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Abstract

Riemann’s hypothesis (that all non-trivial zeros of the zeta func-
tion have real part one-half) is the most famous currently unproved
conjecture in mathematics, and a $1M prize awaits its proof. The
mathematical statement of this problem is only at about middle un-
dergraduate level; after all, the zeta function is much like the trigono-
metric sine function, and every (?) student who has completed a first
course in calculus knows that all zeros of the sine function are (real)
integer multiples of π. Many of the steps needed to make progress
on the proof are also not much more complicated than that. Some of
these elementary steps, together with numerical explorations, will be
described here. Nevertheless the Riemann hypothesis has defied proof
so far, and very complicated and advanced abstract mathematics (that
will NOT be described here) is often brought to bear on it. Does it
need abstract mathematics, or just a flash of elementary inspiration?
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Preamble

There is little that is new in this colloquium – the new things are mainly a
few computations, and some suggestions for changes in emphasis. However,
in preparing to introduce this colloquium it seemed to me that almost ev-
erything I wanted to say was accessible to anyone who has completed a first
course in calculus. The Riemann hypothesis is certainly describable at that
level, and it might also be proveable at that level. In contrast to some who
have commented on this matter (see [8], p. 234), I would be delighted if that
were to be the case. Those of us on the more-applied side of mathematics use
special functions routinely as part of our kit of tools, and in principle there is
nothing magic about the zeta function compared to the many other special
functions in the handbook [1]. Such an assertion might be denied by the
pure mathematicians, and its “magic” then leads into their abstract world.
But what if all that was needed was a simple identity or inequality? It will
have to be a very obscure identity, or else it would have surely been found in
the 150 years since Riemann. But perhaps the wrong sort of mathematicians
have been looking, and all I really want to do here is to encourage a wider
range of mathematically-literate people to try to solve this problem.

Text for speaking script plus slides

The Riemann zeta function is defined ([1] p.807) by the series

ζ(s) =
∞
∑

n=1

n−s = 1 +
1

2s
+

1

3s
+ . . .

which converges for ℜs > 1 if s is a complex number. [Recall for example
that the case s = 1 gives the divergent harmonic series of reciprocal integers,
whereas the case s = 2 is a convergent series of reciprocal squares.]

The zeta function is in some ways similar to the trigonometric sine func-
tion, which can be defined ([1] p.74) by the series

sin(t) =
∞
∑

n=0

(−1)n t2n+1

(2n + 1)!
= t −

t3

6
+

t5

120
− . . .

which converges for all real or complex values of t. (The reason for using s for
the argument of one function and t for the other will become clear shortly!).
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Now Riemann’s hypothesis is simply that “if ζ(s) = 0 then ℜs = 0.5”.
There are a couple of things that need qualifying about that statement in
quotes, notably the fact that if ℜs = 0.5 < 1, the above series definition of
ζ(s) doesn’t converge, but let us briefly put that difficulty aside, and make
a comparison with the sine function.

Namely, the equivalent statement for the sine function is that “if sin(t) =
0 then t is real”. In fact, everyone knows (see e.g. Figure 1) that these
zeros of sin(t) are integer multiples of π, but the equivalent of the Riemann
hypothesis only requires that they are all real. The proof of reality of the
zeros of sin(t) is a high-school trigonometry exercise as follows.

If t = x + iy is complex, then

sin(x + iy) = sin(x) cosh(y) + i cos(x) sinh(y) = 0

only if both sin(x) cosh(y) = 0 and cos(x) sinh(y) = 0. Since cosh(y) > 0
for all y, this means that sin(x) = 0. But because cos2(x) + sin2(x) = 1,
if sin(x) = 0 then cos(x) can not be zero, so necessarily sinh(y) = 0 which
holds only if y = 0, so t = x =real, as required.

Incidentally although I have said that everyone knows that (for example)
sin(π) = 0, what if the only thing we know about the sine function is its
series, i.e. what if we don’t know any trigonometry? Can we use the series
alone to prove sin(π) = 0, and eventually to prove that all zeros of the sine
function are real? If we can answer “Yes” to this question (and we can for
the sine function), maybe we can prove Riemann’s hypothesis by using the
same methods on the zeta function. Sadly, this is a forlorn hope!

Let us now return to the difficulty that the series for ζ(s) doesn’t converge
if ℜs = 0.5. At first sight that looks rather fatal, since lack of convergence
means that we can’t compute the zeta function via its series! However, we
can make further progress by analytically continuing the function ζ(s) into
the region ℜ(s) < 1.

There are lots of ways to do this. I quote first one simple way, though I
won’t use it in this talk. Namely ([9], p.23),

ζ(s) =
1

s − 1
+ Γ(s)−1

∫

∞

0

xs−1e−x
[

1

1 − e−x
−

1

x

]

dx

where
Γ(s) =

∫

∞

0

xs−1e−xdx
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is the gamma function ([1], p.255), taught to our first year students. It is
easy to prove (by expanding 1/(1 − e−x) in a geometric series of powers of
e−x) that this integral formula for ζ(s) equals the series when ℜs > 1, but
in fact this integral converges for ℜs > 0, so can be used to define ζ(s) when
0 < ℜs < 1.

So anyway, now we at least know how to compute ζ(s) when ℜs = 0.5,
and it is possible by numerical integration to show that ζ(s) = 0 when
s = 0.5 + i14.135 . . . and s = 0.5 + i21.022 . . . and s = 0.5 + i25.011 . . .
and etc. In fact, there are infinitely many such zeros with ℜs = 0.5, a
result proved in 1914 by G.H. Hardy ([5], [9] p.256). Riemann’s hypothesis
is (almost) that there are no others, i.e. that ζ(s) is not zero anywhere else
in the complex s-plane.

There is that nasty word “almost” still to explain! I won’t do it it here,
but we can analytically continue even into the negative half-plane ℜs < 0
and if we do, we can easily show that ζ(−2) = ζ(−4) = ζ(−6) = . . . = 0.
These are the “trivial” zeros, and we won’t worry further about these.

Just a bit of history here before we go on with the maths. Bernhard
Riemann conjectured his hypothesis in a remarkable short paper presented to
the Berlin Academy in 1859, an English translation of which is an Appendix
to Edwards’ book [4]. Actually he didn’t really have a great interest in this
hypothesis per se at the time. His paper was entitled “On the number of
prime numbers less than a given quantity”, and he just mentioned in passing
regarding the zeros or roots of a function (see below) related to the zeta
function that “... it is very likely that all of the roots are real. One would of
course like to have a rigorous proof of this, but I have put aside the search
for such a proof after some fleeting vain attempts because it is not necessary
for the immediate objective of my investigation.” Later it became clear that
this hypothesis was very important in number theory, with implications for
prime numbers that I will not discuss here, though I shall mention primes
again briefly before the talk ends.

Since 1859, there have been many attempts to prove Riemann’s hypoth-
esis, so far without success. The Clay Mathematics Institute of New York
has offered prizes of US$1M each for solution of several unsolved problems in
mathematics, one of which is the Riemann hypothesis, see www.claymath.org/
prizeproblems/riemann.htm. Supposedly some powerful and respected math-
ematicians are very close to a proof, notably Louis de Branges of Purdue
University, who proved in 1984 a related result, the Bieberbach conjecture.
A summary of de Branges’ ideas for proof of the Riemann hypothesis, at
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least as they stood in 2002, is an Appendix to the popular book by Sabbagh
[8]. The fact that it has so far defied proof in spite of massive efforts by good
mathematicians is interesting in itself; why should this be so for a function
that is so like the simple trigonometric sine?

Let us return to the mathematics, and another analytic continuation ([9],
p.22) which emphasises the similarity to the trigonometric sine function. Let
us define a new function

u(t) = π−s/2Γ(s/2)ζ(s)

where s = 0.5 + it. Riemann himself showed in his 1859 paper that this
function is real when t is real, i.e. when ℜs = 0.5, and that it has a Fourier-
cosine representation

u(t) =
∫

∞

0

U(x) cos xt dx

where

U(x) = −2e−x/2 + 4ex/2

∞
∑

n=1

e−n2πe2x

This looks a bit messy, but it is actually quite straightforward to use to
compute u(t) by numerical integration, the series of “exponentials of expo-
nentials” in the definition of the Fourier transform U(x) being very rapidly
convergent. Although we are mostly interested in real t or ℜs = 0.5, the
Fourier representation converges for 0 < ℜs < 1, so it is as useful an analytic
continuation as the previous integral.

Incidentally, an important element in Riemann’s proof of the above ana-
lytic continuation is the fact that U(x) is an even function of x when consid-
ered on the whole real x-axis. In effect this relates a sum of exponentials with
argument proportional to e2x to a sum of exponentials involving its reciprocal
e−2x. This is a rather surprising result, which was actually proved by Poisson
as early as 1823, according to Whittaker and Watson [14], p. 124; see also
[10], p.444.

Now since ζ(s) = 0 if u(t) = 0, Riemann’s hypothesis simply states
that all zeros of u(t) are real (it has no trivial zeros), so the new function
u(t) is quite analogous to the trigonometric function sin(t). Actually it is
more analogous to a “damped” sine, since it tends to zero exponentially for
large t. Hence in order to compute and plot graphs for large real t, it is often
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convenient to first re-scale to remove this decay (and some other unimportant
factors), writing

u(t) = −2−1/4π1/4t7/4e−πt/4 û(t)

where the scaled function û(t) takes (more-or-less) order one values for large
t.

When t is large, there is a simple asymptotic expansion of this (scaled)
function û(t) in terms of a finite sum of cosines, namely

û(t) = 2
m

∑

k=1

k−1/2 cos



t log

√

t/2π

k
−

1

2
t −

π
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 + O(t−1/4)

where m is the largest integer less than
√

t/2π. [As a historical aside ([3],

p.256), Riemann himself obtained this expansion, including an explicit esti-
mate of the O(t−1/4) error term, but did not publish it. Carl Siegel in 1932
found Riemann’s handwritten notes and polished them for publication, so
the above expression is called the Riemann-Siegel sum.]

The scaled function û(t) is usually called the Hardy function and is writ-
ten Z(t). However, here I will retain the notation u(t), ignoring the “hat”
from now on, even when the scaling has been done.

Anyway, we now have various ways to compute u(t) numerically. I have
programmed three such methods (including another method of my own [12]),
and they give results in numerical agreement with each other in appropriate
ranges of validity. But our greatest interest is in large t, where the Riemann-
Siegel sum comes into its own, whereas numerical integration loses accuracy
if t is large.

Figure 2 is a graph of (scaled) u(t) for 0 < t < 100. It oscillates, with
infinitely many zeros, like the sine function. However, its oscillations are
neither periodic, nor of constant magnitude. Much effort (e.g. [9], Ch.7) has
gone into trying to estimate various statistical properties of this noise-like
function.

But still, you may say that if we really want to prove the Riemann hy-
pothesis, what is the use of computing u(t) for real t? We have to show not
just that u(t) has lots of real zeros, but also that it has no zeros that are not
real. So in principle it appears that we have to look at complex t as well.

Well, actually this may not be so. Here I have to stray into conjecture-
land a bit, or at least into things I don’t quite understand. Let me first state
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a result due to Jeffrey Lagarias [6], who proved in 1997 (in effect) that the
Riemann hypothesis is true if and only if

ℑ

[

u′(t)

u(t)

]

<
> 0 when ℑt

>
< 0 . (1)

I have not yet been able to follow Lagarias’s proof myself, but there are
several reasons why we might believe the result. First there is the simple
residue theorem result

∫

C

u′(t)

u(t)
dt = 2πiN

for any analytic function u(t) with no poles and N simple zeros inside a
closed curve C. After all, locally near each simple zero of u(t) the integrand
has a simple pole with residue 1. If we now choose C to be a rectangle (just)
in ℑt > 0, and do some approximate estimates of the integral, the condition
N = 0 that there be no such zeros is likely to reduce to the above condition
on its integrand (I haven’t checked that though). The result also generalises
in an obvious way to functions with multiple zeros and poles.

The second reason is based on observing that the Riemann hypothesis
must be true if the magnitude of u(t) (and hence the logarithm of that
magnitude) always increases as we move off the real t-axis in a direction
perpendicular to it. (Otherwise how can it ever reduce to zero?) Thus if
t = x + iy, then

∂

∂y
log |u(t)| =

∂

∂y
ℜ log u(t)

must be positive for y > 0 and negative for y < 0. But

∂

∂y
ℜ log u(t) = −ℑ

d

dt
log u(t) = −ℑ

u′(t)

u(t)

Hence the Lagarias equivalence follows.
A third reason takes the above in a geometrical direction, and involves

properties of level curves of the real and imaginary parts of u(t). Thus if

u(x + iy) = u1(x, y) + iu2(x, y) = Reiθ

where tan θ = u2/u1, then also

ℑ
u′(t)

u(t)
=

∂θ

∂x
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Now consider level curves u1 = 0 and u2 = 0 in the (x, y) plane near the real
axis y = 0. The former (say U) must cross the real axis at right angles at
each real zero of u1. The latter (say V ) must also cross the real axis at right
angles, at turning points of u1, where u1x = u2y = 0, and this must happen
at least once between any two zeros of u1, by Rolle’s theorem. Suppose
the turning point is a maximum, and let U start from the left of V . Now
Riemann’s hypothesis is true if and only if U and V do not intersect, since
if they did, u1 = u2 = 0, and such an intersection point would be a zero of
u(t). But then in y > 0, θ = +π/2 on U and θ = 0 on V ; thus θ decreases as
we move to the right, or ∂θ/∂x < 0 in y > 0, as required. Similar arguments
apply in y < 0, and for V curves that begin at a minimum.

There is an interesting immediate consequence of the Lagarias equiva-
lence. Clearly on the real axis y = 0 itself the quantity ℑu′(t)/u(t) vanishes,
but if we expand it in a Taylor series for small y, we find that

ℑ

[

u′(t)

u(t)

]

= y

[

u1u1xx − u2
1x

u2
1

]

+ O(y3)

where all quantities involving u1 are evaluated on y = 0. Now if the Riemann
hypothesis is true, the Lagarias equivalence asserts that the numerator is
negative, i.e. for real t we have w(t) > 0 where

w(t) = u′(t)2 − u(t)u′′(t) ,

since on the real axis x = t and u1 = u.
This is true if the Riemann hypothesis is true; I believe that the converse

may also hold, i.e. that the Riemann hypothesis may be true if w(t) > 0.
If so, then we need only concern ourself with real values of t. Even if this
converse fails for some functions, I am confident that it will not fail for the
Riemann function. That is, if we could prove that w(t) > 0, so that the
Lagarias equivalence is satisfied on y = 0, I am confident that this will imply
its satisfaction for small non-zero y.

A further analogy [11] with the trigonometric sine function holds here.
Thus if we replace u(t) by sin(t) we get w(t) = 1 which is certainly positive.
On the other hand, if we replace u(t) by sin(t) + k for any real positive
constant k, we get w(t) = 1 + k sin(t) and it is interesting that if k > 1
there are complex zeros of this replacement u(t), while this w(t) takes some
negative values!

When u(t) is a Riemann function, there is a small extra feature though,
namely that we can exclude any finite range of t; after all, exhaustive searches
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for zeros of u(t) have failed to find any that are not real in circles about the
origin of any finite radius, even up to many billions. That is, I conjecture
that the Riemann hypothesis is true if there is a t0 > 0 such that w(t) > 0
for all real t > t0.

In fact, my numerical computations [11] strongly suggest that this is
indeed true, with t0 ≈ 5.901. Figure 3 is a plot for 0 < t < 100; note
that w(t) is (like u(t)) scaled to remove the exponential decay factor. But
numerical computations can’t prove u(t) > 0 for all t > 5.901; I have only
computed w(t) up to t = 12, 000, 000 so far [now 30, 000, 000, see below].
While that seems to be a big number, we need a proof that w > 0 no matter
how high is t.

Meanwhile, there are some pretty small positive values of w. The smallest
I have found is (scaled) w(4, 926, 490.101792) ≈ 0.0011416 [now lower, see be-
low]. The behaviour of w(t) near this point is interesting, as shown in Figure
4, together with corresponding plot of (scaled) u(t). That value of t is very
close to (but not exactly at) a maximum of u(t), with u′(4, 926, 490.101794) =
0. This maximum lies almost half-way between two very close zeros of u(t),
namely u(4, 926, 490.10030) = 0 and u(4, 926, 490.10330) = 0 . My compu-
tations of the locations of these two zeros have been confirmed to at least 11
figures, by comparison with a program available on the internet from G.R.
Pugh [7].

As an side issue, perhaps of importance, I have also compared w(t) to the
non-negative quantity u′(t)2. Because u′(t) is usually very small when w(t)
is very small (as we found near t = 4, 926, 490.1 above), the ratio K(t) =
w(t)/u′(t)2 is not necessarily small, and indeed I have never found a value of
this ratio less than 0.351 [now 0.34961]. Here [now replaced below by a larger
table] are the lowest 12 values of K(t) in the range 10 < t < 12, 000, 000.

I think that some attention could be paid to this ratio. Like most func-
tions in this game, it oscillates as if it included random noise, but in this case
appears only to have local minima, all of which lie between 0.35 and 1.00.
There are no finite maxima, but K(t) tends to positive infinity at all turning
points where u′(t) = 0. Figure 5 is a graph near the lowest value of this ratio
that I have found, namely K(2, 276, 676.34) = 0.35122.

[Added 5 October 2007: I now have extended the computation to t =
30, 000, 000, and here in increasing size are the 30 values of K(t) < 0.370.
The lowest K of all is now slightly lower at 0.34961, and also I observed a
new lowest value of w = 0.000270 at t = 28, 355, 719.2.]
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K(24, 476, 747.18) = 0.34961

K(22, 641, 125.64) = 0.34983

K(2, 276, 676.34) = 0.35122

K(9, 338, 720.85) = 0.35218

K(13, 449, 079.34) = 0.35549

K(22, 723, 124.58) = 0.35565

K(24, 782, 255.51) = 0.35661

K(14, 253, 736.74) = 0.35748

K(11, 151, 603.67) = 0.35752

K(6, 820, 051.73) = 0.36064

K(17, 095, 484.13) = 0.36106

K(18, 481, 859.38) = 0.36135

K(28, 655, 617.95) = 0.36277

K(4, 998, 855.58) = 0.36297

K(22, 965, 339.64) = 0.36321

K(10, 385, 792.57) = 0.36349

K(10, 775, 253.85) = 0.36392

K(22, 383, 080.74) = 0.36402

K(20, 672, 095.87) = 0.36426

K(3, 745, 331.66) = 0.36501

K(5, 393, 528.30) = 0.36514

K(17, 185, 753.77) = 0.36617

K(29, 477, 788.25) = 0.36668

K(18, 046, 379.01) = 0.36789

K(19, 642, 897.25) = 0.36867

K(7, 723, 713.96) = 0.36875

K(11, 155, 215.54) = 0.36905

K(8, 694, 161.99) = 0.36915

K(14, 147, 334.67) = 0.36938

K(26, 998, 373.84) = 0.36982
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But we still haven’t proved w(t) > 0, so even if my conjecture is right, we
haven’t proved the Riemann hypothesis. I have pursued quite a few avenues
toward a proof that w(t) > 0, with no success so far. Perhaps there is an
identity, expressing w(t) as a sum of squares, yet to be discovered.

One avenue toward a proof of w(t) > 0 is to make use of the fact that
we have a Fourier-cosine representation for u(t), to express the quadratic
combination w(t) as a similar Fourier integral [13] by the convolution theo-
rem. Then one might be able to use certain known results for positivity of
Fourier integrals; no luck so far! In this context it is important that, as I
have observed, the Fourier-cosine transform U(x) of u(t) is an even function
on the whole real axis, and hence so is the Fourier-cosine transform of w(t).
Figure 6 shows the latter function, which is very smooth and bell-shaped.
It is quite difficult [13] to prove positivity of functions whose Fourier-cosine
transform is of that character.

I close by reminding you that prime numbers have something to do with
this story! They certainly are very important in applications of the Riemann
hypothesis; are they also important in its proof ? One of the most funda-
mental results involving the Riemann zeta function ([1] p.807) is the Euler
product

ζ(s) =
∞
∏

p=2

(1 − p−s)−1

over the primes p, which implies by logarithmic differentiation that

ζ ′(s)

ζ(s)
=

∞
∑

p=2

log p

1 − ps

Like the original series definition, these Euler products and sums converge
only if ℜs > 1, and nobody has so far succeeded in analytically continuing
them into the neighborhood of ℜs = 0.5, as would be required to use them
to prove the Riemann hypothesis. Why would we want to, given that we
already have other analytic continuations?

On the other hand, an interesting observation of Titchmarsh ([9] p. 45)
is that “...examples are known of functions that are extremely like the zeta
function in ... (other representations) ..., but which have no Euler product,
and for which the analogue of the Riemann hypothesis is false.” So it is
possible that only by making some use of the Euler product can we prove
the Riemann hypothesis. In that context, it is at least interesting that the
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ratio ζ ′(s)/ζ(s), related to u′(t)/u(t), plays a role, and we have already seen
the importance of the latter.

The Riemann hypothesis is remarkably different from other famous math-
ematical problems, especially some that have been solved recently like the
4-colour problem and Fermat’s last theorem. The latter problems are easy
to describe to a non-mathematician, but their proofs require abstract math-
ematics of the highest order of difficulty, and a lot of it.

In contrast, Riemann’s hypothesis is somewhat harder to describe to a
total non-mathematician, though I hope you will agree after hearing this
talk that it is not at all hard to describe to anyone who has completed an
undergraduate calculus course. It also “looks” like it should be possible to
prove it in a few lines of undergraduate-level mathematics. All we need is an
appropriate identity, e.g. one that shows that the quadratic expression w(t)
defined here is positive. However, that may just be an illusion – surely such
an identity would have been found after 148 years of effort, including work
by geniuses like Ramanujan who specialised in such identities. So maybe it
needs some big guns after all. Personally I hope not, and I would love to see
an “elementary” proof some day.
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Figure 2: Plot of (scaled) u(t), for 0 < t < 100
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Figure 3: Plot of (scaled) w(t), for 0 < t < 100
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17



0

0.5

1

1.5

2

-2 -1 0 1 2

K
(t

)

t-2276676

Figure 5: K(t) near its lowest local minimum at t = 2, 276, 676.
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Figure 6: Fourier-cosine transform of w(t) = u′(t)2 − u(t)u′′(t).
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