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Abstract

This note concerns Fourier transforms on the real positive line. In
particular, we seek conditions on a real function u(x) in x > 0, that ensure
that its Fourier-cosine transform v(t) =

∫ ∞
0

u(x) cos xt dx is positive. We
prove first that this is so for all t > 0, if u′′(x) > 0 for all x > 0, i.e.
that everywhere-convex functions have everywhere-positive Fourier-cosine
transforms. We then obtain a complex-plane criterion for some types of
non-convex u(x). Finally we consider criteria on u(x) that imply positivity
of v(t) for t > t0, for some t0 > 0.

AMS Classification Numbers: 42A38, 11M06

Introduction

Define for t > 0 the ordinary Fourier-cosine transform

v(t) =
∫ ∞

0

u(x) cos xt dx (1)

with inverse
u(x) =

2
π

∫ ∞

0

v(t) cos xt dt , (2)

with a similar definition for the Fourier-sine transform.
Generally we shall assume here that u(x) is real and smooth in x > 0 and that

the Fourier integral (1) converges. In particular, u(x) and all of its derivatives
are bounded everywhere in x > 0 and tend to zero as x → +∞. Meanwhile,
u(x) could be bounded at the origin, but more generally could have a weak
singularity, with xu(x) → 0 as x → 0+, i.e. u(x) grows at a rate less than x−1.
For Fourier-sine transforms, we can allow a stronger singularity at x = 0+, with
any growth rate less than x−2. We shall also generalise the results later, to
allow even stronger singularities at the origin.
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One important class of functions u(x) is “convex”, i.e. such that u′′(x) > 0
for all x > 0, which implies (since u′(+∞) = 0) that u′(x) < 0 and (since
u(+∞) = 0) that u(x) > 0. That is, convex functions possessing Fourier trans-
forms are also decreasing and positive. Such convex functions need not be
smooth at x = 0, indeed not even bounded so long as they are integrable. In
particular, they need not (indeed cannot) have all of their odd-order deriva-
tives zero at x = 0+, and hence do not extend smoothly as even functions
into x < 0. We shall show that convex functions have everywhere-positive
Fourier-cosine transforms. An elementary convex example is u(x) = e−x with
v(t) = 1/(1 + t2) > 0.

However, we are more interested here in non-convex functions u(x) which
are bounded, positive and decreasing in x > 0, which extend smoothly as an
even function to the whole real line, i.e. all odd-order derivatives vanish at
x = 0+, and which usually have a single inflexion point in x > 0. Let us call
such functions “bell-shaped” functions.

Some bell-shaped functions have positive Fourier transforms, and some don’t.
Thus compare u(x) = 1/(1 + x2), which has transform v(t) = (π/2)e−t, with
u(x) = 1/(1 + x4/4), which has transform v(t) = (π/2)e−t(cos t + sin t). One
v(t) is positive, the other oscillates between positive and negative values, but
both u(x) are bell-shaped and have quite similar graphs. A criterion for dis-
criminating between such bell-shaped functions would be of some value.

Proof of positivity for convex functions

Positivity of Fourier-sine transforms is somewhat easier to prove than that of
Fourier-cosine transforms. But by integration by parts we have

v(t) = −1
t

∫ ∞

0

u′(x) sinxt dx , (3)

given that the assumed convergence requirements (u → 0 as x → +∞ and
xu(x) → 0 as x → 0+) eliminate the integrated part. That is, the Fourier-cosine
transform of u(x) is −1/t times the Fourier-sine transform of its derivative u′(x).

Now let us prove that the Fourier-sine transform of a decreasing function
w(x) is positive. That is,∫ ∞

0

w(x) sinxt dx =
∞∑

j=0

∫ 2π(j+1)/y

2πj/y

w(x) sinxt dx

=
1
t

∞∑
j=0

∫ 2π

0

w

(
2πj + θ

t

)
sin θ dθ

=
1
t

∞∑
j=0

∫ π

0

[
w

(
2πj + θ

t

)
− w

(
2πj + θ

t
+

π

t

)]
sin θ dθ

(4)
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If w(x) is a decreasing function for all x, the quantity in square brackets is pos-
itive for all t and all j, and so is sin θ in (0, π); hence the Fourier-sine transform
is positive. This is essentially a simple geometrical result, each negative half-
period loop of the sine function contributing less to the sum than the positive
half-period loop preceeding it.

Now define w(x) = −u′(x). Then u′′(x) > 0 implies w′(x) < 0 so this w(x)
is a decreasing function. Therefore its Fourier-sine transform is positive, and
hence so is the Fourier-cosine transform of u(x). Thus we have proved that
u′′(x) > 0 for all x > 0 guarantees v(t) > 0 for all t > 0. That is, convex
functions have positive Fourier-cosine transforms.

However, bell-shaped functions are not convex, and it is doubtful if there
is any criterion based solely on the real numerical values of u(x) for positive
real x, for positivity of the Fourier-cosine transform of bell-shaped functions.
Somewhat reluctantly, we must move into the complex plane.

Complex detours

Suppose we can continue the function u(z) into the upper half complex z plane,
and that it is an even analytic function of z, real on the real axis, satisfying
ū(z) = u(z̄). Then we can write

v(t) =
1
2

∫ ∞

−∞
u(z)eizt dz . (5)

Now suppose that |u(z)| → 0 as �z → ±∞ for some range of positive values
of the imaginary part of z, say for �z < p. Then we can shift the path of
integration upward, writing z = x + ip and giving

v(t) =
1
2
e−pt

∫ ∞

−∞
u(x + ip)eixt dx (6)

= e−pt

∫ ∞

0

[
� u(x + ip) cos xt −� u(x + ip) sinxt

]
dx . (7)

Equation (7) expresses v(t) as the sum of a Fourier cosine and a Fourier
sine transform, each times an exponential decay factor. Hence if � u(x + ip) is
convex (and decreasing and positive) and also −� u(x + ip) is decreasing (and
positive), then v(t) is positive for all t > 0.

An example is u(z) = 1/
√

1 + z2 where we can take p = 1. Then � u(x +
i) = R cos θ and −� u(x + i) = R sin θ, where R = x−1/2(x2 + 4)−1/4 and
tan 2θ = 2/x. These functions have the required properties, which proves that
v(t) is positive for all t > 0. In fact, v(t) = K0(t) is a modified Bessel function
([1], p. 376) which is indeed positive and decays exponentially for large t.
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Non-integrable singularities

The above analysis is valid as it stands if u(z) is integrable along the whole line
z = x + ip, including the case of bounded u(z). However, it is of no use for the
present purpose if u(z) is bounded as z → ip, because then evenness of u(z)
necessarily implies that �u(ip) = 0, so −�u(x + ip) cannot be decreasing and
positive for x > 0. Thus we are only interested in choices of p such that u(z)
has a singularity at z = ip on the imaginary axis, and no other singularity closer
to the origin. The above example u(z) = 1/

√
1 + z2 has an (integrable) inverse

square root branch point at z = i.
But what if the nearest singularity is stronger than that? For example,

u(z) = 1/(1 + z2) is not integrable through the simple pole at z = i, nor is
u(z) = (1 + z2)−α for any α ≥ 1. Nevertheless these happen to be functions
with positive Fourier-cosine transforms. We would like to be able to prove that
statement using methods like those in the previous section. For the present, we
shall only discuss the simple-pole case α = 1; although a similar analysis can be
performed for stronger singularities, it requires generalisation of the concept of
a Fourier transform to non-integrable functions.

Thus we now assume that as z → ip we have

u(z) → U0 [i(z − ip)]−1 (8)

for some real constant U0. The example u(z) = 1/(1 + z2) has U0 = 1/2. Note
that when (8) holds, only the imaginary part of u is singular as x → 0+ on
the line z = x + ip, with −x� u(x + ip) → U0, but x� u(x + ip) → 0. Hence
both Fourier integrals in (7) converge in spite of the non-integrable character of
the singularity in u(z). Nevertheless we must modify (7) to take account of the
pole.

The necessary modification is simply to allow the path of integration to pass
below the pole, on a semicircle of vanishingly small radius. The net effect is to
add a term proportional to the residue at the pole, so (7) becomes

v(t) = e−pt

[∫ ∞

0

[
� u(x + ip) cos xt −� u(x + ip) sinxt dx + U0

π

2

]
. (9)

For example, suppose u(z) = 1/(1 + z2) and p = 1. Then

v(t) = e−t

[∫ ∞

0

1
x2 + 4

cos xt dx +
∫ ∞

0

2
x(x2 + 4)

sinxt dx +
π

4

]
. (10)

Since the coefficient of sin xt is positive and decreasing, the Fourier-sine integral
in (10) is positive. Although the coefficient of cosxt is not convex, we no longer
need the Fourier-cosine integral to be positive (though it is!), so long as it
is overwhelmed by the positive correction term π/4. This is clearly so, since
(replacing cos xt by −1), the Fourier-cosine integral can be seen to be greater
than −π/4. Hence v(t) > 0. Of course, given that we can actually evaluate
this v(t) = (π/2)e−t and the other Fourier integrals in (10), this appears a
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clumsy way to prove something obvious, but is important in principle, in that
it does not depend on a knowledge of the exact integrals, so generalises to more
complicated functions.

Positivity only for t > t0

In fact, in some applications it is neither necessary nor desirable to insist that
v(t) > 0 for all t > 0, and it may be enough to show that there is a finite t0 > 0
such that v(t) > 0 for all t > t0. Can we find criteria on u(x) for this to be true,
and if so, can we estimate t0? Only preliminary discussions of this generalised
task are given here.

Assuming validity of (7), i.e. ruling out for the time being non-integrable
singularities, on integration of the first term of (7) by parts, v(t) can be expressed
as a single Fourier-sine integral

v(t) = e−pt

∫ ∞

0

F (x; t) sinxt dx (11)

where

F (x; t) = −�u(x + ip) − 1
t

d

dx
�u(x + ip) (12)

= �
[
iu(x + ip) − 1

t
u′(x + ip)

]
. (13)

Now if (in any range of t values) the function F (x; t) is a decreasing (and pos-
itive) function of x for all x > 0, then v(t) is positive for that range of t. This
is true for all t when the two terms of (12) are both decreasing and positive for
all x > 0, as in the examples already given.

However, suppose it is not true for all t, but only for t > t0, for some t0 > 0.
Then in particular it must be true for large t, when the second term of (12) tends
to zero, so the first term F (x;∞) = −�u(x+ ip) of (12) must be decreasing and
positive for all x > 0. If the second term was also decreasing and positive for
all x > 0, we would have t0 = 0 as above, so let us assume that this is not so for
some x values. Then there is still a chance of finding a finite t0 such that the
sum of the two terms of (12) is decreasing and positive for all x > 0. This will
be possible if the second term of (12) is bounded (together with its derivative)
in x > 0, and does not become asymptotically large relative to the first term,
either as x → 0+ or as x → ∞.

For example, consider∫ ∞

0

sinxt − x cos xt

1 + x2
dx = e−tEi(t) (14)

where Ei is the exponential integral ([1], p. 230). Now∫ ∞

0

sinxt − x cos xt

1 + x2
dx =

∫ ∞

0

F (x; t) sinxt dx (15)
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where

F (x; t) =
1

1 + x2
+

1
t

1 − x2

(1 + x2)2
(16)

is positive and decreasing for all x if t > t0 = 1. This is a conservative estimate
of t0, since in fact Ei(t) > 0 for all t > 0.37253.

There is a potential application to the celebrated Riemann hypothesis [2].
This hypothesis might well be true if v(t) = V ′(t)2 −V (t)V ′′(t) could be proved
positive for all t > t0, where V (t) = π−s/2 Γ(s/2) ζ(s) is a real-valued scaling
of the Riemann zeta function ([1], p. 807) on its critical line s = 1/2 + it.
Numerical evidence [4] is that this is so with t0 ≈ 5.9009, but a proof is elusive.
The inverse Fourier transform of this v(t) is the bell-shaped function

u(x) =
1
4

∫ ∞

0

y2 U

(
x + y

2

)
U

(
x − y

2

)
dy , (17)

where

U(x) = −2e−x/2 + 4ex/2
∞∑

n=1

e−n2πe2x

(18)

is the (also bell-shaped) inverse Fourier transform of the (sign-oscillatory) Rie-
mann function V (t) [3]. The nearest singularity of u(z) is at z = iπ/2, so we
could try p = π/2 in the above. However, there also appear to be many other
singularities along the line z = x + iπ/2, which may or may not be integrable.
Further study of u(z) near that line would seem to be of value.

References

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, with
formulas, graphs and mathematical tables (Dover Publications, New York,
1964).

[2] H.M. Edwards, Riemann’s zeta function (Academic Press, New York, 1974).

[3] J.M. Hill, ‘On some integrals involving functions φ(x) such that φ(1/x) =√
xφ(x)’, J. Math. Anal. Appl., 309 (2005), 256–270.

[4] E.O. Tuck, ‘When does the first derivative exceed the geometric mean of
a function and its second derivative?’, Gaz. Austrl. Math. Soc., 32 (2005),
267–268.

6


