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Abstract

The real Hardy function Z(t) is proportional to the Riemann zeta
function on its critical line, and the unproved Riemann hypothesis is
that Z(t) has only real zeros. For any function Z(t), reality of its zeros
may be equivalent to W (t) > 0, where W (t) = Z ′(t)2 − Z(t)Z ′′(t). If
Z(t) is the Hardy function, this seems to be true computationally, at
least for 5.901 < t < 30, 000, 000. The ratio K(t) = W (t)/Z ′(t)2 is
particularly interesting, having no maxima, and local minima which
all seem to lie in the range 0.349 < K(t) < 1. Even K(t) > 0 would
prove the Riemann hypothesis, but in fact computations up to t =
30, 000, 000 suggest the stronger result K(t) > 0.349. Sadly, such
computations don’t constitute a proof!
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Before even defining Z(t) or explaining why we might be interested in

K(t) =
Z ′(t)2 − Z(t)Z ′′(t)

Z ′(t)2

let me show you the graph of K(t) and samples of the lowest of its minima.
This K(t) is an interesting function, irrespective of its definition and its
applications. It is a real function, defined and easily computable for all real
positive t.
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Plot of K(t), for 0 < t < 80

Here is its graph for 0 < t < 80. It starts out with some negative values,
but for all t > 6 seems to stay positive. There are no maxima, but many
minima. In between these minima there are points where K(t) → +∞; these
are just the zeros of the quantity Z ′(t) that appears in the denominator, i.e.
the turning points of Z(t). Remarkably, all minima seem to have 0 < K(t) <
1; most of them in fact are only just below 1.

Now this pattern continues for ever as t increases. Here are graphs near
t = 1, 000, near t = 10, 000, near t = 100, 000, near t = 1, 000, 000, and near
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t = 10, 000, 000. Pretty similar and pretty boring! These are quite typical;
does anything more interesting happen anywhere?
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Plot of K(t), for t ≈ 10, 000, 000

Well, something a bit more interesting happens near some particular val-
ues of t. Here is a graph near t = 2, 276, 676. It is still much the same, except
that one of the minima is significantly below 1, of value about 0.35. This
minimum is relatively broad compared to most others, although there is a
sharp but higher minimum nearby. Since the above graph is a bit cluttered
near this sharp minimum, we also show a magnified view in the following
graph.
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Plot of K(t), for t ≈ 2, 276, 676

0

0.5

1

1.5

2

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

K
(t

)

t-2,276,676

Plot of K(t), for t ≈ 2, 276, 676 (magnified view)

6



Similarly, here is the neighbourhood of t = 24, 476, 747. In fact, this
particular graph shows the lowest minimum that I have found so far, of
value 0.34961.
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Here tabulated in increasing size are the lowest 30 minima that I have
found so far, after computing up to t = 30 million. I find this table rather
fascinating. It does seem very likely that there is a positive lower bound not
much less than 0.35. There is no pattern in the t values where these special
minima occur, and in particular they do not become more or less frequent as
t increases. There are really remarkably few of these low minima, e.g. less
than 40 out of a total of more than 30 million local minima have K < 0.37!
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K(24, 476, 747.18) = 0.34961

K(22, 641, 125.64) = 0.34983

K(2, 276, 676.34) = 0.35122

K(9, 338, 720.85) = 0.35218

K(13, 449, 079.34) = 0.35549

K(22, 723, 124.58) = 0.35565

K(24, 782, 255.51) = 0.35661

K(14, 253, 736.74) = 0.35748

K(11, 151, 603.67) = 0.35752

K(6, 820, 051.73) = 0.36064

K(17, 095, 484.13) = 0.36106

K(18, 481, 859.38) = 0.36135

K(28, 655, 617.95) = 0.36277

K(4, 998, 855.58) = 0.36297

K(22, 965, 339.64) = 0.36321

K(10, 385, 792.57) = 0.36349

K(10, 775, 253.85) = 0.36392

K(22, 383, 080.74) = 0.36402

K(20, 672, 095.87) = 0.36426

K(3, 745, 331.66) = 0.36501

K(5, 393, 528.30) = 0.36514

K(17, 185, 753.77) = 0.36617

K(29, 477, 788.25) = 0.36668

K(18, 046, 379.01) = 0.36789

K(19, 642, 897.25) = 0.36867

K(7, 723, 713.96) = 0.36875

K(11, 155, 215.54) = 0.36905

K(8, 694, 161.99) = 0.36915

K(14, 147, 334.67) = 0.36938

K(26, 998, 373.84) = 0.36982
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What’s going on? Can we prove that all minima are in the range 0.349
to 1? Indeed, can we even prove the weaker result that K > 0 for t > 6? If
we could, we would have proved the Riemann hypothesis!

It’s time to define and discuss Z(t) and hence K(t).
For the present purpose, I choose to define

Z(t) = 2−3/4π−1/4t1/4eπt/4u(t)

where
u(t) = π−1/4−it/2Γ(1/4 + it/2)ζ(1/2 + it)

and ζ(s) is the Riemann zeta function

ζ(s) =
∞
∑

n=1

n−s = 1 +
1

2s
+

1

3s
+ . . .

Riemann himself proved that u(t) is real when t is real, and hence so is Z(t).
The above Z(t) is “almost” the Hardy function, the usual definition of

the Hardy function having a different scale factor multiplying u(t), but which
asymptotes to the above rapidly for large t. Indeed, as the examples above
suggest, our main interest is in large values of t, for which the Riemann-Siegel
sum

Z(t) = 2

[
√

t/2π ]
∑

k=1

k−1/2 cos



t log

√

t/2π

k
−

1

2
t −

π

8



 + O(t−1/4)

enables very rapid computation, especially when using good estimates for
the error term.

Riemann’s (unproved) hypothesis is that all non-trivial zeros of ζ(s) have
real part 1/2, or equivalently that all zeros of Z(t) are real. I believe that
reality of zeros is equivalent (for any function Z(t), not just the Hardy func-
tion) to the statement that the quadratic combination of derivatives

W (t) = Z ′(t)2 − Z(t)Z ′′(t)

is positive. This equivalence is also unproved, though something close to it
has been proved by Lagarias, and I can construct plausible arguments; some
day perhaps I will make these into a proper proof of equivalence. It is not
necessary for W (t) to be positive for all t > 0, and it may be sufficient that
there be a t0 > 0 such that W (t) > 0 for all t > t0. For the Hardy function
defined as above, t0 ≈ 5.901.
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Plot of W (t) and Z(t), for t ≈ 4, 926, 490.1

Finally, why have I looked at the ratio K(t) = W (t)/Z ′(t)2 rather than
W (t) itself? Because most of the time, when W (t) is small, so is Z ′(t). The
quantity W (t) takes many quite small values in my computations up to t =
30, 000, 000, e.g. W (4, 926, 490.101792) ≈ 0.0011416. The following graph
shows W (t) and Z(t) near this point. Clearly the minimum of W (t) is very
close indeed to the local maximum of Z(t), with Z ′(4, 926, 490.101794) = 0.
This maximum lies almost half-way between two very close zeros of Z(t),
namely Z(4, 926, 490.10030) = 0 and Z(4, 926, 490.10330) = 0 . My
computations of the locations of these two zeros have been confirmed to at
least 11 figures, by comparison with a program available on the internet from
G.R. Pugh. Since the minimum of W (t) is so close to a zero of Z ′(t), the
ratio K(t) is not particularly small in this neighbourhood, and hence this
ratio provides a more robust measure of positivity of W (t).

Indeed, as I have shown you, the ratio K(t) seems to have a positive lower
bound of not much less than 0.35. I have of course spent considerable effort
attempting to prove analytically these computational observations, without
success. I hope this talk might stimulate some of you to try.
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