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Abstract

To achieve improvements in the design of spiral particle
separators, used in the mineral processing industry, it is
necessary to have a good understanding of the fluid flow
in them and the factors that affect it. To this end, we
are developing computational techniques for determining
the flow in a spiral channel of general geometry, includ-
ing the complex free-surface shape. These can then be
used to investigate how the flow, and ultimately separa-
tion, is affected by geometrical parameters and fluid flow
properties.

Introduction

Spiral particle separators are used in the mineral pro-
cessing industry to separate particles (e.g. of coal) of
different sizes and densities. A separator consists of a
channel wound about a vertical axis as shown in figure 1.
A slurry of water and particles enters at the top and flows
under gravity down the channel.
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Figure 1: A helical channel a of semi-circular cross-
section.

In addition to the primary axial flow down the channel,
a secondary flow across the channel also develops, shown
in figure 2. As explained in [3], the interaction between
the fluid flow and the particles results in separation of
large/heavy and small/light particles. Light particles are
carried in the cross flow from the inner region of the
channel (nearest the vertical axis) to the outer region;
once here they take considerable time to settle to the
bottom of the channel where they can be picked up in the
cross flow and carried back into the inner region, during
which time they are carried by the primary flow down
and out of the separator. Conversely, heavy particles in
the outer channel region will quickly fall to the bottom
of the channel and be carried by the cross flow to the
inner region; here they are too heavy to be picked up and
carried back into the outer region and hence they remain
in the inner region and are carried by the primary flow
down the separator. Thus the particles are separated into
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Figure 2: Secondary flow and separation mechanism (af-
ter Holland-Batt [3]).

two groups — large/heavy and small/light.

The design of these particle separators is critical to their
effective operation and has been the subject of both ex-
perimental and computational studies over the last two
decades [3, 4, 5, 6, 9, 10, 11]. In particular, in recent
years computational fluid dynamics in three dimensions
has been used to simulate such flows [6, 9], most recently
with turbulence modelling included [10]. However, there
is a need for a more basic analysis, including parameter
studies, to determine the critical geometrical factors that
influence separator operation. Some of our work to de-
velop techniques for this type of analysis was reported
in [11], and is continued here with a new technique for
determining the points at which the free surface contacts
the channel wall.

It is clear from the discussion above that the fluid flow is
critical to the operation of a spiral separator and hence
we first try to compute and understand it — in the ab-
sence of particles. Our methodology follows that used
in studies of flow in closed coiled pipes [1, 2, 7] in first
finding a steady-state solution that is also independent of
axial position. This permits a two-dimensional analysis
in the cross-section plane. A significant part of the solu-
tion process is determining the free-surface profile of the
fluid in the channel, making this analysis substantially
different from and more complex than fully developed
flows in closed pipes. The shape of the free surface is
primarily determined by the curvature of the helix and
the flow rate, so that, at this stage, we ignore surface
tension.

A Mathematical Model

As in [11] we consider a channel of half-width a, heli-
cally wound about the vertical z-axis with helix radius A
and pitch 2πP (see figure 1), and with gravity acting in
the −z direction. Defining the dimensionless parameter
λ = P/A and the Reynolds number R = Ua/ν, where U
is a characteristic axial flow velocity and ν is the kine-
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Figure 3: Cross section of a semi-circular channel show-
ing the coordinate system; N and B are the normal and
binormal vectors of the helical channel centreline with
tangent directed out of the page.

matic viscosity of the fluid, we assume small dimension-
less curvature ε and small torsion such that λ/R = O(ε).
Although the methodology discussed below is applica-
ble for a channel of any cross-section shape we assume a
semi-circular channel.

The dimensionless equations for this problem are given
in [11] and are repeated here for convenience. The coor-
dinate system in a cross-section of the channel is shown
in figure 3, and lengths are normalised to give a channel
radius of 1. Then we have the continuity equation

∂v

∂x
+
∂w

∂y
= 0 (1)

and the Navier-Stokes equations
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Ku2 = −∂p

∂y
+∇2w, (4)

where u is the axial flow velocity (scaled with U), v and w
are the secondary flow velocity components (scaled with
U/R) in the x and y directions respectively, p is the pres-
sure (scaled with ρU2/R2), F = U/

√
ag is the Froude

number and K = 2εR2 is the Dean number associated
with the centrifugal force acting on the flow.

On the channel wall we have the no-slip boundary con-
ditions

u = v = w = 0 (5)

and on the free surface with normal vector (0, nx, ny) we
have (ignoring surface tension) the zero-stress conditions

nx ∂u

∂x
+ ny ∂u

∂y
= 0, (6)

−pnx + 2nx ∂v

∂x
+ ny

(

∂w

∂x
+
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∂y

)

= 0, (7)

−pny + nx

(

∂w

∂x
+
∂v

∂y

)

+ 2ny ∂w

∂y
= 0, (8)

and the kinematic condition

vnx + wny = 0, (9)

i.e. no component of velocity normal to the free surface.

Solution Methodology

Under assumptions of small curvature and torsion when
the free surface will be close to flat, an analytic solution

exists for channels of semi-circular cross section [11, 13].
Defining

G =
λR

F2
√
1 + λ2

,

the secondary flow components are given by (v, w) =
(ψy,−ψx) with the stream function ψ given by

ψ = − K

9216
G2x

(

1− x2 − y2
)2 (

4− x2 − y2
)

, (10)

and the free surface shape is given by

x =
(

K

768

GR
λ

)

y
(

15− 8y2 + 3y4
)

. (11)

However, for channels of general cross-section shape nu-
merical methods must be used.

The numerical solution methodology adopted in [11] is to
first guess a free surface shape and then solve (1)–(4) over
the flow domain, subject to boundary conditions (5)–(8),
using the finite element package Fastflo. The velocity
field so obtained is then used to advance the mesh to
give a new free surface shape and flow domain on which
this process is repeated. Iteration stops when the integral
of the square of the normal velocity component over the
free surface, which we call the ‘flux-squared’, falls below
some suitably chosen tolerance. At this stage, the flow
is (very nearly) tangential to the free surface over its
entire length and boundary condition (9) is (very nearly)
satisfied.

However, as discussed in [11], this methodology has an
associated difficulty: when initially guessing the free sur-
face shape, we fix the points at which the free surface
contacts the channel wall for all future time, since the
no-slip wall boundary condition and the method used to
update the flow domain does not permit them to move.
If these points are not located accurately then, no mat-
ter how many iterations of the solution process, the free
surface shape will be inaccurate and there will always be
some flux through the free surface — at least locally in
their vicinity.
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Figure 4: Free surface shape for a flow with K = 2,
G = 2, GR/λ = 20. (a) Numerical solution starting with
a flat free surface and (b) analytic solution (11).

The effects of starting with a horizontal free surface for
a semi-circular channel of small curvature and torsion
(for which we have an analytic solution with which to
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Figure 5: Velocity field corresponding to curve (a) in
figure 4, showing flux through the free surface at corners
due to initial inaccurate location of the points where the
free surface contacts the channel wall.

compare) are shown in figures 4 and 5. The free surface
shape is quite comparable with the analytic solution
excepting locally near the points (x, y) = (0,±1) where
the free surface is pinned to the channel wall. In these
regions we also see a velocity component normal to
the free surface, whereas the flow is tangential to the
free surface away from the wall contact points. This
computation was deemed to have converged when the
flux-squared was just below 10−6.

Zero-Pressure Corner Condition

It is clear that we need some condition by which to adjust
the points of contact between the free surface and channel
wall during the solution process.

Consider for a moment steady flow down a straight (zero
curvature) inclined channel. There is no secondary flow
in such a channel and the free surface will be horizontal
[8]. On the free surface, the zero-stress boundary condi-
tions (6)–(8) reduce to p = 0, as we would expect from
physical considerations; in the absence of surface tension,
a non-zero pressure at the free surface would drive a dis-
tortion of the free surface shape.

Of course, in a channel of non-zero curvature where a sec-
ondary flow exists, the zero-stress boundary conditions
demand that pressure be non-zero where there is flow
tangential to the free surface. For some free surface flows
there is a mild pressure singularity at the point where a
free surface meets a no-slip wall [12], but then the free
surface is continuously deforming over time. Since for the
free surface flow being considered here, we seek a free
surface shape which does not vary in time and, in the
corners where the free surface meets the channel wall, a
no-slip wall requires there be no flow there, we expect the
pressure to go to zero at these corners. This is readily
seen from the analytic solution for a semi-circular channel
of small curvature and small torsion with a nearly hor-
izontal free surface. Since the free surface is very close
to horizontal with normal (1, 0), equation (7) reduces to
the zero normal stress condition on x = 0,

−p+ 2 ∂
2ψ

∂x∂y
= 0. (12)

Then substituting (10) gives

p =
12K

9216
G2y(1− y2)(3− y2) (13)

on x = 0, and at the corners (0,±1) we have p = 0.

Thus, we use the corner pressure to move the free surface
attachment points — a positive pressure indicates that
the attachment point should rise and a negative pressure
indicates that it should fall. To determine the vertical
displacement of a contact point we compute

∆x =

(

p

ρg

)

β, (14)

which derives from the formula for hydrostatic pressure
p − ρgx = 0; β is a parameter that is used to control
the amount of mesh adjustment and prevent too much
mesh distortion. The contact points are also moved hor-
izontally so that they remain on the channel wall. This
condition is applied only at the free surface to wall con-
tact points; everywhere else the mesh is still advanced in
accordance with the velocity field as before.

Preliminary Results

Implementing the zero-pressure corner condition in our
Fastflo code was quite straight forward. However, to
prevent too much mesh distortion and to keep the dis-
placement of the corner points commensurate with the
displacement of nearby mesh nodes, the value of the pa-
rameter β needs to be adjusted throughout the computa-
tion. This adjustment has been done manually so far, by
graphically comparing the displacement of corner nodes
and neighbouring nodes on the free surface during the
course of the computations, and increasing or decreas-
ing the value as necessary. Further work is needed to
automate this process.
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Figure 6: Free surface shape for a flow with K = 2,
G = 2, GR/λ = 20 after applying the p = 0 condition at
the corners. (a) Numerical solution starting with a flat
free surface and (b) analytic solution (11).

Our preliminary results, seen in figures 6 and 7, show
the technique to be quite promising. With careful ad-
justment of β, the solution shown in these figures was
obtained with considerably fewer iterations than were re-
quired before implementing the zero-pressure corner con-
dition. The flux-squared is now about 10−10 — a sub-
stantial improvement on the value of 10−6 seen earlier.
There is a kink in the free surface near the corners (see
figure 6) due to the different conditions applied at the
corners compared with elsewhere along the free surface
but, overall, the comparison with the analytic solution,
especially near the corners, is excellent.
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Figure 7: Velocity field corresponding to curve (a) in
figure 6. With the p = 0 corner condition, the free surface
to wall contact points have been found and the flow is
(very nearly) tangential to the free surface over its full
length, including near the corners.

Conclusions

From the analysis so far for semi-circular channels of
small curvature and torsion, the use of a zero pressure
condition at the corners, where the free surface meets
the channel wall, appears to be an effective way of deter-
mining the free surface to wall contact points. Further
work is in progress to prove and demonstrate the validity
of the zero-pressure condition at the free surface to wall
contact points for general channel geometries, and to re-
fine and automate the method. It is also noted that the
implementation of this condition, as presented here, does
not guarantee conservation of mass. This is a matter that
requires further investigation.

This work has focussed on steady laminar flow in a spiral
channel. There is considerable evidence [3] that the flow
in a spiral separator is turbulent. However, the devel-
opment of these computational techniques will enable us
to look at how the flow in a spiral channel changes with
changes in geometrical parameters and fluid properties,
and gain some insight into the specific geometrical pa-
rameters that impact upon proper separator operation.
We also hope to progress to a consideration of flow sta-
bility to small disturbances and hence determine the con-
ditions under which the flow can be expected to become
turbulent.
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