained for each ξ . In
general, (2.19) has no exact solution and we must compute the integrals in (2.18) and
(2.19) numerically.

Given some cross-section ξ and reduced time τ , we use (2.19) to compute the area
of the cross-section, while the solution to the transverse problem determines the shape
of the cross-section. Thus, these two solutions together completely describe how cross-
section ξ evolves in τ . To determine the physical cylinder geometry at physical time t
we require a relationship between t and τ for each ξ . This is obtained by rearranging
(2.13) to give ∫ τ

0
χ dτ ′ =

∫ t

0

γ ∗

µ∗
dt′ = γ ∗t

m(ξ , t)
, (2.20)

where m(ξ , t) is the harmonic mean of µ∗(ξ , t) at position ξ over time t. It is left
to future work to couple solution of (2.20) with a temperature model to properly
determine the physical geometry, so, at present, we will simply assume a viscosity
profile µ∗ and, hence, m. We note that when µ∗ =µ∗(ξ) we have m=m(ξ)=µ∗(ξ).
Substituting (2.19) into (2.20) gives the relationship between t and τ at each cross-
section ξ . At a given t>0 the dependence of (2.20) on ξ means that τ will differ from
cross-section to cross-section so that each will have a different shape, even in the case
that χ0 is independent of ξ . This is in contrast to previous models of fibre drawing
(Stokes et al. 2014), in which every cross-section has the same initial geometry and
evolves over the same reduced time τ as it is drawn, and so has the same shape.
If required, the Eulerian position x at any time t may be determined by substituting
S= χ 2 into (2.8), which will typically need to be evaluated numerically.

Summarising, the general solution procedure is as follows.

(i) Solve the transverse-flow problem for each ξ .
(ii) Calculate Γ̃ (ξ , τ ) from the cross-flow solution and, hence, H(ξ , τ ) from (2.18).

(iii) Calculate χ(ξ, τ ) from (2.19).
(iv) For each time t of interest:

(1) find τ for each cross-section ξ using (2.20);
(2) evaluate S(ξ , τ ) and x(ξ , τ ).
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The time dependence of c(t) greatly increases the difficulty of this problem. In
typical MOF preform extrusion there is a constant pulling force and very often
c(t)≡ 0. From this point onwards we will assume that c(t)= B(ξ , τ )= c is constant.

2.5. Solution for weak surface tension
Previously it was assumed that γ ∗ was O(1) and a solution was derived that included
the surface-tension terms, which we will refer to as the full solution. It was observed,
however, that γ ∗ is O(10−2) or smaller, which suggests that surface tension has only
a small effect on the solution. To investigate the importance of surface tension we
here consider two approximations to the full problem. If γ ∗� 1, the surface-tension
terms from the axial equation (2.9) may be dropped, so that this equation no longer
depends upon the transverse problem. In addition, if γ ∗ = 0 then (2.13) implies that
τ = 0 and the transverse problem may be neglected. This agrees with results observed
by Dewynne et al. (1994) for fibre drawing, namely that without surface tension
the cross-sections would change scale due to stretching but remain the same shape.
We will refer to this as the zero-surface-tension (ZST) case. If γ ∗� 1 but the area
S is small, so that the term γ ∗/

√
S from the integrand in (2.13) is O(1), then τ

will not necessarily be small and each cross-section may still undergo a significant
shape change. Furthermore, if the cross-sectional geometry has large curvatures then
even small values of τ may mean a significant change to the cross-sectional shape.
To investigate these possibilities we also consider the solution when surface-tension
terms are neglected in the axial problem but the transverse problem is retained, which
is denoted the weak-surface-tension (WST) case. The importance of the size of γ ∗
relative to S and the curvature is investigated in detail in the following sections by
comparing solutions with the full, ZST and WST models.

Both the ZST and WST cases share the same axial equation (2.9) with the surface-
tension term removed. Integrating yields

S(ξ , t)= S0(ξ)− 2tσ ∗(ξ)
m(ξ , t)

. (2.21)

We note that the ZST–WST solution for S does not depend on the cross-sectional
shape, i.e. Γ (ξ, τ ), which is in contrast to the solution of the full problem. For the
WST case we can also obtain an expression for S at each ξ in terms of τ . From
(2.17), and neglecting the term involving Γ̃ , we find

χ(ξ, τ )= χ0(ξ)− σ
∗(ξ)τ
γ ∗

. (2.22)

Equating with (2.21) gives the relationship between t and τ ,

tγ ∗

m(ξ , t)
= τ

(
χ0 − σ

∗τ
2γ ∗

)
. (2.23)

Writing (2.23) as a quadratic polynomial in τ and solving for τ gives

τ = γ
∗

σ ∗

[
χ0 −

(
χ 2

0 −
2σ ∗t

m

)1/2
]
, (2.24)

where we must use the negative square root so that ∂τ/∂t> 0 and τ(ξ, 0)= 0. Thus,
the WST solution, if appropriate, provides a straightforward relation between τ and t.
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For the special case in which the viscosity µ∗ and initial area S0 are independent
of ξ further progress can be made. For t > 0, substituting for S(ξ , t) in (2.8) and
integrating yields

x(ξ , t)= 3m
t

log
(

1+ tξ
3m− t(1+ c)

)
, (2.25)

where m=m(t). Setting ξ = 1 we find that the length of the fluid region is given by

x(1, t)= L(t)= 3m
t

log
(

1+ t
3m− t(1+ c)

)
. (2.26)

Rearranging (2.25), it may be shown that[
1− t(1+ c)

3m

]
exp

( tx
3m

)
= 1− t(1− ξ + c)

3m
. (2.27)

Observing that the right-hand side of this expression matches the right-hand side of
(2.21) we may eliminate ξ to obtain

S(x, t)=
[

1− t(1+ c)
3m

]
exp

( tx
3m

)
, 0 6 x 6 L(t). (2.28)

This provides a full solution to the ZST case. For the WST case we must, in addition,
solve the transverse problem and relate t to τ . From (2.24) we have

τ = γ ∗

σ ∗(ξ)

[
1−

(
1− 2

σ ∗(ξ) t
m

)1/2
]
. (2.29)

3. Cylinders with no internal structure
In this section we consider some illustrative solutions for the stretching under

gravity of cylinders with no internal structure. The effect of surface tension, in
terms of both the cross-sectional geometry and the magnitude of the surface-tension
parameter, is investigated by comparing solutions of the full problem with those
obtained assuming zero and weak surface tension for two different geometries, namely
a solid axisymmetric rod and a cylinder with a non-circular epicycloid cross-section.
We will examine how well the ZST and WST solutions represent the full problem
solution relative to the magnitude of the surface-tension parameter for γ ∗= 10−3, 10−2

and 10−1. For generality, solutions are derived as far as possible for a viscosity that
varies with both Lagrangian coordinate ξ and time t, but all results presented are for
a constant viscosity.

The circular rod does not evolve in the transverse-flow problem and has axial
solution

χ =
(
χ0 − σ

∗

δ

)
eτ
√

π/6 + σ
∗

δ
, (3.1)

where δ = γ ∗√π/6. To relate t and τ we substitute χ from (3.1) into (2.20), which
yields the algebraic relationship

6√
π

(
χ0 − σ

∗

δ

)
(eτ
√

π/6 − 1)+ σ
∗

δ
τ = γ ∗

m(ξ , t)
t. (3.2)
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An exact solution to the transverse problem for the evolution of an epicycloid was
given by Hopper (1990), and substitution of this into (2.20) gives the relation between
t and τ via numerical integration. We here set c= 0.

Figure 5 shows the area S plotted against ξ at times t = 1 and 2 for each of
the selected values of γ ∗ for the ZST–WST problem (in which S is independent of
the cross-sectional geometry) and for the full problem, where the cross-section is a
circle and an epicycloid. From these curves it can be seen that when γ ∗ = 10−3 all
three solutions are identical to graphical accuracy at both times. This suggests that
for this value of γ ∗ surface tension does not have a significant effect, regardless of
the geometry under consideration. For γ ∗ = 10−2 the three solutions show qualitative
but not quantitative agreement. At t= 1 the ZST–WST solution and solid-rod solution
are similar, while the epicycloid solution has a larger area at all values of ξ . By time
t= 2, the rod has deviated from the ZST–WST solution by more, while the epicycloid
solution is further away again. Finally, with γ ∗= 10−1, the differences are even more
pronounced and are clearly visible at both times. Once again, the epicycloid solution
is larger than that for the rod, which is in turn larger than the ZST–WST solution.
The differences between the rod and epicycloid may be explained by the difference
in the boundary lengths. The initial boundary length of the epicycloid is greater than
that of the circle and remains larger over the course of this simulation. On inspecting
(2.9), it is clear that the larger Γ̃ is, the greater the influence of surface tension is on
the axial problem. The ZST–WST solution is smallest as it has no boundary length
term. As these differences accumulate with time the deviation is greater at t= 2 than
at t= 1.

Within the transverse problem surface tension works to reduce the total boundary
length, so that as τ increases Γ̃ decreases towards 2

√
π, which is the total boundary

length for a disk of unit area. In addition, as a given cross-section ξ becomes smaller
due to axial stretching the unscaled boundary length Γ must also decrease, so that
the influence of surface tension on S decreases with time. In regions near the end of
the cylinder ξ = 1, where there is little stretching, S increases with time, which is
most noticeable for larger γ ∗. The scaled boundary length Γ̃ still decreases with τ

but Γ =√SΓ̃ may increase due to the increase in S. On differentiating (2.13) with
respect to t we observe that as S increases the rate of increase in τ reduces. Thus,
surface tension works to slow the rate of change of τ .

The influence of surface tension may also be observed in the cross-section profiles.
In the case of the rod the shape of each cross-section remains the same in the
transverse problem and can only change in scale due to axial stretching. Figure 6
shows cross sections through the rod at ξ = 0.5 at t = 2 for γ ∗ = 10−2 and 10−1.
For the smaller value of γ ∗ the ZST, WST and full solutions have all changed in
scale due to axial stretching but are otherwise indistinguishable. For γ ∗ = 10−1 the
ZST and WST solutions still appear identical, while the full solution is noticeably
larger. These results all agree with the corresponding plots of S shown in figures 5(d)
and 5( f ) respectively. Thus, without any transverse evolution the cross-section is
completely described by the axial solution. For γ ∗ 6 10−2 there is no noticeable
difference between the solutions, while by γ ∗ = 10−1 the full solution differs due to
reduced axial stretching on account of the surface-tension term in the axial equation.

In the case of the epicycloid there are some notable differences in behaviour due
to surface-tension-driven flow in the cross-section. Again, we consider cross-sections
at ξ = 0.5 and t= 2, which are plotted in figure 7. At γ ∗ = 10−2 the ZST and WST
solutions are practically identical, while the full solution shows some smoothing at
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FIGURE 5. The solutions S(ξ , t) corresponding to the ZST–WST solution (solid curve),
and the full problem for both the rod (dashed curve) and the epicycloid (dash–dot curve).
The solutions have been computed with dimensionless surface tensions γ ∗ = 10−3, 10−2

and 10−1, and are shown at times t= 1 and 2: (a) γ ∗ = 10−3, t= 1; (b) γ ∗ = 10−3, t= 2;
(c) γ ∗ = 10−2, t = 1; (d) γ ∗ = 10−2, t = 2; (e) γ ∗ = 10−1, t = 1; ( f ) γ ∗ = 10−1, t = 2. For
γ ∗ = 10−3 the three solutions are indistinguishable to graphical accuracy at both times
shown. For γ ∗= 10−2 the epicycloid solution is slightly larger for all ξ , while the rod and
ZST–WST solutions remain similar to each other. For γ ∗= 10−1 the three solutions differ
noticeably. The difference between the epicycloid and rod solutions is due to the longer
boundary of the epicycloid. The magnitude of the difference between solutions increases
with time.

the cusps and is larger in the regions between. For γ ∗ = 10−1 the three solutions are
all distinct. The full solution shows further smoothing and has not reduced much in
area. The WST solution shows similar smoothing but, without the resistance to gravity
provided by surface tension in the axial problem, has reduced in scale. While the ZST



Gravitational extension of a fluid cylinder with internal structure 323

(b)(a)

FIGURE 6. The cross-section at ξ = 0.5 for the stretching circular cylinder. The initial
condition is shown in solid grey. At t = 2 we have the full solution (solid black), the
WST solution (black dashed) and the ZST solution (grey dotted). The solutions are
indistinguishable at γ ∗= 10−2 (a), while for γ ∗= 10−1 (b) the full solution is significantly
different from the ZST and WST solutions, which are identical.

(b)(a)

FIGURE 7. The cross-section at ξ = 0.5 for the stretching epicycloid cylinder. The initial
condition is shown in solid grey. At t= 2 we have the full solution (solid black), the WST
solution (black dashed) and the ZST solution (grey dotted). The solutions are similar for
γ ∗ = 10−2 (a) but are all distinct for γ ∗ = 10−1 (b).

solution has the same area as the WST solution, it has a noticeably different shape as
there is no surface-tension-driven flow in the transverse direction to smooth the cusps.

The effect of surface tension can be further highlighted by comparing the domains
from the transverse problem so that they each have unit area, which allows a
comparison between the solutions without the effect of axial stretching. Figure 8(a)
shows such a comparison for the epicycloid at t = 2 and γ ∗ = 10−1, from which it
is evident that the full and WST solutions show almost identical behaviour, while
the ZST and initial condition are necessarily identical. To see why the full and WST
solutions agree, the values of τ from these two solutions are plotted against ξ in
figure 8(b). While the two curves clearly differ at the plotted scale, this difference
is never more than 3.09× 10−2, which occurs at ξ = 0. The shapes for the full and
WST problems are thus effectively the same. Hence, even though τ depends upon
S, as can be seen from (2.13), the different axial solutions from the full and WST
problems make little difference to the value of τ and hence the shape observed; rather,
the shape differs depending on the magnitude of surface tension in the transverse
problem.
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FIGURE 8. Comparison between the solutions to the transverse (scaled) problem with
γ ∗ = 10−1. (a) Cross-sections at ξ = 0.5 and t = 2 for the initial condition (grey solid),
which is also the ZST solution, the full solution (solid black) and the WST solution (grey
dashed); the full and WST solutions appear almost identical. (b) The values of τ for the
full (solid black) and WST (black dashed) problems, which differ by at most 3.09× 10−2.

For the two cylinders considered in this subsection we have seen that for γ ∗
O(10−3) surface tension does not have a significant impact on either the axial or
transverse systems and the ZST model provides a good approximation to the full
problem. If γ ∗ is O(10−2) the ZST–WST axial model shows small differences from
the full model but still provides a useful approximation. At this value of γ ∗ all
three transverse models show close agreement; the ZST model differs in regions of
large curvature. For γ ∗ of O(10−1) the WST transverse model still provides a good
approximation to the full problem; however, the ZST–WST axial model and ZST
transverse model show significant differences and are no longer appropriate.

4. Cylinders with internal structure: model and experiment
4.1. Overview and experimental set-up

In this section we solve for the gravitational stretching, with no additional forcing (i.e.
c = 0), of fluid cylinders with internal structure; that is, having interior boundaries.
Two cases are considered: (1) a cylinder with an annular cross-section, for which
an exact solution exists, and (2) a circular cylinder with three circular holes having
collinear centres on a diameter of the cross-section, for which a numerical solution is
obtained.

An experiment was also conducted for each of these cases. The experimental
procedure is described in detail in appendix A, but a brief summary is given here.
The cylinders were made from glass and each was placed into an optical fibre-drawing
tower with the top end fixed and the bottom end free, as shown for an annular tube
in figure 9. The cylinder was heated by a surrounding susceptor and the softened
cylinder was stretched under gravity so that it extended below the susceptor, where it
cooled. After some minutes the bottom metre or so was broken off, which consisted
of a drop connected to a tapered filament, which we call ‘the drop’. Experimental
data were obtained from this piece, consisting of the initial and final geometries of,
and the weight below, a number of cross-sections.

From the weight below a cross-section the corresponding Lagrangian coordinate ξ
was calculated, as described in appendix A, where the experimental measurements are



Gravitational extension of a fluid cylinder with internal structure 325

Susceptor Preform

Fixed

x

FIGURE 9. Schematic showing the experimental set-up for the annular tube. The upper
end of a glass tube was held fixed while the lower end was free. The glass was heated by
the surrounding electromagnetically heated susceptor and allowed to stretch under gravity.
In the diagram a section of the susceptor has been removed for clarity. The lower portion
of the cylinder that deforms has a length somewhat less than the length of the susceptor.

also given. The known weights σ(ξ) and surface tension γ allow the computation of
the ratio σ ∗/γ ∗ = σ/(6γ√S ), which is needed in the model. For each ξ the model
gives both the area and the shape of the cross-section as a function of the reduced-
time variable τ , while the experiment gives both the area and the shape of the cross-
section at the end of the experiment. To compare the model and the experimental data
at Lagrangian position ξ , we use the experimentally measured cross-sectional area S
to determine the reduced time τ corresponding to the end of the experiment and then
compare the cross-sectional geometry at that τ as given by the model with that seen
experimentally. That is, we are able to calculate the predicted shape of each cross-
section given the observed area. In effect, this removes the axial stretching from both
the model and the data, allowing a comparison of the transverse surface-tension-driven
flow. As we will see, the shape of the interior boundaries can be explained only with
the inclusion of the surface-tension-driven transverse problem. Comparisons are made
with the full and WST models.

As already noted previously, a more complete comparison of the cylinder geometry
as given by the model with that obtained experimentally requires knowledge of the
viscosity (or temperature) of the glass. In addition to the coupling of a thermal
model with the flow model, experimental information is needed to establish the exact
initial length L of the cylinder and the physical time from the commencement of
deformation to the end of the experiment. This is left to future work.

4.2. Stretching annular tube
As a first example of a geometry with internal structure we consider a cylinder in
which each cross-section is an annulus. Both the size and the aspect ratio of the
annulus are allowed to vary with ξ . The transverse problem admits an exact solution
and, following Stokes et al. (2014), yields the axial solution

χ =
(
τ

2α0
+ 1
)1/3

{
χ0(ξ)− 3α0σ

∗

γ ∗

[(
τ

2α0
+ 1
)2/3

− 1

]}
, (4.1)
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FIGURE 10. The area S(ξ , t) plotted against ξ for an annulus with S0(ξ)= 1. Solutions
are shown at time t= 1 for initial aspect ratios φ0 = 0.2, 0.3, . . . , 0.9, and γ ∗ = 10−2 (a)
and 10−1 (b). The initial condition is shown as a dashed line while the arrows indicate
the direction of increasing φ0. For both values of γ ∗ the area increases at every value of
ξ as φ0 increases. The increase is greater for larger γ ∗.

where α0(ξ) is the difference between the scaled outer and inner radii at position ξ
and reduced time τ = 0. Although the axial solution (4.1) is expressed most simply in
terms of the parameter α0, extruded annular preforms are more commonly described
by the aspect ratio φ of the inner to outer radii. The quantities α0 and φ0= φ(ξ, 0)=
constant are related by

α2
0 =

1− φ0

π(1+ φ0)
. (4.2)

Using (2.20) it may be shown that t and τ at cross-section ξ are related by the
algebraic equation

2γ ∗

3α0m(ξ , t)
t=
(
χ0(ξ)+ 3α0σ

∗

γ ∗

)[(
τ

2α0
+ 1
)4/3

− 1

]
− σ

∗τ
γ ∗

(
τ

2α0
+ 2
)
. (4.3)

With this solution we are now in a position to investigate the influence of surface
tension on a stretching tube. For this we again assume a constant viscosity, so that
µ≡ m≡ 1, and consider a cylinder with χ0(ξ)= 1 and constant α0(ξ). We consider
annuli with initial aspect ratios φ0 between 0.2 and 0.9 in steps of 0.1. For each
φ0 we compute the geometry at t = 1 for γ ∗ = 10−2 and 10−1. The computed areas
S are plotted in figure 10. Although the aspect ratio varies with ξ and t, the mass
below each cross-section ξ remains unchanged over time, allowing a comparison of
surface-tension effects alone. For both values of γ ∗ the area at t = 1 increases with
the initial aspect ratio. This is because the surface-tension component (γ ∗Γ/2) in
(2.9) that opposes gravitational stretching increases with φ, since Γ increases with
φ. Clearly a larger surface tension γ ∗ also increases S(ξ , t).

The function φ(ξ, 1) describes the shape, i.e. aspect ratio, at t = 1 of each cross-
section, independent of any change of scale due to stretching. For any initial value φ0,
the aspect ratio by time t= 1 changes little with ξ . The solid curves in figure 11 show
φ(0.5, 1) plotted against φ0 for γ ∗ = 10−2 and 10−1; the line shown dashed is that
applicable to the case of zero surface tension and, hence, no change over time from
φ0. As can be seen across all values of φ0, for γ ∗ = 10−2 the aspect ratio does not
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FIGURE 11. The aspect ratios φ of the annuli from the transverse problem at ξ = 0.5 and
t= 1 plotted against the initial value φ0 for γ ∗ = 10−2 (solid grey) and γ ∗ = 10−1 (solid
black). For comparison, the line φ = φ0 is also plotted (dashed). For γ ∗ = 10−2 the ratio
does not change significantly from the initial value, while for γ ∗ = 10−1 it has decreased
by approximately 0.1 across all values of φ0.

change significantly from the initial value and hence surface tension has little influence
on the transverse flow. In contrast, for γ ∗ = 10−1 the ratio decreases for all initial
conditions φ0 by approximately 0.1 due to surface tension; there is a slightly smaller
decrease for φ0 > 0.8. Thus, even though the value of τ depends upon S via (2.13),
which from figure 10 changes significantly with ξ , the shape of each cross-section
shows little dependence upon ξ and is influenced largely by the value of γ ∗ alone.

To conclude our examination of the stretching annular tube we compare our model
with experimental data. A complete description of the experiment, including the
procedure, measurements taken and sources of error, is lengthy and is found in
appendix A. Briefly, an annular tube with aspect ratio φ0 = 0.168 and a nominal
initial external radius of 5 mm was fixed in a fibre-drawing tower, heated, and
allowed to stretch under gravity; see figure 9. By matching experimentally measured
cross-sectional areas to the model we find the value τ corresponding to each
cross-section, and this is used in the transverse model to predict the cross-section
geometry. That is, we are able to calculate the shape of each cross-section given the
predicted area and compare the shape with that seen experimentally. The experimental
external and internal radii scaled with

√
S S(ξ , t), denoted R and φR, are plotted

for some different values of ξ in figure 12 along with the theoretical radii from the
transverse problem for both the full and WST solutions. Since the scaled radii from
the experimental data differ from their initial value, while in the absence of surface
tension these should remain unchanged, we conclude that surface tension is having
a significant effect. This deformation is larger as ξ decreases, which is due to two
effects: (1) the cross-sections with smaller label ξ spent longer in the heated susceptor
region and hence had more chance to deform, and (2) due to stretching under a larger
gravitational force they became smaller, giving rise to higher curvatures and hence
a stronger surface-tension effect. For both the inner and outer radii the qualitative
match between the models and experiment is very good. In the region ξ < 0.4 each
segment adds only a very small weight so that there is little change in the total axial
force (weight) below each cross-section (see table 3, segments 10–16) and the radii
change very little with ξ .

Figure 13 shows the aspect ratio φ from the data and as predicted by the full and
WST models. There is a strong dependence of φ on ξ . As commented earlier, this
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FIGURE 12. The dimensionless (a) inner radius φR and (b) outer radius R for the
stretching annular tube. Shown are the experimental data (crosses), and the predictions
by the full (circles) and WST (triangles) models. Both models produce similar results and
provide a very good qualitative match to the data. In the absence of surface tension the
cross-section in the transverse-flow model will not change over time, so that the reduction
in radius can only be explained by surface tension.

dependence is not seen in model results obtained assuming a constant viscosity. It is
due rather to the changes in viscosity that occur as the glass cools.

There are several potential sources of error in the experimental data. Both
boundaries are not perfectly circular so that the diameters measured vary depending
on the orientation of the cross-section. It is also difficult to identify the precise
location of the boundary, particularly when measuring the internal hole. Values
measured using photographs can be incorrect if the camera is not correctly aligned,
resulting in a skewed image. This is of particular importance for ξ < 0.4, for which
both diameters were measured using photographs. Taking into account these possible
errors, the theoretical and observed values show good qualitative agreement. From
this we conclude that the model is capturing the important physics in the problem.
Importantly, the reduction in radius observed in figure 12, when axial stretching has
been removed, can only be explained by surface tension. We must include surface
tension in order to capture the correct shape in each cross-section.

4.3. Three-hole experiment
We now consider a similar experiment to that in the previous section but with the
multiply connected cross-section geometry shown in figure 14. This has a circular
outer boundary with three circular inner holes and is of interest as it is similar
to the shape of MOF preforms used for electro-optic fibre designs (Manning 2011).
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FIGURE 13. The aspect ratio φ for the stretching annular tube. Shown are the
experimental data (crosses), and the predictions by the full (circles) and WST (triangles)
models. The value of φ shows a strong dependence upon ξ , which is due to a varying
viscosity.

The cylinder was produced by drilling the three internal channels into a solid rod. The
top and bottom of the drilled cylinder are shown overlaid in figure 14. Unfortunately,
the axes of the channels were not exactly parallel to the axis of the cylinder, while
in neither the top nor the bottom cross-section was the centre of the middle hole at
the centre of the outer boundary. As the experimental data recorded corresponded to
a portion of the cylinder at the bottom, the lower geometry was used as the initial
condition for the model. Relative to this, the central hole in the upper cross-section
is translated by 8 % of the cylinder radius while the outer holes are translated
by approximately 14 % of the cylinder radius. We estimate that all experimental
data correspond to cross sections with an initial geometry that differs from the
initial condition used (i.e. the lower cross-section) by less than 2 %. Evaluation of
(2.19), as well as determination of the cross-sectional shape, required the solution
of the transverse-flow problem, and with no exact solution available, this was done
numerically using a complex-variable-based spectral method similar to that of Buchak
et al. (2015), which has been described by Tronnolone (2016).

To provide a representative example of this process we here consider the predicted
cross-section at ξ = 0.3020. Using the measured cross-sectional area to determine τ
as described above and in appendix A yields the value τ ≈ 0.091, corresponding to
the geometry shown in figure 15, while the WST model predicts the reduced time
τ = 0.089, which corresponds to an almost identical geometry (not shown). The two
outer holes are almost circular but have decreased in size, while the central hole has
both decreased in size and also become elliptical. This shows very good qualitative
agreement with the observed geometry, also shown in figure 15; however, the model
predicts a smaller central hole than that observed in the experiment.

By comparing the solution to the transverse problem with the experimental result
graphically, the best match occurs at the reduced time τ = 0.08, which is shown in
figure 2. At this value of τ the interior holes predicted by the model are of similar
size and shape to those observed in the experiment. Allowing for experimental error
and the method used for determining τ , the model captures the correct behaviour very
well.
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FIGURE 14. Initial configuration for the three-channel cylinder. The traces of the bottom
(dark) and top (light) cross-sections are shown overlaid. The bottom geometry was used
as the initial condition in the transverse problem.

(a) (b)

FIGURE 15. Cross-section ξ = 0.3020 with the predicted shape from the model,
corresponding to τ = 0.091, overlaid in white. The diameter of the cylinder is
approximately 677 µm, while the region inside the square from the photograph in (a) is
shown approximately eight times larger in (b). The two outer holes show good agreement
in both shape and size. While the predicted size of the central hole does not match exactly,
the model does capture the correct qualitative behaviour.

This comparison of model and experiment demonstrates the importance of surface
tension. Without surface tension the cross-sections will change in scale only but will
undergo no other deformation. Experimentally, however, the central hole is seen to
become elliptical in shape, matching the expected shape produced by the model with
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surface tension driving the transverse flow. Thus, surface tension must be included
in order to correctly model the transverse flow. This is particularly important for the
smaller central hole, which has the highest curvature of the four boundaries.

5. Conclusions

We have developed a model for the gravitational stretching of fluid cylinders with
internal structure. The time scales of interest are such that inertia is negligible. This
model can be applied to any cross-sectional geometry provided that it is possible
to solve the associated transverse Stokes-flow problem. For some cases, such as
those illustrated in § 3 and the annulus from § 4, exact solutions exist, otherwise this
problem must be solved using numerical methods.

While the full model includes surface-tension effects in both the axial and the
transverse problem, it is possible to derive simplified models with surface tension
featuring only in the transverse problem (the WST case) or neglected altogether (the
ZST case). For typical values of the surface-tension parameter γ ∗ of size O(10−2) it
has been shown that surface tension does not have a strong influence on the axial
problem; however, for the transverse flow surface tension is important in regions of
high curvature. When γ ∗ is O(10−1) surface tension is important in the axial problem.
This theoretical result is supported by the experimental data. To capture the correct
behaviour it was essential to include surface tension in the transverse problem. The
reduced-time model provided a convenient mechanism for estimating the transverse
flow without knowledge of the viscosity.

The stretching under gravity of a fluid cylinder with internal structure and surface
tension was investigated here because it closely resembles the conditions experienced
by an MOF preform after the material exits the die. Due to this similarity, it is likely
that surface tension is also important to understanding the extrusion of MOFs. To
further investigate this hypothesis, future work will extend this model by including the
addition of material at the top of the cylinder, with the ultimate aim of developing a
model of the MOF extrusion process.

Previous work (Huang et al. 2007) has shown that, under a slenderness approxi-
mation, the temperature is a function of axial position and time only. As viscosity
depends on temperature we must determine the latter in order to compute the former
using a viscosity–temperature relationship appropriate to the material from which
the cylinder is made. However, in this work, while we have given the model and
experimental solutions in terms of a general viscosity function, all model results have
been obtained using a constant viscosity. As a consequence, while we have been able
to show excellent agreement between our model and experiments with respect to the
cross-sectional shape of a cylinder stretched by gravity, we are not in a position to
compare between our model and experiments with respect to the change in geometry
with axial position. In theory, the temperature may be found using a one-dimensional
heat model coupled to the fluid flow, and this has been left to future work. We note
also that more work is needed in the future to obtain experimental information on the
temperature profile, which is also needed for a complete comparison of our model
with experiments.

As already mentioned, this study has concerned only situations in which inertia
is not important, and we emphasise that inertia is not important in the experiments
described above. Given sufficient time, however, a cylinder may stretch and thus
reduce sufficiently in diameter so that the original length scales are no longer
appropriate and accelerations become comparable to gravity. In this case the problem
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enters a new regime in which the Reynolds number may no longer be assumed small,
so that inertial effects become important. Wylie & Huang (2007) have studied this
phenomenon in some detail, while the inclusion of inertia has also been investigated
in the absence of surface tension by Stokes & Tuck (2004). It is possible to extend the
methods discussed here by retaining the inertial terms in the axial problem; however,
this leads to a more complicated equation that has no known explicit solution and
presents significant challenges even for a numerical solution. Under a ZST or WST
approximation it is possible to derive a diffusion-like axial equation similar to that
of Stokes & Tuck (2004). The investigation of such a modification is left to future
work.
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Appendix A. Experimental set-up and measurements
A.1. General method

A cylinder of F2 lead silicate glass from the Schott Glass Company (2015) with
a known geometry was placed into an optical fibre-drawing tower with the top
end fixed and the bottom end free, as shown for an annular tube in figure 9. The
cylinder was surrounded by an electromagnetically heated susceptor that was initially
at room temperature and then heated to 930 ◦C so that the glass softened and the tube
stretched under gravity, with no additional pulling. After some minutes the cylinder
had deformed such that a drop was suspended by a thin filament, several metres in
length, extending back to the remainder of the cylinder at the top of the drawing
tower. The bottom metre or so, which by this time had cooled sufficiently to solidify
and handle, was broken off. All data were obtained from this piece, which consisted
of a drop connected to a tapered filament and which we hereafter simply call ‘the
drop’.

When completely cold, the drop was weighed and then divided into segments, as
illustrated in figure 16. The segments closest to the free end of the drop were each
approximately 5 mm thick and were cut using a mechanical device. Some material
was lost during each cut, making it difficult to accurately measure the weight of each
segment. To minimise any error, the weight below each cut was instead calculated
by subtracting from the original weight the weight remaining after each segment was
removed.

As the cutting process left rough edges, each segment was polished on both sides
to ensure accurate measurement of the diameters. After being polished the segments
were approximately 1–2 mm thick. Images of the cross-sections were taken with a
digital camera and the outer diameters were measured with a digital calliper. The inner
diameters were then calculated from the known outer diameter and the measured ratio.
In the thin-filament region segments were snapped off rather than cut. As these had
smaller outer diameters, photographs of the cross-sections were taken with a digital
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Direction of gravity

FIGURE 16. A schematic of the drop after stretching under gravity. The drop was cut into
16 segments. The first nine were each approximately 5 mm in width, while the remaining
segments were approximately 20 mm in width. The drop is not shown to scale.

177 mm

5.295 mm

5.03 mm

40 mm

FIGURE 17. The initial shape of the tube. The radii are smaller at ξ = 0 than at ξ = 1
but are in the same ratio along the length of the tube.

camera through an optical microscope. The diameters were measured using image
processing software built into the microscope. The (approximate) axial position of
each cross-section relative to the lower end of the drop was not recorded.

The viscosity µ depends upon temperature, which varies in general with both
axial position and time, so that µ = µ(x, t). Although the susceptor temperature is
known we do not know the temperature within the glass and thus do not know the
viscosity. Additionally, once the glass leaves the susceptor even the temperature of
the surrounding atmosphere is not known (Kostecki et al. 2014). Thus, we have no
knowledge of the glass viscosity during the experiment and hence also do not know
the length L of the deforming cylinder. Experimental observation shows that L is
somewhat less than the 45 mm length of the susceptor. Because the viscosity is not
known it is also difficult to determine the time over which the deformation takes
place.

From the measured weights, the known initial geometry and assuming L = 40 mm,
the coordinate ξ at each cut was calculated.
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Quantity Value Units

ρ 3.6× 103 kg m−3

γ 0.25 N m−1

S 8.559× 10−5 m2

TABLE 2. Physical parameters for the drop experiment. The area scale S is calculated
from the larger end of the tube, so that the initial dimensionless areas are all between 0
and 1.

In the absence of experimental viscosity and time data we compare model output
with experimental data using the reduced time τ , which incorporates information
on the unknown time and viscosity, along with the surface tension. Matching
experimentally measured final cross-sectional areas to the model results in a nonlinear
equation for the value of τ at each cross-section, which is readily solved. This match
can be performed using the reduced-time solution to the WST axial problem (2.22) or
the solution to the full axial problem (2.19). With τ known we can use the transverse
model to compute the predicted transverse geometry. That is, we are able to calculate
the predicted shape of each cross-section given the observed area. In effect, this
process removes the axial stretching from both the model and the data, allowing a
comparison of the transverse surface-tension-driven flow. If surface tension is not
important, the data should show no change in the shape of the transverse domain (as
all of the change would be due to stretching, which is limited to the axial problem).
Any deviation in shape will reflect the effect of surface tension.

A.2. Annular tube

The initial aspect ratio was 0.168 ± 10−2. While this ratio was constant along the
177 mm length of the tube, the manufacturing process resulted in a taper in the tube
so that the outer radius varied linearly from 5.03 mm at the top to 5.295 mm at
the bottom, as sketched in figure 17. Other relevant physical quantities are given in
table 2. Segments 5 and 9 were lost during the polishing process while segment 11
was broken, which meant that the diameters of these segments could not be measured.
The data are recorded in table 3.

From the measurements taken, the outer radius in metres can be approximated by
the function R̄(ξ)=aξ +b, where a=5.988×10−5 m, b=5.235×10−3 m and the bar
denotes a dimensional quantity. Using these measurements and the aspect ratio 0.168,
the area of each cross-section ξ in square metres is given by

S̄(ξ)=π(1− 0.1682)R̄2(ξ). (A 1)

Integrating this expression with respect to ξ and accounting for the length scale shows
that the total volume below any point ξ is given by

V̄(ξ)=L π(1− 0.1682)

[
a2

3
(1− ξ 3)+ ab(1− ξ 2)+ b2(1− ξ)

]
. (A 2)

Dividing the known masses from table 3 by the density yields the measured volume
below each cut. Equating these values to the theoretical expression (A 2) gives a cubic



Gravitational extension of a fluid cylinder with internal structure 335

Segment ξ Mass below (g) Outer diameter (mm) Inner diameter (mm)

1 0.9136 1.060 10.61 1.627
2 0.8231 2.160 10.58 1.651
3 0.7441 3.113 10.54 1.602
4 0.6786 3.898 10.18 1.419
5 — 4.819 — —
6 0.5505 5.416 8.68 0.8680
7 0.5052 5.948 7.46 0.5425
8 0.4669 6.396 6.41 0.4314
9 — 6.754 — —

10 0.2953 8.383 1.653 0.05986
11 — 8.515 — —
12 0.2741 8.625 1.335 0.05028
13 0.2650 8.730 1.215 0.04519
14 0.2572 8.819 1.119 0.04306
15 0.2507 8.893 1.049 0.04561
16 0.2456 8.951 0.984 0.03759

TABLE 3. Data recorded from the stretching tube experiment. The mass below each
segment was calculated by removing the segment and subtracting the remaining mass from
the initial mass. For ξ > 0.4 the outer diameters were measured using a calliper and the
inner diameters were calculated from digital photos of each segment. The diameters of the
remaining segments were measured using a digital photo taken under a microscope.

equation for ξ . Once the value of ξ corresponding to each segment is determined
it is simple to calculate the initial area of each cross-section, and hence also χ0(ξ),
from (A 1). It should be emphasised that, although each cross-section started with
a different area, the radii in each were in the same ratio. Thus, every cross-section
corresponds to the same transverse problem.

A.3. Three-hole cylinder
The density and surface tension were the same as for the annular drop (table 2),
while the area scale was taken to be S = 1.69× 10−4 m2. The drop was cut into 38
segments. The pieces with ξ > 0.4 were larger and so were cut mechanically, while
the remaining pieces had smaller outer diameters and so were snapped off. The areas
of all of the cross-sections were calculated by fitting circles over the boundaries in the
photographs using image processing software. While the boundaries were not perfectly
circular, this method provided a reasonable approximation. Typically, the central hole
was furthest from circular, but, due to its small size, this did not have a significant
effect on the results. A summary of the data is given in table 4. Segment 3 was
damaged during the measurement process so that no area could be recorded.

Since each cross-section was assumed to have the same initial area S , the volume
below any cross-section ξ is given by

V̄(ξ)=L S (1− ξ). (A 3)

Equating this to the volumes calculated from the measured masses and density yields
a linear equation for the value of ξ for each segment.
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Segment ξ Mass below (g) Area (mm2)

1 0.9585 1.012 156.63568
2 0.8980 2.491 169.64787
3 — 3.963 —
4 0.7804 5.363 162.75312
5 0.7086 7.117 155.34071
6 0.6554 8.416 132.26883
7 0.5806 10.244 118.42218
8 0.5286 11.514 80.458745
9 0.4741 12.845 50.995111

10 0.4428 13.611 25.25858
11 0.4183 14.210 14.71188
12 0.3568 15.712 9.0295418
13 0.3623 15.577 4.3947397
14 0.3471 15.948 2.4622566
15 0.3357 16.226 1.4674266
16 0.3287 16.397 1.3060861
17 0.3225 16.550 0.94882327
18 0.3185 16.648 0.71338861
19 0.3161 16.706 0.62608909
20 0.3133 16.773 0.51202180
21 0.3114 16.821 0.51724999
22 0.3094 16.870 0.45289320
23 0.3071 16.926 0.42688772
24 0.3052 16.971 0.40440892
25 0.3038 17.006 0.37808207
26 0.3020 17.050 0.35372138

TABLE 4. Data recorded from the three-channel stretching experiment. The mass below
each segment was calculated by removing the segment and subtracting the remaining mass
from the initial mass. For ξ > 0.4 the outer diameters were measured using a calliper and
the inner diameters were calculated from digital photos of each segment. The diameters
of the remaining segments were measured using a digital photo taken under a microscope.
Segment 3 was lost during the measurement process.
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