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Abstract

A new representation is obtained for the Riemann xi function, in
the form of a series of integrals, multiplied by an exponential factor
capturing the correct decay rate for large imaginary argument. Each
term in this series then has a simple stationary-phase asymptote, the
total agreeing with the Riemann-Siegel sum.
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Introduction

The fundamental series definition ([1], p. 807) of the Riemann zeta function

ζ(s) =
∞∑
n=1

n−s (1)

converges only for σ > 1 where s = σ+ it. Its analytic continuation to σ < 1
proceeds via a function proportional to ζ(s), e.g.

ξ(s) = π−s/2 Γ
(
s

2

)
ζ(s) (2)

which satisfies
ξ(s) = ξ(1− s) (3)

and is real on the critical line σ = 1/2. This function ξ(s) was also defined
by Riemann (see [4], p. 16 and Appendix), except that he multiplied it by
an extra factor s(s − 1)/2 that we shall not need. Another similar function
is the Hardy function ([3] eq. (19), [4] p. 119, [8] p. 89)

Z(t) = π1/4−s/2
[
Γ
(
s

2

)]1/2 [
Γ
(

1

2
− s

2

)]−1/2

ζ(s) (4)

= π1/4
[
Γ
(
s

2

)
Γ
(

1

2
− s

2

)]−1/2

ξ(s) (5)

where s = 1
2

+ it.
Many important studies on Riemann functions are for large argument s,

specifically large imaginary part t, with real part σ = 1/2. In that case we
can approximate the Gamma functions in (5) using Stirling’s formula ([1], p.
257) to give

ξ(1
2

+ it) =
(
23/4π1/4

)
t−1/4e−πt/4 Z(t) (6)

with error a factor 1 +O(t−1). In view of the fact that Z(t) takes (more-or-
less) order-one values for large t, this means that ξ is asymptotically expo-
nentially small for large t, and is then difficult to evaluate computationally
with small relative error, e.g. by direct numerical quadrature on formulae
such as (8) below.

In fact, Riemann himself obtained a large-t asymptote for Z(t), in un-
published notes later discovered and published by Siegel (see [4], Ch. 7). To
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leading order, with error of order t−1/4, this asymptote is the finite sum

Z(t) = 2

[√
t/(2π)

]
∑
k=1

k−1/2 cos

t log

√
t/2π

k
− 1

2
t− π

8

 . (7)

The Riemann-Siegel sum (7) plays a powerful role in modern analytical
and computational studies [3] of Riemann functions. Especially when one
or more correction terms for the O(t−1/4) remainder are added, it enables
accurate computation even for extremely large values of t. Most derivations
of (7), including Riemann’s original, are quite difficult, and the following
almost elementary derivation might be found of interest.

Fourier integral

For real t, the real-valued function u(t) = ξ(1
2

+ it) has the Fourier-cosine
representation ([5] eq.(2.5), [8] p. 36, [4] p. 213)

u(t) = 4
∫ ∞

0
cos(tz) ez/2φ(e2z) dz (8)

Here

φ(λ) =
∞∑
n=1

e−πn
2λ − 1

2
λ−1/2 (9)

is related to an elliptic theta-function ([1], p. 576), with the property

φ(λ−1) = λ1/2φ(λ) . (10)

Note that ez/2φ(e2z) = e−z/2φ(e−2z), is an even function of z, so that we can
also write

u(t) = 2
∫ ∞
−∞

eitz ez/2φ(e2z) dz (11)

Shifted path and series representation

Since the integrand of (11) tends to zero in the complex z = x + iy plane
as |x| → ∞ for 0 < y < π/4, we can shift the path of integration, writing
z = iπ/4 +X, so

u(t) = 2e−πt/4eiπ/8
∫ ∞
−∞

eitX eX/2φ(ie2X) dX (12)
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or, making use of symmetry,

u(t) = 4e−πt/4 < eiπ/8
∫ ∞

0
eitX eX/2φ(ie2X) dX (13)

Substituting the series (9) for φ, we get

u(t) = e−πt/4
∞∑
k=0

vk(t) (14)

where

v0(t) = −cos π
8

+ 2t sin π
8

1
4

+ t2
(15)

and for k = 1, 2, 3, . . .

vk(t) = 4
∫ ∞

0
eX/2 cos

(
tX − πk2e2X + π

8

)
dX (16)

with alternative forms

vk(t) = 2
∫ ∞

1
Y −3/4 cos

(
1
2
t log Y − πk2Y + π

8

)
dY (17)

= 8
∫ ∞

1
cos

(
2t logZ − πk2Z4 + π

8

)
dZ . (18)

The series (14) subject to (15) and (16), which appears to be new, may
be of interest in its own right. In particular, it has computational value at
arbitrary (not necessarily large) t. Even for large t, numerical quadratures
designed for rapidly oscillating integrands, mimicking stationary phase via
an exponential fade factor decaying away from the point of stationary phase
(e.g. as in [9]), retain good accuracy, with the advantage of not needing
correction terms. A somewhat similar approach was taken in [2], with a
different series representation.

Derivation of Riemann-Siegel sum

The Riemann-Siegel asymptote (7) for large t now follows directly by Kelvin’s
method of stationary phase ([7] p. 163, [6] p. 96). Writing (16) in the form

vk(t) = 4
∫ ∞

0
eX/2 cos Ψ(X) dX (19)
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where
Ψ(X) = tX − πk2e2X + π

8
(20)

we have Ψ′(X) = 0 when X = X0 = log
[√
t/2π/k

]
. Then the integral in

(19) is dominated by the neighbourhood of X = X0, with the Taylor series

Ψ(X) = Ψ(X0) +
1

2
(X −X0)2Ψ′′(X0) + . . .

=
[
tX0 − 1

2
t+ π

8

]
− t(X −X0)2 + . . . (21)

so

vk(t) = 4eX0/2
∫ ∞
−∞

cos
(
tX0 − 1

2
t+ π

8
− t(X −X0)2

)
dX + . . .

= 27/4π1/4t−1/4k−1/2 cos
(
tX0 − 1

2
t− π

8

)
+ . . . (22)

Hence for large t the series (14) is in agreement with the Riemann-Siegel
sum (7), once (6) is used to relate u(t) = ξ(1

2
+ it) to Z(t). Note that the

infinite series (14) now truncates to a finite sum with k <
√
t/2π, because it

is necessary that X0 > 0 in order that the point of stationary phase lie within
the range of the integral (19). Note also that vk = O(t−1/4) for k = 1, 2, 3, . . .,
so the term v0 = O(t−1) does not contribute, to leading order.
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