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A model is developed for the extrusion in the direction of gravity of a slender fluid cylinder
from a die of arbitrary shape. Both gravity and surface tension act to stretch and deform
the geometry. The model allows for an arbitrary but prescribed viscosity profile, while the
effects of extrudate swell are neglected. The solution is found efficiently through the use of
a carefully selected axial Lagrangian co-ordinate and a transformation to a reduced time
variable. Comparisons between the model and extruded glass microstructured optical
fibre preforms show that surface tension has a significant effect on the geometry but
the model does not capture all of the behaviour observed in practice. Experimental
observations are used in conjunction with the model to argue that some deformation,
due neither to surface tension nor gravity, occurs in or near the die exit. Methods are
considered to overcome deformation due to surface tension.
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1. Introduction

A microstructured optical fibre (MOF) consists of a thin thread of material containing
a number of air channels aligned with the fibre axis that modify the optical properties.
The flexibility of this design allows the fabrication of fibres with novel and useful optical
properties (Knight 2003; Monro & Ebendorff-Heidepriem 2006). MOFs are manufactured
by first producing a macroscopic version of the design, known as a preform, which is then
drawn into a fibre. Billet extrusion (or simply extrusion) provides a promising method for
fabricating soft-glass MOF preforms that is suited to automation (Ebendorff-Heidepriem
& Monro 2007). In this process, illustrated in figure 1, a billet of material is heated
until molten and then forced through a die. The die, sketched in figure 2, contains a
series of blocking elements called pins that are fixed to a sieve plate and are typically
arranged to be the negative of the desired preform cross section. The sieve plate sits across
the die channel and contains a number of feed holes that allow the molten material to
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Figure 1: Schematic of the extrusion process. The billet is heated and forced through
the die by the ram. The blocking elements within the die give rise to the pattern of air
channels in the preform.
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Figure 2: A schematic of a typical extrusion die design modified from Ebendorff-
Heidepriem & Monro (2012) showing (a) a cross-section through a typical die and (b)
a corresponding representative sieve plate. The pins, arranged to be the negative of the
desired geometry, are fixed to the sieve plate. The molten material flows through the feed
holes and fuses around the pins inside the welding chamber before leaving the die.

pass through. Once through the sieve plate the strands of molten material fuse together
around the pins inside the welding chamber. After the material emerges from the die
the preform cools and solidifies. It has been observed that extruded preforms undergo
so-called ‘fire polishing’ during cooling, which results in a smoother surface than found on
preforms produced by other fabrication methods (Ebendorff-Heidepriem & Monro 2012;
Ebendorff-Heidepriem et al. 2014). This observation indicates that surface tension has
some influence on the geometry, even if only in this limited regard.
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(a) 3-hole design (b) 7-hole design (c) 7-ring design

(d) 3-hole (e) 7-hole (f) 7-ring

Figure 3: The three representative preform geometries considered in the examples
presented in this study. Figures (a)–(c) show the die geometries used to extrude the
preforms whose cross-sections are shown in (d)–(f), respectively. The 7-ring geometry
contains 162 interior holes. The experimental images are from (d) Manning (2011), (e)
Ebendorff-Heidepriem (2011) and (f) Ebendorff-Heidepriem & Monro (2007).

Preform extrusion enables the fabrication of a wide range of fibre designs (Monro &
Ebendorff-Heidepriem 2006); however, this process can lead to undesired deformation
of the preform geometry. Such deformation includes changes to the shape, size and
location of the air channels, the closure of air channels, and changes to the shape of the
outer boundary. Some representative preform designs are shown in figure 3, along with
experimental images showing typical deformation. At present the required die geometry is
determined through experimentation, which is both time-consuming and costly. In some
cases it is impossible to prevent unacceptable deformations. Mathematical modelling
provides a promising and efficient avenue for investigating the cause of the deformation
and developing strategies to overcome difficulties.
The slow dripping under gravity of a fluid from a circular tube was modelled by

Wilson (1988) to investigate the mass of the drops that break away both with and
without surface tension. The model assumed the extruded fluid cylinder was slender
and made use of an axial Lagrangian co-ordinate that labelled each cross section by
the extrusion time. The geometry predicted by this model was computed by solving a
non-linear algebraic equation. The work of Cummings & Howell (1999), which used a
slenderness approximation to study the stretching of solid fluid cylinders of arbitrary
shape and constant mass with surface tension and gravity, is notable for the introduction
of a reduced time variable in which the transverse flow within each cross section is
independent of the axial flow. The same reduced time variable was later used to model
the drawing of thin-walled tubes (Griffiths & Howell 2007, 2008) and fluid cylinders of
arbitrary cross section neglecting gravity (Stokes et al. 2014; Buchak et al. 2015). Reduced
time has also been used to study active channel pressurisation during fibre drawing (Chen
et al. 2015); however, the addition of pressure to the model meant that the axial and
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transverse problems did not decouple. Tronnolone et al. (2016) extended the work of
Stokes et al. (2014) to model the stretching under gravity of fluid cylinders with internal
structure and surface tension. It was shown that the model provided a good match to
experimental data, suggesting that surface tension and gravity alone were responsible
for the deformation observed in experiments. For a detailed review of the literature the
reader is directed to the articles by Stokes et al. (2014) and Tronnolone et al. (2016).

Recently, Trabelssi et al. (2015) constructed a model for steady-state preform extrusion
taking into account the flow through and below the die. The fluid flow was modelled
using the Stokes equations with constant temperature and viscosity. This work aimed to
investigate the effect of a Navier-slip boundary condition imposed at boundaries inside the
die. The deformation was assumed to be driven by the transition to plug flow of the fluid
leaving the die. The model did not include gravity, while surface tension was neglected
as unimportant due to the high viscosity. It was shown that increasing the normalised
friction coefficient caused an increase in the level of deformation. By adjusting the value of
this coefficient the model was able to produce deformation patterns very similar to those
observed in experiments; however, this match was only produced by choosing a friction
coefficient much larger than is physically realistic for the material used. Furthermore,
a best fit was found by considering only one cross section rather that matching the
geometry along the entire length of the preform.

In this study we extend previous work to develop a model for preform extrusion that
includes both surface tension and gravity; however, we assume plug flow at the die outlet
and hence neglect the transition region in which the axial velocity profile is not uniform.
Our approach is based upon the model used by Tronnolone et al. (2016) for gravitational
stretching, but differs in that for the current problem it proves useful to combine the
Lagrangian time co-ordinate used by Wilson (1988) to model dripping with a modified
reduced-time variable. Once again, the transverse flow decouples from the axial flow,
the former of which reduces to a classical two-dimensional moving-boundary Stokes flow
with unit surface tension. The axial flow model admits an exact solution that depends
upon the total boundary length from the transverse flow. The structure of this model is
similar to that found in other models of extensional flows and fibre drawing (Cummings
& Howell 1999; Griffiths & Howell 2007, 2008; Stokes et al. 2014); however, we emphasise
that it is only through the careful choice of the transformed variables that the problem
reduces to this simple form and that these choices form a central component of this work.
Critically, the use of reduced time means that we may readily determine the shapes each
cross section may attain by solving the transverse problem, which is only possible due to
the use of reduced time.

The remainder of this paper is structured as follows. The mathematical model is
described in section 2 and, in section 3, is used to simulate preform extrusion from
the three representative dies shown in figure 3 assuming the die is completely filled. For
the 3-hole die experimental evidence indicates that the die is not completely filled during
extrusion. Motivated by this, we consider extrusion from an unfilled die in section 4.
Our results indicated that die effects have an important influence on the final geometry.
Methods for overcoming deformation due to surface tension and gravity are discussed in
section 5. We conclude in section 6 with a summary of key results and a discussion of
future research.



Extrusion of fluid cylinders of arbitrary shape with surface tension and gravity 5

�(�)

�

�
�

�(�,�) Γ(�,�)

gravity

� = 0

Figure 4: A typical cylinder with internal structure. A Cartesian co-ordinate system is
employed in which the z-axis is directed along the axis of the cylinder, while the x- and
y-axes are oriented in the transverse direction. The total length and cross sectional area
are denoted L(t) and S(z, t), respectively, while the total boundary length of each cross
section is denoted Γ (z, t). The cylinder is aligned such that gravity acts in the direction
of increasing z.

2. Mathematical model

2.1. Formulation

Consider a die containing an arbitrary number of pins through which is forced molten
glass with volumetric flux denoted Q(t) at time t. As illustrated in figure 4, we initially
consider a Cartesian co-ordinate system with the z-axis oriented parallel to the flow of
fluid out of the die, which is also the direction of gravity, so that the x- and y-axes are in
the plane of the die exit. The corresponding velocity vector is u = (u, v, w), the pressure
p and the axial length of the extruded material L(t). The area of the cross section at
z 6 L(t) is denoted S(z, t) and the total boundary length of each cross section, including
any internal boundaries, is denoted Γ (z, t). We denote the density by ρ, the viscosity by
µ(x, y, z, t) and gravitational acceleration by g.

The softened material is modelled as an incompressible Newtonian fluid, which is
described by the Navier–Stokes and continuity equations,

ρ

(

∂u

∂t
+ u ·∇u

)

= −∇p+∇ ·
[

µ
(

∇u+ (∇u)
T
)]

+ ρgk, (2.1a)

∇ · u = 0, (2.1b)

respectively, where k is the unit vector in the z-direction. We describe the external
boundary as the solution to G(0)(x, t) = 0 and the internal boundaries as the solutions
to G(n)(x, t) = 0 for n = 1, 2, . . . , N , where N is the number of internal channels. On all
inner boundaries and the outer boundary we apply the dynamic and kinematic boundary
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conditions

(−pI + µ[∇u+ (∇u)T ])∇G(n) = (−γκ)∇G(n), (2.2a)

∂G(n)

∂t
+ u ·∇G(n) = 0, (2.2b)

where I is the 3 × 3 identity tensor, γ is the coefficient of surface tension and κ the
curvature. The curvature is defined to be positive if the unit tangent to the boundary
rotates anticlockwise as the boundary is traversed with the fluid on the left-hand side.
The area S(0, t) and axial velocity u(0, t) at the die exit z = 0 are assumed known. We
must also specify the value of any additional axial force applied to the extruded glass;
however, during preform extrusion this will typically be zero.
We introduce the characteristic area S, which is the fluid area at the die exit, a

characteristic volumetric flux through the die exit Q and a characteristic length scale L,
the last of which will be defined below. The velocity scale U is taken to be a representative
axial velocity at the die exit related to the characteristic area and flux by Q = SU , while
the time scale is L/U = LS/Q. In a typical preform extrusion the temperature varies
with both position and time; however, as in previous work on fibre drawing (Stokes
et al. 2014; Buchak et al. 2015; Chen et al. 2015) and gravitational extension of a fluid
cylinder (Tronnolone et al. 2016), we assume that the temperature profile is known. The
viscosity depends only on temperature so is thus assumed known and scaled µ = µ0µ

∗

for some characteristic viscosity µ0. The slenderness ratio ǫ =
√
S/L is, neglecting an

initial start-up time, assumed small so that the extruded preform is slender.
We introduce the scaled variables

(x, y, z) = L(ǫx̂, ǫŷ, ẑ), t = L
U
t̂, (u, v, w) = U(ǫû, ǫv̂, ŵ), S = SŜ, Γ = ǫLΓ̂ , Q = QQ̂.

From this point onwards we drop carets from dimensionless variables but will retain
asterisks on scaled parameters for later convenience. The ratio of gravitational forces to
viscous forces is

g∗ =
ρgL2

µ0U
=

Re

Fr2
, (2.3a)

where Re = ρUL/µ0 is the Reynolds number and Fr = U/√gL is the Froude number.
We assume that g∗ is O(1) and so fix the axial length scale L by setting g∗ = 1. With
this choice the length scale, Reynolds number, dimensionless surface tension parameter
and time scale are, respectively,

L =

√

µ0Q
ρgS , Re =

√

ρQ3

µ0gS3
, γ∗ =

γ√
µ0ρgQ

,
L
U =

√

µ0S
ρgQ . (2.3b)

The parameter γ∗ is an inverse Bond number and is equivalent to the dimensionless
parameter found by (Wilson 1988, p. 564, eqn (17)), differing only by a factor of
3/

√
π. Typical values for the material properties and other parameters for MOF preform

extrusion are given in table 1, which yield a length scale L of between 1 cm to 10 cm, a
Reynolds number Re of O(10−11), a dimensionless surface tension γ∗ of O(10−1), and a
slenderness ratio ǫ of O(10−2).
For small times t the extruded cylinder is shorter than the length L and thus the

slenderness ratio ǫ is not a true measure of the geometry. As such, initially the extruded
cylinder cannot be considered slender. We here assume that the error introduced by
applying the slenderness approximation for early times is small. In practice, the lower
end of a MOF preform, which is extruded first, consists of threads of fluid that have
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Parameter Symbol Approx. value Units
Surface tension γ 0.2 to 0.3 Nm−1

Viscosity µ0 106.5 to 108.5 Pa s
Density ρ 2× 103 to 6× 103 kgm−3

Die area S 5× 10−5 to 8× 10−4 m2

Representative flux Q 10−11 to 5× 10−9 m3 s−1

Extrusion speed U 10−7 to 4× 10−6 ms−1

Table 1: Typical parameter values for preform extrusion.

not properly welded in the die and is discarded. A consequence of this is that the region
above this, which is retained, may be considered slender for all times.
Applying a slenderness approximation to the governing equations (2.1) and boundary

conditions (2.2), in a similar manner to that of Tronnolone et al. (2016) for a stretching
cylinder, results in a one-dimensional model for the axial flow and a two-dimensional
model for the transverse flow.

2.2. The axial problem

The fluid flow in the axial direction is described by the cross-sectional area S(z, t) and
axial velocity w(z, t), which are governed by the equations

St + (wS)z = 0, (2.4a)

−(3µ∗Swz)z = Sg∗ +
γ∗

2
Γz, (2.4b)

corresponding to conservation of mass and momentum, respectively, for vanishing
Reynolds number. The terms on the right-hand side of the momentum equation (2.4b)
represent the contributions of gravity and surface tension, the latter of which depends
upon the total boundary length Γ . The parameters g∗ and γ∗ are defined in (2.3).
Following Wilson (1988), we introduce an axial Lagrangian co-ordinate η that labels
each cross section with the time at which it leaves the die, illustrated in figure 5. The
cross section that leaves the die at time t = 0 has Lagrangian co-ordinate η = 0, and at
any subsequent time t > 0 the value of η increases from η = 0 at the lower end of the
preform to η = t at the die exit. Thus, η is defined as the solution to z(η, η) = 0 where
z = z(η, t). In order to relate η and z we must consider the flux of material through the
die. In the region between η and η + dη we have that

Qdη = −S dz,

so that in the limit as dη and dz go to zero we have

∂z

∂η
= −Q

S
. (2.5)

Integrating (2.5), with the condition that z(η, η) = 0, yields

z(η, t) =

∫ t

η

Q(t)

S(η, t)
dη′. (2.6)

We introduce the total axial tension σ∗ defined by

6σ∗(η, t) = V (η) + c(t),
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Figure 5: Illustration of the Cartesian co-ordinate z (left-hand side) and Lagrangian co-
ordinate η (right-hand side) for an extruded fluid cylinder. The co-ordinate η labels each
cross section with the time at which it leaves the die, so that η is defined as the solution
to z(η, η) = 0 where z = z(η, t). Fluid is extruded from the die at the volumetric flow
rate Q(t) and has cross-sectional area S(z, t). Enforcing conservation of mass within the
shaded region shows that Qdη = −S dz.

where

V (η) =

∫ η

0

Q(t′) dt′

is the dimensionless weight of material below cross section η and c(t) represents any
additional axial tension set by the boundary conditions. Transforming to the Lagrangian
co-ordinate η and integrating over the length of the cylinder, the axial system (2.4)
reduces to

3µ∗
DS

Dt
= −6σ∗ +

γ∗

2
Γ, (2.7)

where
D

Dt
=

∂

∂t
+ w

∂

∂z
is the material derivative. The axial equation (2.7) involves both the area S and the
total boundary length Γ , which, for a general geometry, cannot be related directly. This
system is closed by considering the transverse problem.

2.3. The transverse problem and reduced time

Following Cummings & Howell (1999), we introduce scaled transverse co-ordinates and
variables, denoted by tildes, given by

(x̃, ỹ) =
1

χ
(x, y), p̃ =

χ

γ∗
(p− pZST), (ũ, ṽ) =

µ∗

γ∗
[(u, v)− (uZST, vZST)] ,

where (pZST, uZST, vZST) is the zero-surface-tension eigensolution (Stokes et al. 2014) and
χ =

√
S. We also introduce the reduced time

τ(η, t) =

∫ t

η

γ∗

µ∗χ
dt′. (2.8)
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This definition is similar in form to that of Cummings & Howell (1999) but uses different
limits of integration so that every cross section leaves the die with τ = 0 (that is, with no
deformation). Since τ = τ(η, t) for t > η, at time t each cross section is associated with a
different reduced time; however, as each cross section has the same initial geometry, being
the negative of the die, every cross section has the same associated transverse problem.
Finally, introducing G̃(n)(x̃, ỹ, z̃, t) = G(n)(x, y, z, t) for n = 0, 1, 2, . . . , N , the transverse
problem reduces to

ũx̃ + ṽỹ = 0, (2.9a)

ũx̃x̃ + ũỹỹ = p̃x̃, (2.9b)

ṽx̃x̃ + ṽỹỹ = p̃ỹ, (2.9c)

−pn1 + 2ũx̃n1 + (ũỹ + ṽx̃)n3 = −κ̃n1 on G̃(n) = 0, (2.9d)

−pn2 + (ũỹ + ṽx̃)n1 + 2ṽỹn2 = −κ̃n2 on G̃(n) = 0, (2.9e)

G̃(n)
τ + ũG̃

(n)
x̃ + ṽG̃

(n)
ỹ = 0 on G̃(n) = 0. (2.9f )

This is a classical two-dimensional moving-boundary Stokes flow problem with unit
surface tension and is independent of the axial flow. Fluid flows described by these
equations have been the subject of considerable study. It was shown by Goursat (1898)
that important physical quantities of these flows, including velocities and pressure,
could be represented by two complex functions, referred to as Goursat functions. This
representation has facilitated the exact solution of (2.9) for a variety of simply-connected
geometries (Hopper 1990; Richardson 1992), annular blobs (Crowdy & Tanveer 1998) and
for two bubbles in an infinite fluid region (Crowdy et al. 2005). Exact solutions have also
been found for multiply-connected domains formed from touching disks (Crowdy 2002).

If there is no known exact solution for a given geometry then (2.9) must be solved
using a numerical method, such as the spectral methods described by Tronnolone (2016)
and Buchak et al. (2015), which are designed for moving-boundary Stokes flow problems
such as (2.9). In these methods a conformal map constructed from complex series is used
to transform the physical geometry into a canonical region in the complex plane on which
the problem is readily solved. The Goursat functions are approximated using complex
series for which the coefficients at any time step are found using the boundary conditions
(2.9d) and (2.9e), while the map coefficients are updated using (2.9f) and a Runge–Kutta
integration scheme. Solutions for geometries with a circular outer boundary and elliptical
inner boundaries may by found using the elliptical pore model of Buchak et al. (2015).
Given enough time, surface tension will close all holes and leave the outer boundary
circular. The numerical methods used here cannot compute the solution beyond the
closure of a hole; however, as hole closure is undesirable during preform fabrication we
exclude this possibility.

Solving the transverse problem (2.9) yields the scaled boundary length Γ̃ (τ), which is
related to the quantity Γ in (2.7) by

Γ (η, τ) = χ(η, τ)Γ̃ (τ).

The quantity Γ̃ is a function of τ only because each cross section has the same asso-
ciated transverse problem. Transforming the axial equation (2.7) to reduced time and
substituting for Γ in terms of Γ̃ yields

Dχ

Dτ
− 1

12
χΓ̃ = −σ∗

γ∗
,
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which is simply a linear differential equation for χ and has solution

χ(η, τ) =
1

H(τ)

(

1− 1

γ∗

∫ τ

0

σ∗H(τ) dτ ′
)

, (2.10)

where

H(τ) = exp

(

− 1

12

∫ τ

0

Γ̃ (τ ′) dτ ′
)

. (2.11)

The function H(τ) is an integrating factor identical to the function employed by Stokes
et al. (2014) and Buchak et al. (2015) in problems without gravity. A similar function
was used by Tronnolone et al. (2016) to model a fluid cylinder stretching under gravity,
in which case the boundary length Γ̃ , and hence so too the integrating factor, depended
upon both reduced time and an axial Lagrangian co-ordinate. Typically, the integrals in
(2.10) and (2.11) must be computed numerically.
Finally, for any cross section η we note that at the time of extrusion t = η we must

have τ = 0. Thus, manipulating (2.8) results in the relationship
∫ τ

0

χdτ ′ =

∫ t

η

γ∗

µ∗
dt′ =

γ∗(t− η)

m(η, t)
(2.12)

where

m(η, t) =
t− η

∫ t

η
1

µ∗(η,t′) dt
′

(2.13)

is the harmonic mean of µ∗(η, t) for cross section η between times η and t > η. Given
values for η and t we can compute the associated reduced time τ by solving (2.12)
numerically. This provides a complete general solution to the extrusion problem.
Up to this point we have allowed the additional tension c(t), which contributes to the

axial tension σ∗, to be a function of time. In order to evaluate the integrals in (2.10) and
(2.11) we must know c(t) as a function of reduced time τ , which greatly complicates the
solution process. In all of the examples from this point onwards we assume that c(t) ≡ 0,
as is typical in preform extrusion.

3. Extrusion assuming a filled die

3.1. Geometry and parameters

Using the model developed in section 2 we now investigate the extrusion of the three
typical MOF preform designs, shown in figure 3, which we refer to as the 3-hole, 7-hole
and 7-ring preforms, the last of which contains 162 interior holes. The dimensions of each
preform are given in table 2. In these examples we assume that the die is completely filled
in the vicinity of the exit. The primary goals of this section are to determine (1) whether
surface tension causes significant deformation during preform extrusion and (2) whether
this matches the deformation observed in experiments. The amount of deformation due
to surface tension in a given cross section is described by the magnitude of the associated
reduced time τ , with larger values of τ indicating greater deformation. While τ necessarily
increases with time t, if this increase is small then the deformations due to surface tension
will be minimal in practice. Thus, to answer the first question we must determine whether
τ becomes large enough for surface-tension-driven deformations of the cross sections to
be observed. For the purposes of this analysis we consider noticeable deformation to have
occurred for reduced time τ > 10−2. The second question is answered by comparing the
model geometries to the experimental observations shown in figure 3.
Extrusion conditions for the three experiments shown in figures 3d–3f are given
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Length 3-hole 7-hole 7-ring
Outer boundary radius (mm) 7 8.9 15
Outer hole radius (mm) 1.25 1.55 0.5
Central hole radius (mm) 0.75 1.55 –
Outer hole spacing (mm) 2.4 5 2

Table 2: Dimensions of the 3-hole, 7-hole and 7-ring preforms. For the 3-hole and 7-hole
designs the outer hole spacing is the distance between the centres of the outer holes and
the centre of the geometry. For the 7-ring design this quantity is the spacing between
adjacent holes.

by Manning (2011), Ebendorff-Heidepriem & Monro (2007) and Ebendorff-Heidepriem
(2011), respectively, which we summarise here briefly. The 3- and 7-hole preforms were
fabricated using lead flint glass (F2), while the 7-ring preform was made from lead
silicate glass (SF57), both produced by the Schott Glass Company and commonly used
in optical technology (Ebendorff-Heidepriem & Monro 2007). Values for the coefficient
of surface tension and the density for both glasses, as given by Boyd et al. (2012) and
the Schott Glass Company (2015), respectively, are listed in table 3. In a typical MOF
preform extrusion the flux is held constant so we set Q(t) ≡ 1. We also assume that
the temperature below the die is the same as the temperature within the die so that
the viscosity is constant and, hence, take µ∗ ≡ m ≡ 1. Values for µ0 correspond to the
extrusion temperatures; however, the results are sensitive to the precise values chosen.
For the 3- and 7-hole preforms the billet diameter is 30mm, which means that the billet
has cross-sectional area Sb = 2.25π× 10−4m2. For the 7-ring preform the billet has
diameter 50mm and hence cross-sectional area Sb = 6.25π× 10−4m2. The billet length
for the 3-hole and 7-ring preforms is Lb = 30mm, while for the 7-hole preform the length
is Lb = 68mm. The velocity at the die is constant and is set by the ram speed, here
taken to be Ub = 0.1mmmin−1 ≈ 1.66× 10−2ms−1. By conservation of mass, the flux
scale is

Q = SU = SbUb.

Rearranging this expression shows that the corresponding extrusion velocity is

U =
SbUb

S .

We assume that extrusion continues until all of the material has been used up, so that
the dimensionless extrusion time is

tf =
Lb

Ub

.

In dimensional units the 3-hole and 7-ring extrusions take 300 minutes, while the 7-hole
extrusion takes 680 minutes. In practice some of the glass remains inside the die and
cannot be forced out by the ram but this does not significantly change the model results.
The values of the scales and dimensionless parameters for each example are given in
table 4.

3.2. 3-hole preform

The transverse problem associated with the 3-hole geometry is readily solved using
the spectral numerical method described by Tronnolone (2016). The predicted preform
geometry is shown in figure 6 along with cross sections from the top, middle and bottom
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Parameter Symbol F2 SF57 Units
Surface tension γ 0.23 0.26 Nm−1

Density ρ 3.6× 103 5.51 × 103 kgm−3

Table 3: Physical properties for F2 and SF57 glasses relevant to the extrusion examples.
The values for the coefficients of surface tension were found by Boyd et al. (2012), while
the densities were given by the Schott Glass Company (2015).

Parameter Symbol 3-hole 7-hole 7-ring
Area (m) S 1.4235 × 10−4 1.9601 × 10−4 5.7962 × 10−4

Length (m) L 5.4324 × 10−2 8.7204 × 10−2 3.6269 × 10−2

Flux (m3 s−1) Q 1.1781 × 10−9 1.1781 × 10−9 3.2725 × 10−9

Billet area (m2) Sb 7.0686 × 10−4 7.0686 × 10−4 1.9635 × 10−3

Ram speed (mmmin−1) Ub 0.1 0.1 0.1
Billet length (m) Lb 3× 10−2 6.8× 10−2 3× 10−2

Viscosity (Pa s) µ0 107.1 107.65 107.1

Reynolds number Re 1.2856 × 10−10 4.2241 × 10−11 8.9622 × 10−11

Slenderness ratio ǫ 2.1963 × 10−1 1.6055 × 10−1 6.6381 × 10−1

Surface tension γ∗ 1.0051 × 10−2 5.3361 × 10−3 5.5106 × 10−3

Extrusion time tf 2.7421 2.8120 2.8020

Table 4: Physical and dimensionless parameters corresponding to the three extrusion
examples. Dimensionless parameters are calculated using (2.3) and the values from
table 3.

of the preform. The final physical length of the preform is 27.5 cm, which is comparable
to the lengths observed in practice. Figure 7 shows the area S and reduced time τ
plotted against η at the end of the extrusion. The area is larger than unity at η = 0
due to the compressive effect of surface tension in the axial direction and the absence of
gravitational stretching. Over half of the preform has a reduced time greater than 10−2,
and the plotted cross sections show that these values of τ are sufficiently large for the
interior holes to display surface-tension-driven deformation. The maximum reduced time
is τ = 2.7397× 10−2, which occurs at the free end η = 0 of the preform. The value of τ
decreases with η to zero at the die where there is no deformation.
The three inner boundaries show similar behaviour to that seen in the experimental

result of Manning (2011) from figure 3f: the central hole elongates along the axis through
the three holes, while the two outer holes show higher curvature on the ends nearer to the
inner hole than on the ends nearer to the outer boundary. In contrast, the outer boundary
shows significantly different behaviour. In the experiment this boundary developed cusp-
like regions at both sides of the preform nearest to the internal boundaries, which are
not captured by the model.
In order to show that surface tension cannot cause cusp-like deformations in the outer

boundary we consider an extreme geometry featuring one interior hole with radius half
that of the outer boundary and centred 45% of this distance above the centre of the
outer boundary. This geometry was first studied in numerical simulations by van de
Vorst (1993). The initial condition is shown in figure 8 along with the solution computed
by the spectral method at τ = 0.08. While the outer boundary shows some deformation
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Figure 6: The extruded 3-hole preform plotted in the scaled Eulerian co-ordinates (x, y, z).
The shade represents the value of τ from zero at the die to almost 0.03 at the free end.
Highlighted in black are three cross sections, at the top, middle and bottom of the
preform, that are plotted left along with the initial condition (grey). The physical length
of the preform is 27.5 cm.

this is not as extreme as the deformation observed in experiments. Since a large interior
hole, which should have a strong influence on the outer boundary, does not produce cusp-
like deformations in the outer boundary, and moving the hole away from the external
boundary reduces its influence, we conclude that these deformations cannot arise due to
surface tension alone.

3.3. 7-hole preform

The transverse problem associated with the 7-hole geometry is again solved using
the spectral numerical method of Tronnolone (2016). The extruded preform geometry
is plotted in figure 9, while the area and reduced time at the end of the extrusion are
plotted against η in figure 10. The physical length of the preform is 48 cm, which is close
to lengths obtained experimentally. This preform is larger than the 3-hole preform as the
latter used a billet of smaller mass. At the middle of the preform the area is less than
half of the area at the die, while the area at the free end η = 0 is slightly greater than
the initial value. The largest reduced time τ is 1.4925× 10−2, which occurs at η = 0,
and approximately half of the preform has a reduced time τ > 10−2, which is sufficiently
large for noticeable surface-tension-driven deformation to occur. The shape of the τ
versus η curve (figure 10) is similar to that obtained for the 3-hole preform. Despite



14 H. Tronnolone, Y. M. Stokes and H. Ebendorff-Heidepriem

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.4

0.5

0.6

0.7

0.8

0.9

1

η

S

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

1

2

τ
×

1
0
2

Figure 7: The area S (solid) and reduced time τ (dashed) plotted against position η for
the extruded 3-hole preform. The area is larger than unity at η = 0 (the free end of the
preform), while the value of τ decreases with η. Over half of the preform has a reduced
time greater than 10−2, corresponding to noticeable surface-tension-driven deformation.

Figure 8: The initial condition (grey) and solution at τ = 0.08 (black) for the extreme
geometry with a single large hole close to the external boundary. While the outer
boundary shows some deformation this is less pronounced than that observed in the
experiments by Manning (2011).

the preform showing noticeable deformation due to surface tension, the shapes of the
interior holes are much more circular than those observed in experiments by Ebendorff-
Heidepriem (2011), shown in figure 3e. In particular, the six outer holes do not match the
asymmetric deformation of the corresponding holes observed in experiments. Even if the
transverse problem is solved up to larger values of reduced time the computed solution
shows only a weak qualitative match to the experimental result. We thus conclude that
the deformation observed experimentally is not simply due to surface tension. We will
return to this later in subsection 3.5.

3.4. 7-ring preform

Due to the large number of elliptical interior boundaries the 7-ring transverse problem
is solved using the elliptical pore model of Buchak et al. (2015). The extruded 7-ring
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Figure 9: The extruded 7-hole preform plotted in the scaled Eulerian co-ordinates (x, y, z).
The shade represents the value of τ from zero at the die exit to 1.4925× 10−2 at the free
end. Highlighted in black are three cross sections, at the top, middle and bottom of the
preform, that are plotted left along with the initial condition (grey). The physical length
of the preform is 48 cm.

preform geometry is shown in figure 11 while the area and reduced time at the end
of the extrusion are plotted against η in figure 12. This preform is only 19.1 cm long,
which is smaller than the previous two examples due to a larger cross-sectional area at
the die exit. The maximum reduced time is τ = 1.5228× 10−2, which occurs at η = 0,
which is large enough for surface-tension-driven deformation to become noticeable, and
approximately half of the preform has a reduced time greater than 10−2, indicating
significant deformation in this region. As τ increases all of the boundaries reduce in size
and increase in eccentricity; however, all the holes remain more circular than observed
in experiments.

3.5. Changing the inner hole spacing

While the 3-hole example presented above had some features that provided a good
qualitative match to experimental results, the 7-hole and 7-ring examples did not cap-
ture the characteristic patterns from the experiments; however, altering the inner-hole
spacing greatly affects these comparisons. The 3-hole geometry from subsection 3.2 had
a dimensionless inner hole spacing of 0.33526. If this value is increased to 0.4 there is
less interaction between the interior holes. This may be shown by computing the solution
to the transverse problem up to time τ = 0.04, as shown in figure 13a. While surface
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Figure 10: The area S (solid) and reduced time τ (dashed) plotted against position η for
the extruded 7-hole preform. The area at the middle of the preform is less than half of
the area at the die, while the area has increased near the free end, cross section η = 0.
Approximately half of the preform has a reduced time greater than 10−2, corresponding
to significant surface-tension-driven deformation in this region.

tension still causes the interior holes to close these all remain approximately circular and
no longer display the characteristic elongation shown in figure 3d. The interior holes do
have a larger effect on the outer boundary, which shows larger deformation near the inner
holes, but this is still not cusp-like.

Decreasing the inner hole spacing has the opposite effect. In the 7-hole example from
subsection 3.3 the dimensionless inner hole spacing was 0.35713. Reducing this distance
to 0.25 causes a stronger interaction between the interior holes. Computing the solution
to the transverse problem up to τ = 0.04, as shown in figure 13b, results in a shape
change in the interior holes that provides a better qualitative match to the experiment
(figure 3e), ignoring interior hole location. Similar behaviour is observed in the 7-ring
example shown in figure 13c, for which the initial dimensionless inner hole spacing was
reduced from 8.3072× 10−2 to 6× 10−2 and the solution computed up to τ = 0.02. This
solution provides a strong qualitative match to the experimental result from figure 3f.
In particular, the orientation of the holes in the outermost and innermost rings match
the experiment very well. This agreement was also observed in numerical simulations
performed by Stokes et al. (2012).

Based on these examples we conclude that surface tension has a significant effect on the
final geometry consistent with experimental results; however, it cannot completely explain
the deformations observed in experiments, which we have shown typically correspond
to model results for more closely spaced holes. It would appear that some important
effect is neglected in our model and extrudate swell is a likely candidate. This may
cause an initial increase in hole size leading to a reduction in hole spacing and a greater
interaction between holes resulting in the type of deformation seen in practice. The results
of Trabelssi et al. (2015) also support the conclusion that extrudate swell is important in
the absence of surface tension, albeit using exaggerated friction coefficients. We do not,
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Figure 11: The extruded 7-ring preform plotted in the scaled Eulerian co-ordinates
(x, y, z). The shade represents the value of τ from zero at the die exit to 1.5228× 10−2 at
the free end. Highlighted in black are three cross sections, at the top, middle and bottom
of the preform, that are plotted left along with the initial condition (grey). The physical
length of the preform is 19.1 cm.

however, believe that this explains the cause of the cusped boundaries seen in the 3-hole
extrusion, which we address in the next section.

4. Extrusion assuming an unfilled die

Shown in figure 14 is a section from an extruded 3-hole preform following solidification
of the glass and removal from the die. The top of this piece was at the die exit and the
lower end a small distance below it. The three interior boundaries are close to circular,
being still in contact with or just below the pins, while the outer boundary already
features cusp-like deformations. We conclude that the external boundary shape developed
during the sintering of the glass strands coming through the feed holes into the welding
chamber within the die (see figure 2) resulting in an unfilled die. Similar behaviour is
not observed during extrusion of 7-hole and 7-ring designs. This may be due to the
higher degree of rotational symmetry possessed by these designs compared to the 3-hole
design. In addition, the 3-hole die contains large spaces with no pins on either side of the
geometry, not found in the other designs, that may result in an unfilled die.
Motivated by this observation, we here investigate whether our extrusion model pro-

duces deformation similar to those observed in experiments when given an initial geom-
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Figure 12: The area S (solid) and reduced time τ (dashed) plotted against position η
for the extruded 7-ring preform. Approximately half of the preform has a reduced time
greater than 10−2, corresponding to significant surface-tension-driven deformation in this
region.

(a) 3-hole (b) 7-hole (c) 7-ring

Figure 13: Three examples demonstrating the change in behaviour when the inner hole
spacing is changed. In all cases the final solution is shown in black and the initial condition
is shown in grey. Shown in (a) is a 3-hole geometry at τ = 0.04 with an inner hole
spacing of 0.4, which is larger than the value of 0.33526 used in subsection 3.2. With this
separation each interior boundary has a smaller effect on the others, while the interior
holes have a larger effect on the outer boundary. The computed geometry does not provide
a good qualitative match to the experimental result from figure 3d. Shown in (b) is a
7-hole geometry at τ = 0.04 with a dimensionless interior hole spacing of 0.25, which
is smaller than the value of 0.35713 used in subsection 3.3. The decrease in separation
causes greater interaction between the interior holes, which produces a better qualitative
match between the shape of the interior holes in the model and the experimental result
from figure 3e. Shown in (c) is a 7-ring geometry at τ = 0.02 with the inner hole spacing
reduced from 8.3072× 10−2 to 6× 10−2. Again, this decrease provides a better match to
the experimental result from figure 3f.
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Figure 14: A section from an extruded 3-hole preform that was at the die exit when the
material solidified. Shown is (a) a photograph of the section and (b) a traced version of
this photograph. The top of this piece was just at the exit and the lower end outside. The
interior boundaries are still circular while the outer boundary features cusp-like regions,
which we conclude have formed inside the die.

Parameter Symbol Value
Area (m) S 1.0459 × 10−4

Length (m) L 6.3377 × 10−2

Reynolds number Re 2.0414 × 10−10

Slenderness ratio ǫ 1.6137 × 10−1

Scaled extrusion time tf 3.1991

Table 5: Scales and dimensionless parameters for the cusped preform extrusion example,
where these differ from those of subsection 3.2 due to the change in the cross-sectional
area S at the die exit.

etry like that in figure 14. In particular, we seek to determine whether: (1) the outer
boundary retains the cusp-like regions or if these become smooth due to surface tension;
and (2) whether the internal holes still develop the correct pattern with a non-circular
outer boundary or if the irregular outer boundary results in a modified hole geometry.
Using the method described by Tronnolone (2016), we are able to construct conformal

maps that describe 3-hole preforms with circular inner boundaries and cusp-like regions
on the outer boundary suitable for use in the spectral numerical method. The computed
solution to the transverse problem is then used to find the preform geometry. The
extrusion parameters are given in table 5, where we have assumed the same material
properties (for F2 glass), billet size, ram speed and, hence, flux at the die exit, as were
used for the filled-die 3-hole extrusion example in section 3. This ensures that γ∗ is the
same in both simulations.
The final preform geometry is shown in figure 15. We see that the cusp-like regions

present at the die persist along the length of the preform, meaning that surface tension is
not strong enough to smooth these before extrusion finishes. The final area and reduced
time are plotted against the Lagrangian co-ordinate η in figure 16. These show similar
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behaviour to the filled-die 3-hole extrusion solution shown in figure 7. The preform has
a physical length of 64 cm, which is longer than the original example due to the smaller
fluid area at the die exit. Figure 17 shows the geometry at the lower end of the preform
(black) along with the corresponding cross section for the filled-die preform (grey). Cleary
the initially non-circular outer boundary gives a result consistent with experimental
observations. We note that in both cases the interior holes are similar in both shape and
size, although in the case of the cusped external boundary the holes nearer the cusps
are more elliptical. Thus, for this type of geometry, the outer boundary has only a small
influence over the evolution of interior boundaries. Importantly, this means that, even
with a wrong assumption of a completely filled die, the interior boundaries still display
the characteristic deformation observed in experiments, which in turn suggests that the
deformation of the inner boundaries is due, at least in part, to surface tension acting
on the fluid once outside the die. On the other hand, the cusp-like regions in the outer
boundary are due to the fluid flow inside the die. We conclude that, given the correct
initial condition at the die exit, the extrusion model yields a solution that provides a
qualitative match to the behaviour observed in experiments. The inclusion of extrudate
swell may increase the level of deformation and provide better agreement.

5. Overcoming deformation

5.1. The inverse problem

In the examples considered in section 3 it was shown that surface tension causes
significant deformation during extrusion. Following the convention used in practice, in
each of these examples the die geometry was taken to be the negative of the desired
preform geometry. It is possible to instead run the transverse problem backwards in
reduced time using the spectral code, starting from the desired geometry, to determine
an initial condition that would compensate for the effect of surface tension. The efficacy
of this strategy is, however, limited by the nature of surface-tension-driven deformation.
As the above examples demonstrate, once the extrusion ends each cross section will,
in general, have reached a different value of τ and thus no single die geometry will
be appropriate for every cross section. Since the die geometry is fixed, in practice this
means that solving the inverse transverse problem can only ensure that the final preform
geometry of any given cross section differs from the desired shape by some tolerance.
Nonetheless, this strategy still has the potential to reduce the overall level of deformation.
An example of this approach is shown in figure 18a for the 3-hole geometry from

figure 3a, in which the desired geometry is evolved backwards in reduced time to τ =
−0.03. Thus, a fluid region with this cross section would be expected to deform to the
desired 3-hole geometry in 0.03 units of reduced time. It is a simple exercise to use
the spectral method to evolve the geometry from figure 18a forwards for 0.03 units of
reduced time to verify that this recovers the initial 3-hole geometry. The time over which
the spectral code can be run backwards is, however, limited: as the solution is computed
backwards in reduced time the inner holes increase in size until eventually they will, to
numerical precision, intersect. This can be seen in the example in figure 18a, which cannot
be run backwards much further than τ = −0.03. In addition, circular die pins are typically
easier to fabricate and some more-complicated die geometries, such as the inverse from
figure 18a, may be difficult to produce; however, improvements in die fabrication, such
as the use of three-dimensional printing, may in future allow the fabrication of complex
dies (Ebendorff-Heidepriem et al. 2014). We also note that, as discussed by Buchak
et al. (2015), the inverse problem is ill-posed. In all cases considered in this study the
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Figure 15: The geometry of the 3-hole preform from an unfilled die plotted in the scaled
Eulerian co-ordinates (x, y, z). The shade represents the value of τ from zero at the
die exit to 3.1908× 10−2 at the free end. Highlighted in black are three cross sections,
at the top, middle and bottom of the preform, that are plotted left along with the
initial condition (grey). The cusp-like regions present at the die exit persist along the
length of the preform, while the inner holes show deformation similar to that observed in
experiments. The preform has a physical length of 64 cm. The deformation of the inner
boundaries is similar to the deformation observed with a circular outer boundary shown
in figure 6.

inverse problem was solved by choosing an appropriate number of terms to use in the
series representations of the solutions, which acts to regularise the problem. The same
approach is used in the elliptical pore model of Buchak et al. (2015), in which the number
of terms used to represent each boundary is restricted so as to keep all inner boundaries
elliptical and the outer boundary circular.
If the temperature of the extruded material can be accurately controlled it may be

possible to cool the extruded preform at a precise rate so that each cross section solidifies
after a predetermined reduced time, thus allowing the use of the strategy described above
to obtain a die geometry required to yield a given preform. A thorough examination of
cooling requires a coupled fluid and temperature model, the development of which will
be considered in future work. The variation in τ along the length of the preform may
also be controlled by adjusting the extrusion parameters and will be discussed further
below.
For some geometries it is possible to avoid the complications arising from the com-
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Figure 16: The area S (solid) and reduced time τ (dashed) for the 3-hole preform with an
initial non-circular external boundary. Note that η = 0 is the lower end of the preform.
The behaviour is similar to that observed in the original 3-hole extrusion example shown
in figure 7.

Figure 17: A comparison between the geometry at the end of the unfilled-die 3-hole
preform (black) and the filled-die 3-hole preform from section 3 (grey). The interior holes
in each solution are similar in both size and shape.

putation of an inverse solution by exploiting the observed deformation and the precise
preform requirements. It was noted by Manning (2011) that the shapes of the two lateral
interior channels in the 3-hole geometry are not important and only the central hole
must stay circular so as to fit a smaller preform, known as a cane, with a circular outer
boundary. As such, we need only focus on producing a preform with a circular central
hole, while the outer holes need only remain open. From the experimental result shown
in figure 6 we observe that the central hole becomes approximately elliptical due to the
influence of the two outer holes and thus it is possible that this deformation could be
overcome by using a die with an elliptical central pin having the opposite eccentricity.
Compared to computing a full inverse solution, this approach has the advantage that
elliptical pins are easier to fabricate than the irregular shapes in figure 18a, and also
avoids the need to compute the transverse problem backwards in time, which, as noted
above, is an ill-posed problem. Solving the transverse problem forwards in time with
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(a) Inverse solution (b) Elliptical hole
(c) Central hole magnifica-
tion

Figure 18: Inverse solutions for the 3-hole geometry. Shown in (a) is the geometry of
the 3-hole die (black) obtained by starting with the desired preform geometry (grey,
and as shown in figure 3a) and running the transverse problem backwards in time to
τ = −0.03. Evolving this die geometry forwards in time will recover the desired preform
geometry. Shown in (b) is the 3-hole geometry at τ = 0.06 (black) arising from the
initial geometry with an elliptical central hole with aspect ratio 2.0254 (grey), while (c)
shows a magnification of the central hole along with a circle of radius 3.1051× 10−2 (grey
dashed), which is the mean of the major and minor radii of the computed central hole.
As seen the central hole has become approximately circular.

a geometry featuring elliptical inner boundaries is readily achieved using the spectral
numerical method described by Tronnolone (2016).
At reduced time τ = 0.06 the central hole may be approximated by an ellipse with the

aspect ratio 2.0254.We thus take an initial condition in which the central circular hole has
been replaced by an ellipse with the same aspect ratio but with the major and minor radii
swapped. This geometry is then evolved forwards in reduced time until τ = 0.06. The
initial and final geometries are shown in figure 18b (grey and black, respectively). The
major and minor radii of the central hole at τ = 0.06 are approximately 3.3447× 10−2

and 2.8656× 10−2, respectively, which correspond to the aspect ratio 1.1672. The mean
of the major and minor radii is 3.1051× 10−2, and for comparison a circle with this
radius is superimposed on the actual boundary in figure 18c (grey dashed). We see that
from the chosen initial configuration a geometry is obtained with a central hole that
is approximately circular. As before, since each cross section will ultimately arrive at a
different reduced time, no single inverse will be perfectly suitable for every cross section
and in practice we must select a suitable initial condition that gives the best fit along
the length of the preform.
Although we have in this section only considered the 3-hole design, other extruded

preforms also develop approximately elliptical interior boundaries, such as the 7-hole
geometry from figure 3f, and would thus also be amenable to this technique.

5.2. Minimising deformation

We have seen that, under typical conditions, surface tension causes significant defor-
mation to the geometry of an extruded preform. We here investigate the relationship
between the dimensionless surface tension γ∗ and the amount of surface-tension-driven
deformation in an extruded fluid cylinder. To facilitate this analysis we introduce mea-
sures of the level of both axial and transverse deformation.
The state of any cross section η may be described by the area S and reduced time τ .
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As a measure of axial deformation at time t we choose

Sd(γ
∗, t) = max

η
|S − 1|,

which measures the maximum deviation of the area from the initial area of 1. Similarly,
as a larger τ corresponds to a greater surface-tension-driven change in geometry, we
measure the transverse deformation by

τd(γ
∗, t) = max

η
|τ |.

Both Sd and τd are non-decreasing with time t. While it would be possible to define
average or integrated measures of the deformation, we choose the above forms as they
provide an upper bound on the deformation, so are easily related to specified manufac-
turing tolerances.
By way of example we consider extrusion through an annular die. Defining α0 to be the

initial difference between the outer and inner radii in the associated transverse problem,
the cross-sectional area is given by

S(η, τ) =
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while the relationship between t and τ is
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where m is as defined in (2.13). These equations are equivalent to those found by
Tronnolone et al. (2016) for a tube with unit initial area stretching under gravity. The
only change is replacing t by t − η; that is, the time over which cross section η, which
leaves the die at t = η, evolves. The solution process is identical to that described by
Tronnolone et al. (2016).
We consider extrusion through annular dies with aspect ratios φ0 = 0.3, 0.5 and 0.7.

For each die geometry we run the model until time t = 1 for a range of surface tensions
γ∗ between 0 and 0.1. The deformation measures Sd(γ

∗, 1) and τd(γ
∗, 1) are plotted

against γ∗ in figure 19. The transverse deformation τd is virtually identical for the three
aspect ratios φ0 and increases approximately linearly with γ∗. That τd increases with γ∗

is evident from the relationship (2.8) between t and τ , which shows that for a fixed time
t a larger γ∗ results in larger values of τ and hence a larger τd. The near-linearity of this
increase suggests that the quantity

max
η

∣

∣

∣

∣

∫ 1

η

1

µχ
dt′

∣

∣

∣

∣

.

is approximately constant as γ∗ varies. While not apparent from figure 19, the value
of τd decreases with φ0 for a given γ∗, but the three solutions differ by no more than
1.3× 10−3. The axial deformation Sd initially decreases with γ∗, reaches a minimum at
some value γ∗

m(φ0), which is different for each annulus, and then increases. The value of
γ∗

m(φ0) decreases with φ0. The behaviour of Sd is explained by considering the balance
between axial stretching and surface tension in the governing differential equation (2.7).
In the region 0 6 γ∗ < γ∗

m(φ0)) the largest change in the area S is due to gravitational
stretching; that is, Sd corresponds to a cross section η at which S(η, 1) < 1. For γ∗ >
γ∗

m(φ0), the largest area change occurs near the free end η = 0 of the extruded cylinder
where surface tension causes the area to increase, where it corresponds to a cross section



Extrusion of fluid cylinders of arbitrary shape with surface tension and gravity 25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

γ∗

S
d
,τ

d

Figure 19: The deformation measures Sd (solid black) and τd (black dashed) plotted
against the dimensionless surface tension γ∗ for annular cylinders with initial aspect
ratios φ0 = 0.3, 0.5 and 0.7. The arrow shows the direction of increasing φ0 for the Sd

curves. At each value of φ0 the axial deformation Sd first decreases with γ∗ then increases.
The minimum value of Sd occurs at γ∗

m(φ0), which depends on the initial aspect ratio φ0.
The transverse deformation τd is almost identical for the three values of φ0 and increases
with γ∗.

η at which S(η, 1) > 1. The point γ∗

m(φ0) corresponds to a value of γ∗ at which the largest
area change due to stretching equals the largest area change due to surface tension. The
value of γ∗

m(φ0) increases with φ0 because larger φ0 results in larger boundary lengths
and hence a stronger contribution from the surface tension terms in (2.7).

These results have important implications for MOF preform extrusion. Typically, the
area of each cross section is not important as this can be adjusted automatically by
the draw ratio used when the preform is drawn into a fibre. In contrast, the shape
of each cross section must have a precise pattern and any deformation of the shape
cannot readily be corrected during drawing. Indeed, studies have shown that during
drawing the cross-sectional shape again evolves as a two-dimensional Stokes flow with
surface tension and thus deformations in the preform will become worse during drawing
(Stokes et al. 2014). While surface-tension-driven deformation arising during drawing
can be controlled by pressurising the channels, either by sealing the air channels (self-
pressurisation) or applying a pressure, in practice this is difficult to achieve and control
(Ebendorff-Heidepriem et al. 2008; Chen et al. 2016). It is thus important to minimise
τd, while the value of Sd is less important. This implies that the extrusion parameters
should be chosen so as to minimise γ∗. Given a particular material, this may be achieved
by increasing either Q or µ0. That is, both a faster extrusion speed and a larger viscosity
result in less surface-tension-driven deformation in the transverse geometry. In practice,
however, these two parameters are generally not independent: increasing Q requires a
greater ram force, which may ultimately require a reduction in µ0. The optimal conditions
thus depend on the physical limitations of the extrusion device used. Reducing the effect
of surface tension will also reduce the level of fire polishing and will thus reduce the surface
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quality of the preform. Further investigation of extrudate swell is required in order to
determine whether adjusting Q or µ0 has an impact on this source of deformation.

6. Conclusions

We have developed a model for the extrusion of a viscous fluid from a die of arbitrary
geometry. It has been shown that, with the use of a slenderness approximation and a
transformation to reduced time τ , the transverse flow decouples from the axial flow. The
resulting transverse problem is simply a classical two-dimensional Stokes flow moving-
boundary problem with unit surface tension, while an exact solution to the resulting axial
problem may be written down in terms of the total boundary length from the transverse
problem. The simplicity of this solution depends strongly upon the introduction of τ and
the Lagrangian co-ordinate η.
This model has been used to analyse the fabrication of microstructured optical fibre

preforms by extrusion. By examining three representative geometries we have demon-
strated that surface tension contributes significantly to the deformation observed in
practice; however, while our model can reproduce some of the experimental behaviour, it
fails to replicate all of the features. It has been shown previously that gravity and surface
tension alone can explain the deformation of a stretching fluid cylinder in the absence of
extrusion through a die (Tronnolone et al. 2016), while extrudate swell has been shown
to have a significant effect on extrusion in the absence of surface tension and gravity
(Trabelssi et al. 2015). We thus propose that both surface tension and extrudate swell
work in concert to deform the geometry once the fluid has left the die. Our work suggests
that extrudate swell may expand holes and reduce hole spacing, leading to a greater
interaction between holes and more deformation. The contributions of surface tension
and extrudate swell are expected to depend upon the extrusion conditions. Furthermore,
experimental evidence suggests that in some cases the fluid does not completely fill the
welding chamber and hence exits the die with a geometry significantly different from
that anticipated. Both the filling of the die and extrudate swell are matters that require
further investigation.
It has been assumed throughout both this work, along with that of Trabelssi et al.

(2015), that the glass temperature remains constant during the extrusion process, which
is not physically realistic. There is, therefore, a need for additional temperature modelling
to understand how the temperature of the glass changes during extrusion and how this
affects the fluid flow.
We conclude that a satisfactory model of the extrusion process must include the

contributions of surface tension, extrudate swell and a variable temperature. In addition
it is important to know whether the die is completely filled. Work is currently underway
to develop coupled models of the fluid and heat flows in order to understand their
relationship better. Of greater difficulty is the inclusion of die effects. Future work could
consider modelling extrude swell only over some small region below the die and using
this an an initial condition in the surface tension model developed here.
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