
A GUI for computing flows past general airfoils

S. T. Simakov, A. S. Dostovalova and E. O. Tuck

Departments of Applied and Pure Mathematics,
University of Adelaide, Adelaide, SA 5005

Abstract

We report a GUI for computing flows past airfoils of arbitrary shape.
The tool consists of a single m-file and integrates computer-aided design of
airfoils, choice of flow parameters, computation and visualisation of the outer
flow, and generation of data for a boundary-layer module. The numerical
algorithm employs the Theodorsen-Naiman method, which gives an accurate
approximation to the exact flow and is based on conformal mapping and the
use of finite trigonometric series. We suggest visual procedures for convergence
improvement, and discuss limitations of the technique. The program could be
an aid to teaching Aerodynamics and/or Complex Analysis.

1 Introduction

Computation of an unseparated flow past an airfoil using Prandtl’s boundary layer
equations requires determination of an ideal (outer) flow. This is often done using
conformal mapping of the outer-airfoil region onto the exterior of a standard do-
main (usually a disc) for which an analytic form of the solution is known. There
are cases when this approach leads to exact solutions (flows past the Zhukovskii
profiles, Karman-Trefftz profiles or some simple polygonal airfoils) but commonly
the solution is approximate in the sense that it describes an exact flow past a shape
approximating the airfoil. When, for example, the Schwarz-Christoffel transforma-
tion is used [6] such a shape is a polygon to which the wing section is reduced. If
the ideal flow solution is needed for boundary-layer computation, then, in addition
to closely fitting the airfoil, the approximating shape must preserve its smoothness
properties. This requirement stems from the fact that the boundary-layer separation

1

Australasian MATLAB User Conference, Melbourne 2000 2

algorithms are sensitive to singularities of the boundary, or, in physical terms, to
fast changes in the pressure gradient, and it is necessary to avoid false predictions
of separation from corners which are in fact numerical artefacts.

The Theodorsen-Naiman technique [9, 10, 7, 8, 1] allows us to explicitly construct a
mapping that meets such a requirement for a wide class of airfoils. We report a tool
that implements this procedure in MATLAB, which provides simplicity of coding
and flexibility in handling graphics and mathematics and seems to be one of the
most suitable environments for such algorithms.

In Section 2 we provide a concise and self-contained theoretical background of the
method. In Section 3, a summary and details of how we implement the technique
are given. We also discuss limitations of the method. One of limitations is the
requirement that the near-circle obtained from the airfoil by an auxiliary Zhukovskii
mapping must be a star-shaped region. Another limitation is connected with the
restriction on the geometry of the trailing edge, which must be a cusp of the first
kind. Violation of this restriction may destroy a one-to-one correspondence between
angular parameters in the circle and the near-circle planes and result in an inability
to satisfy the Kutta-Zhukovskii condition. The trailing-edge geometry limtation is
not present if a preliminary Karman-Trefftz transformation is used for mapping to
a near-circle plane. Section 4 outlines features of the graphical user interface.

2 Ideal flow past general airfoils

We will use a methodology developed and published in [9, 10, 7, 8, 1]. Specifics of
our procedure require notational adjustments and the theoretical material below is
intended to provide this.

Suppose that an airfoil contour is given in the ζ-plane. One of our goals will be to
find a transformation z(ζ), or equivalently ζ(z), that satisfies

ζ(z) = zeiα1 +O(1) as |z| → ∞, (1)

for some α1 and conformally maps the exterior of the airfoil onto the exterior of
a circle |z| < R. The flow past such a circle is described by the complex velocity
potential

w(z;U∞, α0, R,Γ) = U∞

(
ze−iα0 +

R2eiα0

z

)
+
iΓ

2π
log

ze−iα0

R
. (2)

The condition (1) preserves uniformity of the stream at infinity, so the complex

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 3

velocity potential for the flow in the plane of the airfoil has the form

f(ζ) = w(z(ζ)) ≡ w(z(ζ);U∞, α0, R,Γ) , (3)

To determine appropriate values of the parameters U∞, α0 and Γ in (2), consider
the complex velocity

f ′(ζ) =
w′(z(ζ))

ζ ′(z)
= U∞e

−i(α1+α0) +
iΓ

2π
ζ−1 +O(ζ−2). (4)

If α is the uniform flow direction angle in the ζ-plane, then we must choose α0 =
α−α1. Parameter U∞ must be set to the magnitude of the uniform flow at infinity.
Similarly, formula (4) shows that the circulation Γ of the flow in the z-plane coincides
with the circulation of the flow in the physical ζ-plane. Choice of this parameter’s
value is decided by the Kutta-Zhukovskii condition, and will be discussed later.

The required mapping z(ζ) can be obtained in three steps.

1) First the Zhukovskii transformation

ζ = z̃ +
a2

z̃
(5)

maps the flow domain onto a domain in an auxiliary z̃-plane. As a result of
this transformation, a cusped part of the boundary is mapped onto a smooth
segment, and the trailing edge singularity is removed. Mapping (5) also turns
an oblong shape that the airfoil commonly has onto a rounded domain which
is referred to as a near-circle [1].

TE

z̃ζ

ζ = z̃ + a2/z̃

Figure 1: Zhukovskii mapping

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 4

By changing to a new variable

z̄ = (z̃ − ε)e−iα1 , (6)

or, equivalently, translating and rotating the coordinate system, we make its
origin coincide with the “center” of the near-circle and its positive real axis
intersect the image of the trailing edge. This transformation is needed for
computational convenience.

2) The second step is to apply the mapping

z̄ = z exp{ω(z)} , (7)

where ω(z) = ω(z;R) is analytic if |z| > R and ω(z) → 0 as |z| → ∞. This
form of relation between z and z̄ and properties of mapping (5) guarantee that
the condition (1) is met.

3) Combining the first two steps we obtain the composite mapping ζ = ζ(z̄(z))
and the ideal flow past the airfoil.

There is a certain degree of freedom in the choice of auxiliary parameters a and ε
and we use this freedom to improve convergence of the scheme. These parameters
cannot be chosen arbitrarily however.

Suppose the chord length of the airfoil is L and let a be a little less than L/4.
Position the airfoil so that the two conditions are satisfied:

a) the trailing edge is at ζ = 2a,

b) the point ζ = −2a is inside the airfoil.

ae
ψ(θ)

θ TE

z̄

ae
λ

TE
φ

z

z̄ = zeω(z)

Figure 2: Correspondence between the boundary points

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 5

Let θ and φ be polar angles in the z̄- and z-planes respectively. The boundaries of
the near-circle in the z̄ plane and its image in the z-plane can be represented as

z̄ = aeψ(θ)+iθ and z = aeλ+iφ. (8)

Here ψ(θ) is a known function, which we determine from (5) and (6). If ζ = ζ(t)
is a given parametric form of the airfoil, then z̄(t) found from (5) and (6) is a
parametrization of the near-circle. Determine t(θ) from the equation arg[z̄(t)] = θ
and write

aeψ(θ) = |z̄(t(θ))| ⇒ ψ(θ) = log(|z̄(t(θ))|/a). (9)

Note that λ is a constant yet to be chosen, and R = aeλ.

Correspondence under the mapping (7) between the boundary points of the z̄ and z
domains may be expressed in terms of the dependence θ = θ(φ), for which we must
have

aeψ(θ(φ))+iθ(φ) = aeλ+iφ+ω(aeλ+iφ) . (10)

It turns out that knowledge of θ(φ) allows us to determine ω(z). Here we reproduce
the Laurent series demonstration [9, 10, 1] of this fact. An alternative proof uses
the Schwarz formula.

Since ω(z) is analytic in the domain external to the circle z = Reiφ = aeλ+iφ and
vanishes at infinity we can write

ω(z) =
∞∑
m=1

(am + ibm)(R/z)m . (11)

It follows from (10) that

ψ − λ+ i(θ − φ) =
∞∑
m=1

(am + ibm)(cosmφ− i sinmφ),

and so

ψ − λ =
∞∑
m=1

(am cosmφ+ bm sinmφ), (12)

θ − φ =
∞∑
m=1

(bm cosmφ− am sinmφ) . (13)

It follows from (12) that

λ = a0 ≡
1

2π

∫ 2π

0

ψ(θ(φ))dφ, (14)

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 6

{
am
bm

}
=

1

π

∫ 2π

0

ψ(θ(ϕ))

{
cosmϕ
sinmϕ

}
dϕ . (15)

Substitute (15) into (13), and use Dirichlet’s kernel and the Riemann–Lebesgue
lemma to obtain the integral equation for θ(φ)

θ(φ)− φ =
1

2π
p. v.

∫ 2π

0

cot

(
ϕ− φ

2

)
ψ(θ(ϕ))dϕ. (16)

The strategy for constructing ω(z) can therefore be represented as

Airfoil
geometry

ψ(θ)
−→ Integral

equation (16)

θ(φ)
−→ Formulae

(14) and (15)
−→ λ, ω(z)

There is a semi-inverse approach when either ψ or θ are specified in terms of φ.
Expansion into the Fourier series (12) or (13) gives the coefficients {am, bm} and
therefore λ and ω(z). However, when such an approach is used, the shape of the
airfoil cannot be considered as the problem input, but must be recovered once ω(z)
is found.

We start the next section by reviewing Naiman’s method for approximate solution
of (16). This method is based on the properties of finite trigonometric expansions
and uses the series derivation of (16) as a prototype.

3 Naiman’s method and implementation remarks

Naiman’s method

Consider a function Ψ(φ) that represents a finite trigonometric series of the form:

Ψ(φ) = A0 +
n∑

m=1

(Am cosmφ+Bm sinmφ) , (17)

where Bn is taken to be zero.

If Ψ(φ) is given by (17), then conditions

Ψ(kπ/n) = ψk k = 0, . . . , 2n− 1 (18)

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 7

are equivalent to

A0 =
1

2n

2n−1∑
k=0

ψk ,

Am =
1

n

2n−1∑
k=0

ψk cosm
kπ

n
(m = 1, . . . , n) ,

Bm =
1

n

2n−1∑
k=0

ψk sinm
kπ

n
(m = 1, . . . , n) .

(19)

Now introduce

ε(φ) ≡
n∑

m=1

(Am sinmφ−Bm cosmφ)

and consider this function at φ = k′π/n (k′ = 0, . . . , 2n− 1). It can be shown [8, 1]
that

ε(φ = k′π/n) = − 1

n

2n−1∑
k=0

ψkσ(k − k′) , (20)

where σ(K) ≡

{
cot Kπ

2n
, K odd,

0 , K even.
.

Now let φj ≡ jπ/n, j = 0, . . . , 2n − 1, and consider a finite sequence of numbers
{θk} (k = 0, . . . , 2n− 1) from [0, 2π) that satisfies

θj − φj =
1

n

2n−1∑
k=0

ψ(θk)σ(k − j), j = 0, . . . , 2n− 1. (21)

Let ψj = ψ(θj) and use (19) to define Am and Bm and hence

Ω(z) =
n∑

m=1

(Am + iBm)(aeA0/z)m .

The image of the circle z = aeA0+iφ (φ ∈ [0, 2π)) under such a transformation can
be parametrized as

z̄ = aeψ
?(θ)+iθ . (22)

The superscript ? was used here to indicate that in general ψ?(θ) and ψ(θ) are
different functions. Parameters φ and θ corresponding to the same point on the
circle are connected as

θ = θ?(φ) ≡ arg
[
z̄

(
z = aeA0+iφ

)]
c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 8

Rewrite (22) as
z̄ = zeψ

?(θ)−A0+i(θ−φ) .

Using z̄ = z exp{Ω(z)} with z = aeA0+iφ we have

ψ?(θ?(φ)) = A0 +
n∑

m=1

(Am cosmφ+Bm sinmφ), (23)

θ?(φ)− φ =
n∑

m=1

(Bm cosmφ− Am sinmφ). (24)

It follows from (23) and the way the coefficients of this finite trigonometric series
have been formed that

ψ?(θ?(φj)) = ψj ≡ ψ(θj). (25)

Furthermore, it follows from (20) that

θ?(φj)− φj ≡
n∑

m=1

(Bm cosmφ− Am sinmφ) =
1

n

2n−1∑
k=0

ψkσ(k − j).

Since θj satisfy

θj − φj =
1

n

2n−1∑
k=0

ψ(θk)σ(k − j) =
1

n

2n−1∑
k=0

ψkσ(k − j),

we obtain
θ?(φj)− φj = θj − φj ⇒ θ?(φj) = θj .

This along with (25) gives

ψ?(θj) = ψ(θj) (j = 0, . . . , 2n− 1).

Hence the shape z̄ = a exp(ψ?(θ) + iθ) coincides with the required near-circle z̄ =
a exp(ψ(θ)+ iθ) at θ = θj (j = 0, . . . , 2n− 1) thus approximating it. As a result the
approximate airfoil will coincide with the given airfoil at points ζ(a exp(ψ(θj)+iθj)),
where ζ(z̄) is defined by (5) and (6).

If the flow is uniform at infinity with magnitude U∞ and direction angle α, then its
complex velocity potential is

f(ζ) = w(z(ζ);U∞, α0 ≡ α− α1, ae
A0 ,Γ).

Circulation Γ is chosen so as to satisfy the Kutta-Zhukovskii condition (also referred
to as the Chaplygin condition [4, 5]):

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 9

for f ′(ζ) to be finite at the trailing edge, where ζ ′(z) = 0, the rear
stagnation point of the z-flow must correspond to the trailing edge of
the airfoil.

Suppose that zT = aeA0+iφT is a point corresponding to the trailing edge ζ = 2a.
Then we must have:

U∞

(
e−iα0 − a2e2A0+iα0

a2e2A0+i2φT

)
+
iΓ

2π

1

aeA0+iφT
= 0,

or
Γ = 4πaeA0U∞ sin(α0 − φT) = 4πaeA0U∞ sin(α− α1 − φT). (26)

The angle φT in (26) is found from the equation:

φ+
n∑

m=1

(Bm cosmφ− Am sinmφ) = 0. (27)

Implementation remarks

The key step is to determine {θk} by solving the non-linear system (21) with φj =
jπ/n and ψ(θ) assumed to be known. Formula (9) shows how ψ(θ) is determined in
the case when the dependence t = t(θ) connecting the airfoil’s boundary parameter
with the polar angle in the z̄ plane can be easily established. If the boundary
of the airfoil is specified as a sequence of coordinates we define ψ(θ) using cubic
interpolation.

We solve (21) using the iterative procedure:θ
[`+1]
j = φj +

1

n

2n−1∑
k=0

ψ(θ
[`]
k)σ(k − j),

θ
[0]
j = φj

(28)

where, j = 1, . . . , 2n− 1 for each ` = 0,

Our numerical procedure requires an explicit form for the transformation z̃ = z̃(ζ)
defined by (5). This form is

z̃ =
1

2
(ζ +

√
ζ2 − 4a2), (29)

where the used branch of
√
ζ2 − 4a2 satisfies the following conditions:

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 10

(a)
√
ζ2 − 4a2 = ζ +O(ζ−1) as |ζ| → ∞;

(b) its Riemann surface is cut along a line which connects the branching points
ζ = ±2a and lies entirely inside the airfoil.

Transformation (6) has a twofold purpose. Firstly, as we noted earlier, it enables
us to center the origin of the new coordinate system on the image of the airfoil,
which helps to achieve a better convergence of the iterative procedure. Secondly,
this simple transformation can in some cases facilitate the choice of the coordinate
system for which the θ-parametrization of the boundary in (8) becomes possible.
If the image of the airfoil under (29) is not a star-shaped region, another mapping
must be used instead of (6).

Mapping (5) applied to a slender airfoil may result in a shape with a protubering
segment corresponding to the nose if the parameter a is taken from the permissible
interval indiscriminately. This can worsen convergence or even make it impossible
no matter what ε is chosen in (6). The same difficulty arises when the airfoil is not
properly oriented with respect to the axes of ζ. (Note however that the orientation
of the airfoil with respect to the flow is given and so may not be altered.)

Convergence of the process (28) thus strongly depends on the choice of the charac-
teristics: the value of a in (5), parameter ε and the orientation of the airfoil in the
ζ-plane. Search for a suitable combination of these parameters can be carried out
with a tool that uses them as an input and instantly provides a visual feedback by
displaying the resulting image of the airfoil in the z̃-plane. We organize this search
as follows.

Suppose that the chord of the airfoil is L. Let εnorm be a complex parameter. The
mapping

ζnorm = z̃norm + 1/z̃norm

transforms the circle z̃norm = εnorm + |1 − εnorm|eit (t ∈ [0, 2π)), into a Zhukovskii
airfoil. We denote its chord by l(εnorm). Now taking

a = a(εnorm) = L/l(εnorm), ε = aεnorm

and considering the image of the circle z̃ = ε + |a − ε|eiθ (θ ∈ [0, 2π)) under the
transformation (5) we obtain a Zhukovskii airfoil whose trailing edge is at ζ = 2a
and whose chord is al(εnorm) = L. Displaying this and the given airfoil in the
same axes with their trailing edges juxtaposed at ζ = 2a(εnorm) we can observe the
discrepancy between them and control it by changing εnorm. The latter can be most
conveniently done by making εnorm depend on the position of a movable object on

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 11

the same screen (see Figure 3). The smaller the discrepancy between the noses of
the airfoils is achieved the better becomes the chance that the image of the given
airfoil under mapping (5) is an acceptable near-circle shape. A separate screen
containing images of both airfoils in the z̃-plane provides an additional control over
the described manipulations. Note that in such a procedure the required value for
ε is obtained automatically.

Figure 3: Choice of optimal mapping parameters using Zhukovskii’s templates

When the system (21) has been solved we use (19) to define Am and Bm. The
transformation ζ(z) now can be written as

ζ = ζ(z) = ε+ z̄(z)eiα1 +
a2

ε+ z̄(z)eiα1
, (30)

where

z̄(z) = z exp

{
n∑

m=1

(Am + iBm)
(z

aeA0

)−m}
.

The flow past the airfoil is given by formula (3) in which α0 = α − α1 and Γ is
defined by (26).

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 12

We have already noted that the method is applicable if the boundary of the near-
circle admits parametrization in terms of the polar angle θ. It also essential that
the function

θ?(φ) = φ+
n∑

m=1

(Bm cosmφ− Am sinmφ)

is one-to-one. This property does not simply follow from θ(φ) being one-to-one but
also depends on the behaviour of ψ(θ). If the near-circle has salient points, then
θ?(φ) is likely to be oscillatory in their neighbourhood no matter how large n is
taken, a behavior akin to the Gibbs phenomenon. Normally these considerations
apply only to the point corresponding to the trailing edge of the airfoil. If mapping
(5) is used, then, in order for the boundary of the near-circle to be smooth, the
trailing edge must be a cusp of the first kind. If the trailing edge represents a finite
angle, the Zhukovskii transformation results in a near-circle with a corner point,
which leads to oscillations of θ?(φ), as shown on Figure 4 and self-intersections of
the boundary of the approximating airfoil, on the computational level the procedure
failing at the stage of solving equation (27) needed to satisfy the Kutta-Zhukovskii
condition.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

φ

θ* (φ
)

Non−cusped trailing edge

Figure 4: Typical behaviour of θ∗(φ) for non-cusped geometry

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 13

The Karman-Trefftz transformation is commonly used (as, for example in [3, 2])
instead of the Zhukovskii mapping to generate a near-circle without a corner point
if the trailing edge is arbitrary.

4 Main states of the GUI and concluding remarks

We implement the algorithm reviewed in Section 3 in the form of a single m-function.
In addition to the segment performing the iterative procedure (28), the tool incor-
porates interfaces for on-screen design of airfoils and choice of optimal mapping
parameters needed for initial approximation. Post-processing options are provided
including basic visualisation and storing data in a specific format.

Figure 5: On-screen shape generation

Computer-aided airfoil shape generation uses second-order Bezier curves. Figure 5,
representing the initial state of the GUI, shows such curves combined in an airfoil.
Their control points are active and can be moved on the screen using the pointer.
For the airfoil outline to remain smooth, the joint control points of the adjacent
Bezier curves are only allowed to move along the segments between the respective
middle control points, which as a result form vertices of a circumscribed polygon.
The joint control points are shown as solid disks. Clicking on any of them with

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 14

the right button refines the partition of the outline by adding to it a Bezier curve
segment in the neighbourhood of the disk.

Figure 6: States of the shape generation mode

The sides of the polygon, as well as the control points of the Bezier curves, can be
removed at any stage of the shape generation mode as shown in Figure 6.

Figure 7: Default orientation of the airfoil

Figure 7 exhibits the state that occurs after the airfoil outline has been generated.
The button “Load data” of the previous mode allows to access this state directly if

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 15

the wing geometry is provided as an m-function getwing. Below we give an example
of getwing for a non-symmetric Zhukovskii airfoil.

function Zeta=getwing

epsilon=-0.1+0.1i;

a=1;

N=100;

Z=epsilon+(a-epsilon)*exp(i*[0:N-1]*2*pi/N);

Zeta=Z+a^2./Z;

The airfoil is oriented so that its longest chord is horizontal and it is this orientation
with respect to which we shall measure the direction of the uniform flow.

Now we have to specify the mapping parameters a, ε and α1. Buttons “Templates”
and “Map 1” allow to proceed to one of the two possible states shown in Figures 3
and 8. The method of Figure 3 uses Zhukovskii’s airfoils and is described in Section 3.
The state in Figure 8 uses a more straightforward but less effective method, in which
the values of a and ε are decided on the basis of comparison of the image of the
airfoil under the Zhukovskii mapping with circles.

Figure 8: Determination of mapping parameters

Pressing on the button “Map 2” brings the user to the control panel shown in
Figure 9.

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 16

Figure 9: Setting up computation and post-processing parameters

Here one can set up such parameters as the number of iterations, or the number of
points the approximating airfoil is to share with the exact airfoil. Visualisation and
post-processing parameters can also be entered at this stage.

Pressing the button “Proceed” starts the iterative procedure whose aim is to de-
termine {Am, Bm}. When these coefficients have been found, the program creates
two standard figures as in Figure 10. One of them displays the original and the
approximating airfoils to allow their comparison.

Figure 10: Basic visualisation

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 17

Another figure shows a few streamlines of the computed flow that pass near the
airfoil. Visualisation provided within the tool is basic and was primarily intended to
facilitate detection of possible errors in the code or calculations by examining local
behaviour of the flow near the body, in particular near the stagnation point and the
trailing edge.

Figure 11: Flow near the stagnation point and the trailing edge

The resulting coefficients {Am, Bm} can be saved (using the pop-up menu “Save
V -data?”) in a mat-file for further interpretation, which could be some form of a
3-D flow as shown in Figure 12 or various types of pressure-loading curves.

Figure 12: A variant of 3-D visualisation

Surface pressure distribution output can also be saved for boundary-layer compu-
tation (BLC) in the format described in [12]. The corresponding BLC module is
based on a program written for [11] and currently exists in the form of a C++ code.

c© Departments of Applied and Pure Mathematics, University of Adelaide

Australasian MATLAB User Conference, Melbourne 2000 18

References

[1] I. H. Abbott and A. E. von Doenhoff. Theory of wing sections. Dover, New
York, 1959.

[2] T. Cebeci, R. W. Clark, K. C. Chang, N. D. Halsey and K.Lee. Airfoils with
separation and the resulting wakes. J. Fluid Mech., 163:323-347, 1986

[3] N. D. Halsey. Potential flow analysis of multielement airfoils using conformal
mapping. AIAA J., 17:1281–1288, 1979.

[4] L. D. Landau and E. M. Lifshitz. Theoretical physics. Vol. VI. Hydrodynamics.
Nauka, Moscow, 1988.

[5] M. A. Lavrentjev and B. V. Shabat. Hydrodynamical problems and their math-
ematical models. Nauka, Moscow, 1977.

[6] J. A. Moriarty and E. O. Tuck. Thin airfoils with high-incidence flaps or blunt
trailing edges. Aeronatical J., 93:93–99, 1989.

[7] I. Naiman. Numerical evaluation of the ε-integral occurring in the Theodorsen
arbitrary airfoil potential theory. NACA ARR L4D27a, 1944.

[8] I. Naiman. Numerical evaluation by harmonic analysis of the ε-function of the
Theodorsen arbitrary potential theory. NACA ARR L5H18, 1945.

[9] T. Theodorsen. Theory of wing sections of arbitrary shape. NACA Rept. 411,
1931.

[10] T. Theodorsen and I. E. Garrick. General potential theory of arbitrary wing
sections. NACA Rept. 452, 1933.

[11] E. O. Tuck and A. S. Dostovalova. Airfoil nose shapes delaying leading-edge
separation. Aeronautical J., to appear.

[12] M. J. Werle and R. T. Davis. Incompressible laminar boundary layers on a
parabola at angle of attack: A study of the separation point. Trans. ASME: J.
Appl. Mech., pages 7–12, March 1972.

c© Departments of Applied and Pure Mathematics, University of Adelaide

	Introduction
	Ideal flow past general airfoils
	Naiman's method and implementation remarks
	Main states of the GUI and concluding remarks

