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Abstract

Some optical surfaces are formed by gravity sagging of molten glass. A glass sheet
supported on a ceramic former is heated; the glass becomes a very viscous fluid and
sags under its own weight until the lower surface is in full contact with the former.
The smooth upper free surface is the required optical surface. Its shape is dependent
on the initial geometry and, in optical terms, differs significantly from the former
shape. The inverse problem is to determine the shape of the former that produces
a prescribed upper surface. This is a difficult, highly nonlinear problem. A finite
element algorithm has been developed to compute gravity sagging for any given
initial geometry (the forward problem). The present work describes a successful
iterative method, which uses the output from a number of forward problems to
determine the required former shape.

Key words: Inverse problem, creeping flow, free surface, glass forming

1 Introduction

Thermal replication is a process used in the production of aspheric optical
components as described in [9,12] and shown in Figure 1. A glass workpiece or
pre-form is placed on a ceramic former which has been previously machined to
a given shape. This combination is heated in an oven so that the glass melts
and sags, or ‘slumps’, under its own weight into the former. On cooling the
glass component is removed from the former. Its lower surface is rough due to
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Fig. 1. The thermal replication process.

contact with the rough former, but the upper surface is smooth and may be
used, for example, as a mirror surface or as a mould surface for casting plastic
ophthalmic lenses; the curvature of this surface must meet the design criteria
to sufficient optical precision. The process takes its name from the idea of
‘replicating’ the basic shape of the ceramic former on the upper glass surface
while smoothing out any small scale imperfections in the former surface arising
from machining. However, the transfer of even the basic former shape to the
glass is not exact, especially in terms of surface curvature which is the quantity
of primary interest for optical components.

This is an example of a highly nonlinear inverse problem. The process designer
must determine the geometry of the former and pre-form and the temperature-
time profile to yield the required product; the product designer must ensure
that the product is achievable by thermal replication. Solving this inverse
problem is much more difficult than solving the forward problem of determin-
ing the product yielded by a given geometrical setup and temperature-time
history.

Such inverse problems are important in industrial forming processes. They
arise, for example, in the manufacture of automotive windscreens [3,5], in
thermoforming of plastics [1,2,14,20] and in forging [7,13,21], to name a few
which appear in the literature. For these examples temperature is an impor-
tant control on the product being produced and much of the literature is
concerned with inverse methods for determining suitable temperature profiles
in space and time [1,2,5,11,20]. In relation to geometrical controls, work on
shape optimisation of an initial workpiece or preform includes [13,14] while
[7,21] consider the optimisation of die shape design to minimise forming load
and achieve deformation uniformity respectively. This paper presents a method
for determining mould (or former) shapes to yield a desired product shape.
While we specifically focus on thermal replication of optical components, the
method described has more general applicability.

It is generally accepted that molten glass may be modelled as a very viscous
Newtonian fluid [10]; non-Newtonian behaviour is important in only relatively
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few situations (see, for example, [6]). In the problem of present interest the flow
is very slow with a time scale of hours. Working temperatures are around 700◦C
with glass viscosity µ of the order of 106 Pa.s. Slumping velocities scale like
ρga2/µ, where ρ ∼ 2500 kg/m3, g and a are density, gravitational acceleration
and a typical length scale, respectively. Here the length scale a is the pre-form
radius, about 45 mm. Then, the Reynolds number ρ2ga3/µ2 ∼ 6×10−6 is very
small and, as in many other glass-forming processes [4,8,18,19], we are justified
in neglecting the inertial terms in the Navier-Stokes equation and solving the
Newtonian creeping-flow (or Stokes flow) equations

−∇p + ∇ · (µ∇u) − ρg k = 0

together with the continuity equation

∇ · u = 0,

where p and u are pressure and velocity respectively, and k is the unit vector
pointing vertically up.

We are also justified in neglecting surface tension, since the Capillary number
is large, scaling as ρga2/σ, where σ ≈ 0.3 N/m is the coefficient of surface
tension for glass. Thus we must solve the creeping-flow equations subject to
no-slip conditions (u = 0) where the molten glass is in contact with a solid
boundary, and zero-stress and kinematic conditions on the free-surface bound-
aries elsewhere.

Thermal replication clearly involves heat flow in addition to fluid flow. How-
ever, the glass-former combination is heated in a closed oven in which spatial
temperature variations over distances comparable to the pre-form diameter
are small, so that we may assume that the temperature, and hence the vis-
cosity µ, in the glass is a function of time t only. Further, as explained in [17]
a consequence of using a creeping-flow model is that temporal changes in the
viscosity affect only the slump time, but not the final product. Then, we may
effectively account for a time-varying viscosity within the time scale and, for
a given constant value of the dimensionless slump time

T = ρg
∫ 1

µ(t)
dt,

the shape of the optical surface resulting from a given initial geometrical setup
is determined by solving for the flow of the molten glass assuming a constant
viscosity, such that T = ρgt/µ; there is no need to solve a coupled heat and
fluid flow problem.

Solution of the forward problem of determining the top surface shape of the
glass for a given (axisymmetric) former shape and initial pre-form geometry is
discussed in detail in [15–17] and we give just a brief summary of the methods
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used here. The Newtonian creeping-flow equations are solved in the glass,
subject to no-slip where the glass is in contact with the former and zero-stress
conditions on free surfaces, using a finite-element method. Lagrangian time-
stepping is used to track the changing geometry of the glass over time. At
the end of the process, when the lower surface of the glass workpiece is in full
contact with the ceramic former, the curvature profile of the upper surface is
computed using a least-squares quintic B-spline fit to surface coordinate data.
We assume here that the forward problem is solved satisfactorily in this way.

We are, therefore, left with the inverse problem: to determine the geometrical
setup to give the required optical surface. Both the former and preform shapes
influence the final outcome, but the former shape is by far the most impor-
tant control and adjusting its shape the best mechanism for modifying the
optical surface. Our primary focus is therefore on determining former shape.
At present this is done by a time-consuming, iterative experimental procedure
and we here propose a computational approach which can be used to investi-
gate the range of surface profiles that can be made by thermal replication and
which may be developed into a tool that can replace experiments and reduce
process design time.

2 Notation

We consider a glass disc pre-form of radius a, thickness h and initial radius of
curvature R0, and a former of radius a, with cavity surface described in terms
of elevation z = F (r, θ) such that there is a maximum distance d between the
former and the lower pre-form surface, as shown in Figure 1. We shall work
in cylindrical polar coordinates (r, θ, z) where z = 0 is the plane of support of
the glass. Next, we non-dimensionalise using a as the length scale, equivalent
to setting a = 1. Then h becomes the aspect ratio of the pre-form and d
the aspect ratio of the former cavity. The desired curvature profile on the top
surface of the glass is K(r, θ), while the actual curvature profile after slumping
is M(r, θ).

We here restrict our attention to axisymmetric geometries, although we use
notation applicable to general three-dimensional problems to which our meth-
ods are, in principle, readily extended. Then we may use the symmetry of the
problem and restrict our computational domain to one radius of the geometry.
Information supplied by the industry indicates that the glass thickness is such
that 0.04 ≤ h ≤ 0.15 covers the full range of possibilities for the pre-form as-
pect ratio, while 0.01 ≤ d ≤ 0.10 is a suitable parameter range for the aspect
ratio of the former cavity; R0, the initial curvature of the pre-form, is chosen
so that d does not exceed this range. Typically h = 0.1333 and d = 0.0444.
Unless otherwise stated, we use R0 = ∞ corresponding to a flat pre-form.
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3 A zeroth-order solution

A zeroth-order estimate of the transfer function from former to glass is ob-
tained assuming that, at the end of the slumping process, the glass forms a
layer of uniform thickness h over the former surface F (r, θ). Such a simple
shift function is not sufficiently accurate for optical products where the cur-
vature is important. Rather, the transfer function is a complex function that
has nonlinear dependence on geometrical parameters, such as the depth of the
mould and the thickness of the pre-form.

The solution method we will describe is based on approximate linear super-
position, starting from an initial estimate of the solution such as provided by
the zeroth-order solution and, hence, we begin by looking more closely at this
solution. We note that curvature is itself a nonlinear function (z′′/(1+z′2)3/2,
where z is surface elevation and primes denote differentiation with respect
to r) and, strictly, cannot be obtained by superposition. However, the slope
of the surfaces considered are small, so that the curvature is almost identi-
cal with the second derivative of the surface which can be obtained by linear
superposition. Hence we will use the second derivative everywhere in place
of curvature, while retaining the name “curvature”, although we could also
use the curvature function itself since the error introduced is small relative to
other components of the error.

Suppose that we wish to obtain a constant curvature on the glass by slump-
ing into a spherically shaped former. Then, to zeroth-order we expect the
curvature of the top glass surface to be constant at K = 1/(Rf − h), where
Rf = (1 + d2)/(2d) is the radius of curvature of the former. Let K be the de-
sired curvature profile. The error E(r, θ) is the difference between the actual
surface curvature M and the desired curvature, i.e. E = M − K, and |E| is
constrained by some industry-prescribed tolerance function. Usually, the tol-
erance is smaller at the centre and increases towards the edge. Since the glass
is edge trimmed after slumping, we need only be concerned with E over some
range 0 ≤ r < b, b < a, although to minimise waste it is desirable that b be
as close to the glass and former radius a as possible.

Noting that both d and h are typically small, we may write

K =
2d

1 + d2 − 2dh
≈ 2d, (1)

from which we might expect the actual curvature profile M to be, not only
near constant, but also reasonably linearly dependent on the aspect ratio of
the former cavity d and independent of h. Thus we might expect there to be
a function f(r) ≈ 2 such that M(r)/d ≈ f(r).
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Figure 2 shows the scaled curvature profile M(r)/d for different values of
d ∈ [0.01, 0.10] and for a flat pre-form of fixed aspect ratio h = 0.1333; the
solution of the forward problem was taken when full contact of the lower glass
surface with the mould had been attained, which occurs at different times for
the different formers. We see that, in the central region r < 0.1 and near the
edge r > 0.6, M/d varies from two by an amount greater than can be accounted
for by the approximation (1). Also, we note that M/d reduces to almost the
same curve in the central region of the disc, showing that M increases almost
linearly with d in this region for each of the four cases considered. However,
elsewhere M depends on d in a more nonlinear manner.

Figure 3 shows the effect of the pre-form aspect ratio on the scaled curvature
M/d for slumping into a former with cavity aspect ratio d = 0.05; for this
figure the solution to the forward problem was taken at the same time for
each of the cases considered and when there was full contact of the lower
glass surface with the former. Clearly, the deviation of M from (1) is quite
dependent on h and the smaller h the better is the approximation M/d = 2.
For the thinnest glass h = 0.05, the top surface curvature profile is noticeably
less smooth than the curves for the thicker pre-forms. We believe this to be due
to mould roughness (due to a piecewise linear mould representation) and/or
roughness resulting from contact events between the glass and former, which
is not sufficiently smoothed out when the glass is thin.

It is evident that the inaccuracy of the zeroth-order method for determining
the former profile F to yield a desired curvature profile K on the glass increases
with both the cavity aspect ratio of the former d and the aspect ratio of the pre-
form h. Not unexpectedly, thinner glass more accurately replicates the former
curvature; but defects in the former surface are more likely to be transferred to
the glass also. Since a sufficiently thick glass pre-form must be used to damp
out small-scale imperfections in the former, our task is to devise a method
for modifying the former profile to reduce the curvature error E, given the
pre-form aspect ratio h.

4 Former modification: linearised approach

The idea used is essentially that of the multivariable Newton-Raphson method.
Our zeroth-order method gives an estimate of the former elevation profile
z = F (r, θ) for a given desired curvature K(r, θ) on the top surface of the
glass. On slumping we find that the actual curvature profile is M(r, θ). We
denote this

F (r, θ) ⇒ M(r, θ).
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Fig. 3. M/d for glass pre-forms of different aspect ratio h slumping into a spherical
former with cavity aspect ratio d = 0.05. The curves were all computed at time
t = 0.100 by which time full mould contact had been established in each case.

If M is sufficiently close to K then

K(r, θ) = M(r, θ) + δM(r, θ),

where δM is a small perturbation of M , and we need to find a small pertur-
bation δF of F such that

F (r, θ) + δF (r, θ) ⇒ M(r, θ) + δM(r, θ).

We define δM to be the target and δF to be the solution. Now, we may
solve the forward problem for each of a ‘basis’ set of m former perturbations
δi(r, θ), i = 1,m, and determine the corresponding glass surface perturbations
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µi(r, θ), i = 1,m, i.e.

F (r, θ) + δi(r, θ) ⇒ M(r, θ) + µi(r, θ).

Then, assuming a (nearly) linear response we have

F (r, θ) +
m∑

i=1

αiδi(r, θ) ⇒ M(r, θ) +
m∑

i=1

αiµi(r, θ),

and we need only determine the coefficients αi such that

δM(r, θ) ≈
m∑

i=1

αiµi(r, θ).

These are found by taking J ≥ m collocation points rj, j = 1, J , in the region
of interest (0 ≤ r ≤ b), and determining the best-least-squares solution to the
resulting J × m system of equations. The solution is then given by

δF (r, θ) =
m∑

i=1

αiδi(r, θ),

and the new former shape is F̃ = F + δF . Setting F = F̃ we may repeat this
procedure, iterating until M is sufficiently close to K, i.e. |E| = | − δM | is
sufficiently small over 0 ≤ r ≤ b, or until we are unable to reduce the error
any further.

Now, we may think of the former perturbation as being comprised of a (pos-
sibly infinite) linear combination of Fourier components, i.e. δF =

∑
i αiδi

with each of the δi contributing a component of a different wavenumber. A
small wavenumber (long wavelength) former perturbation δi is expected to
produce an essentially small wavenumber perturbation µi on the glass, so that
the target δM can be similarly considered as a Fourier series. Assuming that
the target is a well-behaved function, small wavenumber components will be
of larger amplitude and more linear than larger wavenumber components and
should be determined first and removed from the target to give a new target
comprised of the larger wavenumber components. Hence, we adopt an itera-
tive approach. We first rank the δi from smallest to largest wavenumber. Then
at iteration m we use the above described procedure with the set of former
perturbations δi, i = 1,m. From the solution δF obtained we obtain a new
former and a new target to be used at iteration m + 1. This new target is,
essentially, comprised of Fourier components µi, i > m of larger wavenumber
than already considered, having a solution comprised of Fourier components
δi, i > m. The physics of slumping, which is designed to smooth out small
scale perturbations on the former, also supports this iterative approach and
indicates that there will be a limit on the size and amplitude of perturbation
that can be used effectively.

8



5 Orthogonalisation

The success or otherwise of this procedure depends firstly on obtaining a suf-
ficiently good initial estimate of F , and this is yielded by the zeroth-order
approximation method. Secondly, the procedure requires a set of former-
perturbation functions δi and, at each iteration m, a set of coefficients αi, i =
1,m such that

(a) for the given δi, the αi fall within the linear response range for the (m−1)th
(i.e. the previous) state which we shall denote by (Fm−1, Mm−1), i.e.

Fm−1 +
m∑

i=1

αiδi ⇒ Mm−1 +
m∑

i=1

αiµi

or
(b) there is at most one αj ≈ 1, 1 ≤ j ≤ m, and the coefficients α̃i = αi, i 6=

j, α̃j = αj − 1 fall within the linear response range for the state (Fm−1 +
δj, Mm−1 + µj), i.e.

(Fm−1 + δj) +
m∑

i=1

α̃iδi ⇒ (Mm−1 + µj) +
m∑

i=1

α̃iµi.

Because of the iterative approach, adding one additional perturbation δm

to the set at iteration m, we fully expect j = m.

If we are fortunate enough to find a set of δi such that, at iteration m, αm ≈ 1
then the δi and resulting µi need not behave linearly in the usual way. With
our present solution method, the contribution to the target from µm is largely
removed from the target (excepting for a contribution due to nonlinearity) at
the mth iteration at which δm is added to the set of δi. Thus, if things are
‘linear enough’, at the mth iteration we expect that the contribution to the
target from µm will be dominant, with only quite small contributions from
µi, i = 1,m − 1 which should therefore be in the linear range.

We can facilitate this by orthgonalising the glass perturbations µi, i = 1,m
at each iteration m. Let νi be the set of orthogonalised glass perturbations
derived from the µi, and γi be the corresponding set of former perturbations
derived from the δi. We let ν1 = µ1 and γ1 = δ1. Then, for i ranging from 2
to m, we generate the other γi, νi using a Gramm-Schmidt process:

(i) νi ⇐ µi, γi ⇐ δi.

(ii) νi ⇐ νi −
(νi · νj)νj

‖νj‖
, γi ⇐ γi −

(νi · νj)γj

‖νj‖
, j = 1, . . . , (i − 1).

(iii) δi ⇐ γi

(iv) F + δi ⇒ M + µi
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Note that having obtained new former perturbations δi at (iii) we must slump
again using these at (iv) to find the corresponding glass perturbations µi, which
are therefore not exactly orthogonal. We may iterate to improve orthogonality,
the trade-off being the large amount of computing time that this involves.
However, we can check orthogonality as we proceed and perform only as many
iterations as necessary. For the cases considered herein, one to three were used.

Our final algorithm incorporating all of the features discussed to date is given
in Appendix A.

6 Linearity of response

Since the effectiveness of our solution method depends on the validity of our
linearity assumptions, we next explore the issue of linearity.

For this we consider a pre-form of aspect ratio h = 0.1333 slumping into a
former which has cavity surface elevation z = F +δi, where z = F (r, θ) defines
a spherical cavity surface with cavity aspect ratio d = 0.05 and δi is a small
perturbation of this surface. Let us consider the set of small perturbations

δi =
ǫ

2
(1 + (−1)i+1 cos(iπr)), i = 1, 2, . . . , (2)

where ǫ is a small number determining the amplitude of the perturbation and
i = 2/λ is the number of wavelengths of length λ across the diameter of the
former, i.e. k = iπ = 2π/λ is the wavenumber. The functions δi have the
property of zero perturbation of the former at its edge r = 1, which is taken
as a fixed reference. Then linearity of the response demands that

F + (αδi + βδj) ⇒ M + µi,α;j,β,

where

µi,α;j,β = µi,α + µj,β = αµi + βµj,

after a fixed slump time, which we take to be a little more than the time for
the glass to achieve full contact with the unperturbed former.

We first consider multiplicative linearity by setting β = 0 and, for values of
i and ǫ, compute the response µi,α for perturbations αδi for various values α.
Linearity demands that µi,α = αµi and hence can be measured by computing
eN = µi,α − αµi. Then for a given i we need to determine a value of ǫ and the
range of values of α such that |eN | is small. Because the glass is edge trimmed,
we are not concerned too much with nonlinearity near the edge and may focus
attention on the inner region. In fact these linearity computations will give
an indication of the amount of edge trim required. We shall notionally allow
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cal mould with d = 0.05 at t = 0.1. Error eN = µi,α − αµi for i = 1, 2, 5 and
α = ±1,±6,±7, . . . ,±10.

|eN | ∼ 0.001, based on very approximate information from the industry and
noting that the permissible tolerance varies greatly with position on the lens
mould. For this reason and because of the iterative nature of our method,
this is not a rigid tolerance and more nonlinearity may be permissible in some
areas and/or a tighter tolerance in others.

After some experimenting, we have found ǫ = 0.001 i−2 to be a suitable scaling
for δi. The i−2 factor is not too surprising, since it cancels the i2 factor in the
former curvature perturbation function δ′′i = (iπ)2(−1)i+2(ǫ/2) cos(iπr) and
hence keeps the magnitude of the former curvature perturbation (and hence
that of the glass curvature) from growing with the wavenumber of the pertur-
bation. Figure 4 shows the curvature perturbations µi resulting from former
perturbations δi, i = 1, 2, 5, and Figure 5 shows the error due to nonlinearity
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eN for αδi, i = 1, 2, 5, and values of α in the range −10 ≤ α ≤ 10. These re-
sults were obtained after a slump time of t = 0.1 when there was full contact
between the glass and former. Note that full contact is important; linearity is
considerably worse where this is not achieved. The largest error at the centre
(|eN | ∼ 0.1) corresponds to the case i = 2, α = 10, and the sudden increase
in error in the central region signals that we are entering a highly nonlinear
zone. For other perturbations the error is very small at the centre and grows
towards the edge. The increased error around r ∼ 0.8 and beyond is an effect
of the physical former edge.

Outside of the ‘linear’ response range, eN depends in a complex manner on
both the wavelength and amplitude of the perturbation, due to the differing
ways in which the glass contacts the former. Excluding the error curve for
i = 2, α = 10, the results shown in Figures 4 and 5 are for a glass component
that first contacts the former at the centre and then progressively from the
centre up and the edge down. However, depending on the location and size
of humps and holes in the former, initial contact may occur at some other
position, significantly slowing the sag rate and resulting in different sequences
of contact events, often with the result that full contact between glass and
former is not achieved in the slump time. This, in turn, results in significantly
different curvature profiles on the glass and much nonlinearity. The case i =
2, α = 10, shown in Figure 5, is an example of such a change in the sequence
of contact events, leading to a change in the nature of the error curve. To keep
close to linear, the perturbation functions should be such that initial contact
is at the centre of the former and the glass fully contacts the former in the
slump time.

Next we consider perturbations αδi+βδj, i 6= j for which linearity is measured
by eN = µi,α;j,β − αµi − βµj. Curvature perturbations for i = 1, j = 2 and
α = ±1, β = ±1 are given in Figure 6 and show a fair degree of symmetry,
which is interesting. Plots for i, j = 1, 5 and i, j = 2, 5 show similar symmetry
and curvature perturbations of a similar order of magnitude, although the
curves, of course, differ significantly from those shown for i, j = 1, 2. The
corresponding curves of eN versus r for each of these i, j combinations are
given in Figure 7, and show the error due to nonlinearity to be very small for
these former perturbations. In general, the error will be worse where the effect
of αδi and βδj on the former is additive, which is most likely where α and β
have the same sign. Hence in Figure 8 we look at the degree of nonlinearity
for various values of α = β. We find nonlinearity to increase significantly for
some combinations of i, j with α = β smaller than -8 and larger than 6.

We have found a set of functions δi and range of coefficients αi such that we
expect a reasonably linear response to mould perturbations δ =

∑
i αiδi to the

base spherical former F0, and hence we have reason to believe that our solution
method will work for suitable choices of target and initial geometry. Of course,
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in practice, for given target, initial geometry and perturbation functions δi,
we have no way to ensure that the coefficients αi fall in the accepted linear
range and, further, this range may change as the former shape is modified at
each iteration. Hence, rather than be too concerned with the magnitude of
the coefficients, we prefer to compute the error eN due to nonlinearity at each
iteration, which, at the mth iteration, is given exactly by

eN = Mm − Mm−1 −
m∑

i=1

αiµi,

and is an easily computed measure of linearity; the closer to zero, the better
is the linearity of the transfer function from former to glass.

Not all of the error in our method is due to nonlinearity. There is also a
component eL due to the least-squares fit to the target given, at the mth
iteration, by

eL =
m∑

i=1

αiµi − δMm =
m∑

i=1

αiµi − (K − Mm−1).

The total error at iteration m is equal to the sum of these two components,
i.e. eT = Mm − K = eN + eL = −δMm+1.

So far we have, somewhat arbitrarily, used the cosine functions (2) to define
our former perturbation basis functions. This seems a natural choice, although
there may be other suitable alternatives such as Bessel functions. Whatever we
use, we must ensure enough degrees of freedom for our method to work while at
the same time restricting the wavenumbers to the range that will be effectively
transferable to the glass. This restriction on wavenumber is due to the fact
that slumping smooths out small-scale perturbations on the former. Now, with
the basis set (2) we must allow functions ranging up to large wavenumber so
as to provide sufficient degrees of freedom for our method, which is clearly not
satisfactory. Therefore, while continuing to use these functions to define the
perturbations, we divide them into segments of one wavelength, each segment
corresponding to a separate perturbation δi which adds a bump to the former
surface for αi > 0 and a hole for αi < 0. This greatly increases the number of
useful degrees of freedom available to us.

7 Example: Constant Curvature

We are now ready to use our method for an example problem. We continue to
consider an initially flat glass disc with h = 0.1333 slumping into the initially
spherical mould with d = 0.05, Rf = 10.025 which is the zeroth-order former
solution for the desired constant curvature K = 0.101095 on the top surface
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of the glass. The curvature profile M produced by this former is shown in
Figure 2. We wish to modify the former shape to reduce the error in the
curvature profile.

In our earlier linearity computations we saw the error increasing significantly
around r ∼ 0.8, an effect of the physical edge of the former. Hence, we choose
to ignore the outer annular region and look to get closer to our target over
the inner region r ≤ 0.8. Thus, we choose our collocation points for determin-
ing the coefficients αi in this range, taking 81 uniformly spaced points over
0 ≤ r ≤ 0.8. We use as basis perturbation functions, segments of the cosine
functions (2) with ǫ scaled as for the linearity calculations of the previous sec-
tion. For the first six iterations, the orthogonalised curvature perturbations
νi, i = 1, . . . , 6 were obtained using the Gramm-Schmidt process just once. At
this stage the relative magnitudes of the coefficients αi, i = 1, . . . , 6 indicated
some loss of orthogonality between the νi and so the number of iterations of
the Gramm-Schmidt process used to compute all of the νi was increased to two
for iterations seven to twelve. For the same reason, the number of iterations of
the Gramm-Schmidt process was increased to three at the thirteenth iteration
which, however, failed to yield the desired dominant coefficient αm with all
other αi, i = 1, . . . , (m − 1), relatively small for m ≥ 13. Computation was
continued for twenty iterations, using twenty former-perturbation functions δi

having wavelengths varying from the longest possible (i.e. the former diameter
= 2) to one quarter of the former radius (= 1/4). These were ordered from
longest to shortest wavelength and, within a set of perturbations of the same
wavelength, the order was from the centre to the edge of the former.

Figure 9 shows the target for the next iteration δMm+1 at the end of itera-
tions m = 6, 12 and 16. Also shown is the initial target (m = 0). The error
components due to nonlinearity (eN) and the least-squares fit (eL) are given
in Figures 10 and 11. Note that, at iteration m, −δMm+1 = eN + eL, the
total error. We see a consistent decrease in the error due to the least-squares
fit with increasing m (Figure 11) and this continues out to m = 20 where we
ceased computation. By contrast, the error due to nonlinearity (Figure 10) re-
mains quite small to m = 12 and then increases substantially; in fact this error
component is larger at iterations m = 13 − 15 than that shown for m = 16.
For further iterations (m = 17 − 20) this error component grows by several
orders of magnitude. The effect of this, in combination with the decreasing
least-squares error component, is that the total error (Figure 9) decreases to
m = 13, increases for m = 14 and 15, decreases to the best overall result at
m = 16 and then becomes very large at further iterations.

Nevertheless, while nonlinearity prevents further improvement on the results
shown, at iterations m = 12 and 16 we have solutions that are a great im-
provement on the zeroth-order approximation.
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Fig. 9. Desired curvature K = 0.101095. New target δMm+1 = K − Mm, after
iteration m; equivalently −eT where eT = eN + eL = Mm − K is the total error at
iteration m.
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Fig. 10. Desired curvature K = 0.101095. Error due to nonlinearity
eN = Mm+1 − Mm −
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i=1 αiµi, at iteration m.
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Fig. 11. Desired curvature K = 0.101095. Error due to least squares fit
eL =
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i=1 αiµi − δMm, at iteration m.
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8 Example: Quadratic Curvature

Obtaining a constant curvature on the glass by thermal replication is, practi-
cally speaking, unrealistic since there are better ways to obtain such a surface.
Hence we consider the more realistic task of determining the former shape to
give a quadratic curvature profile across the radius of the glass, with high-
est curvature in the centre, lowest curvature at the edge. Since we are taking
curvature to be the second derivative, this means the former will be approx-
imately described by a quartic polynomial. We consider the initial former
elevation profile

F (r) = 0.05(r2 − 1)(1 − 0.1r2)

which gives a maximum cavity depth of d = 0.05 at the centre as for the
spherical former already considered. We continue to use an initially flat glass
disc with h = 0.1333 and we take F (r) to be the zeroth-order former solution
for the desired curvature profile on the glass K = (F + h)′′, i.e. the quadratic
curvature profile

K = 0.11 − 0.06r2.

Note that this is a slightly different and less accurate definition of the zeroth-
order solution than discussed earlier, obtained by simply translating the de-
sired top surface of the glass vertically down by an amount equal to the glass
thickness. Thus, we are starting with a less accurate estimate of the former ge-
ometry for our desired curvature profile compared to that used in the previous
example.

Apart from the changed initial former geometry and desired curvature profile,
we proceed exactly as for the previous example. Our results are shown in
Figures 12–14. As for the constant curvature example considered first, an
excellent solution is obtained after twelve iterations, after which error due to
nonlinearity begins to grow and impact strongly on the results. As a result,
the total error at m = 13 reduces a little compared to that at m = 12 but then
increases substantially at m = 14. Depending on the importance of reducing
error near r = 0.8, the solution at iteration m = 15 might be considered better
than that at m = 12 or 13, but at subsequent iterations the error due to
nonlinearity, and hence the total error, grows by several orders of magnitude.

The curves of new target δMm+1, error due to nonlinearity eN and error due
to least-squares fitting eL are quite similar in both appearance and magnitude
for both examples, despite the fact that we started with a less accurate es-
timate of the solution for the quadratic-curvature case (compare the curves
for m = 0, i.e. the initial error, in Figures 9 and 12). In both examples the
growth in nonlinearity eventually prevents further improvment in the solution
by including smaller wavelength perturbations in our basis set and continuing
to iterate.
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Fig. 12. Desired curvature K = 0.11− 0.06x2. New target δMm+1 = K −Mm, after
iteration m; equivalently −eT where eT = eN + eL = Mm − K is the total error at
iteration m.
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Fig. 13. Desired curvature K = 0.11 − 0.06x2. Error due to nonlinearity
eN = Mm+1 − Mm −
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Fig. 14. Desired curvature K = 0.11 − 0.06x2. Error due to least squares fit
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9 Conclusions

We have applied the finite-element method to the Stokes Equation in order
to solve the inverse problem of slumping of molten glass. This is a highly
nonlinear problem. The slumping time required to achieve full contact, was
determined first as achieving full contact between glass and former was found
to be important to minimise nonlinearity. Then the shape of the ceramic for-
mer that produces a prescribed top surface curvature profile was sought, using
a variant of the multivariable Newton-Raphson method. Choosing an appro-
priate set of basis perturbation functions for the former, a corresponding set
of perturbation functions for the upper free surface of the glass is obtained
by solving the forward slumping problem for each of the former perturbation
functions. Then the lower former surface and desired upper free surface on the
glass can be approximated by linear combinations of each of these sets of basis
functions respectively. Thus the mapping is reduced to the finite-dimensional
problem of solving for the set of coefficients in these linear combinations.
Gramm-Schmidt orthogonalisation of the perturbation functions for the glass
was carried out, to reduce the effect of nonlinear interaction.

We have studied the effect of the various parameters on the nonlinearity of this
mapping. The nonlinearity was found to increase with the ratio of the glass
thickness to the perturbation scale. Short-scale perturbations and thick glass,
increase the nonlinearity. The steepness of the perturbation also increases non-
linearity. One of the challenges was to maintain a sufficient number of degrees
of freedom to represent the required surfaces, while avoiding the strongly non-
linear short scales. This was achieved by introducing ‘hump shaped’ basis
functions. These, being localized, also had (in general) less nonlinear interac-
tions among them than, say, full cosine perturbations.

It is preferable to remove first the long-scale perturbations. These have larger
amplitudes, for a given steepness, and behave more linearly. However, they
interact in a strongly nonlinear way with shorter perturbations. Once the
long-scale errors are reduced, the short-scale errors are easier to eliminate.
Increasingly shorter-scale perturbations were gradually added.

The residual errors are largest near the outer edge of the former, which is usu-
ally trimmed in the industrial process. In fact, in addition to determining the
former geometry to achieve the desired glass product, we can also determine
the extent of edge trimming required for a given tolerance profile on the final
product. Our results indicate that a trimming value of r = 0.8 is a reasonable
choice.

This process reduced the error in curvature, within 12 iterations, from a mag-
nitude of 1.3 × 10−2 (1.1 × 10−2) to 3.5 × 10−4 (3.8 × 10−4) at the centre and
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6.1 × 10−3 (3.0 × 10−3) to 6.2 × 10−4 (4.3 × 10−4) at r = 0.75 for the con-
stant (quadratic) curvature case. After 12 iterations, the maximum error over
0 ≤ r ≤ 0.75 was 6.2 × 10−4 (6.3 × 10−4) at r = 0.75 (0.64) respectively; it
increases to 1.6 × 10−3 (1.3 × 10−3) at r = 0.8 where trimming would almost
certainly be appropriate. While these are excellent results, modifications may
be required if there is need to further reduce the error, especially at shorter
scales. Strategies for enhancing the method are currently being explored.
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A Computational algorithm

Final computational algorithm for determining the former F (r, θ) for the de-
sired curvature profile K(r, θ):

1. Estimate/guess the former profile F0(r, θ) that will yield K.
F0(r, θ) ⇒ M0(r, θ).

2. Do m = 1, N
2.1 Target δMm = K − Mm−1.
2.2 If |δMm| < tolerance, 0 ≤ r ≤ b then stop.
2.3 Do i = 1, m

(a) Fm−1 + δi ⇒ Mm−1 + µi.
(b) Do j=1, 1(2, 3)

(i) νi ⇐ µi, γi ⇐ δi

(ii) Do k = 1, (i − 1)

νi ⇐ νi −
(νi · νk)νk

‖νk‖
, γi ⇐ γi −

(νi · νk)γk

‖νk‖
.

(iii) δi ⇐ γi, Fm−1 + δi ⇒ Mm−1 + µi

2.4 Solve δMm ≈
m∑

i=1

αiµi for αi, i = 1, . . . ,m.

2.5 Fm = Fm−1 +
m∑

i=1

αiδi.

2.6 Fm ⇒ Mm
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