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SUMMARY
An asymptotic slender body theory is presented for water waves in elongated moonpools. There are nontrivial
three-dimensional effects for those modes involving mainly longitudinal motion, in which an apparent flux to
“infinity” in each cross-section is modelled by a line of sources in an outer region, and then is matched to an
inner two-dimensional free-surface flow.

1. INTRODUCTION

In a closed elongated pool of water, with length
much greater than its width, the longest-period
waves will involve mainly longitudinal motion, with a
nearly-uniform free-surface elevation across the cross-
section. In such a fully-closed system, as the local
free-surface elevation and hence the area occupied by
fluid in a particular cross-section changes, there there
must be instant compensation in the form of longitu-
dinal fluid motion, in order to conserve mass.

On the other hand, if the pool has access via an
open bottom to unbounded water, as with a “moon-
pool” or ice-hole, there can be an apparent mass
source or sink at infinity in each cross-section. In
some “pumping” modes, this apparent 2D flux be-
comes a real three-dimensional transfer of mass to
infinity. In other “sloshing” modes there is still zero
net 3D flux, but the conversion of changes in section
area to longitudinal fluid motion occurs slowly, effec-
tively allowing longitudinal waves to behave in some
ways as if they were lateral waves. Then not only is
there a non-trivial cross-sectional variation of the am-
plitude of the longitudinal wave, but its frequency is
higher, formally now of the same order of magnitude
as that of the shorter lateral modes.

An asymptotic slender body theory for such waves
is presented here and compared with fully 3D compu-
tations. We use a co-ordinate system (s, x, y) where
s is along the pool, x across it, and y is vertically
upward from the equilibrium free surface. In the
present paper we restrict attention to rectangular
holes |x| < b, |s| < `, in a rigid sheet of zero thickness
occupying the rest of the plane y = 0. This models a
moonpool of length 2` and width 2b in a fixed vessel
of large length >> 2` and beam >> 2b, and small
draft << 2b, or equivalently an elongated hole in an
ice sheet, the water depth being infinite in both cases.

Assuming a velocity potential φ(s, x, y)eiωt corre-
sponding to angular frequency ω, we have to solve
Laplace’s equation

φss + φxx + φyy = 0 (1)

in y < 0, subject to

φy =
ω2

g
φ (2)

on the free part of y = 0, and φy = 0 on the rest.
We shall use matched expansions to provide an

asymptotic solution for slender pools with 2b << 2`,
or large aspect ratio `/b. The outer expansion has the
scale ` and the flow is three-dimensional but possesses
no free surface. On the other hand, the inner expan-
sion has the scale b and the flow is two-dimensional
in the cross-section s =constant, with a free surface.

Molin [1] has provided a numerical method for so-
lution of some problems of the present type for ar-
bitrary aspect ratio `/b. The present asymptotic ap-
proach, though limited by the requirement that the
aspect ratio be large, is somewhat simpler and po-
tentially of wider applicability than the numerical
method of Molin [1]. For example, in extended work
[2] we have retained the same outer solution, but gen-
eralised to arbitrary (longitudinally uniform) inner
geometry, in particular allowing non-zero drafts and
curved boundaries for the containing vessel. General-
isations of the outer geometry such as allowing finite
beam of the containing vessel with a free surface at in-
finity, or allowing longitudinal variations in the width
of the moonpool, are also straightforward.

2. OUTER EXPANSION

In the outer region as b/` → 0 with x, y, s = O(`), the
pool shrinks to a cut of zero width in an otherwise-
rigid plane boundary y = 0. We assume that the flow



is then generated by a line of 3D Rankine sources of
(to-be-determined) strength or volume flux q(s) per
unit length along the line x = y = 0, from s = −` to
s = +`. The outer velocity potential is thus given by

φ = − 1
4π

∫ `

−`

q(t) dt√
(s − t)2 + r2

(3)

where r2 = x2 + y2.
We need the inner expansion of the outer expan-

sion, i.e. the small-r expansion of (3), which then
is approximated by an apparent 2D source of local
strength q(s), i.e.

φ =
q(s)
2π

log
r

2`
+ f(s) + O(r2) . (4)

The additive term f(s) determines the longitudinal
variation of the axial velocity, and is a functional of
the source strength function q(s). This functional
dependence is in general non-local, with f(s) at any
particular value of s requiring a knowledge of q(s) for
all s, and can be expressed in various ways, e.g. as
convolution integrals [3]. We use here a representa-
tion in which q(s) is written in a Fourier-Legendre
series

q(s) =
∞∑

j=0

qjPj(s/`) (5)

where Pj(t) is the j-th degree Legendre polynomial.
Then

f(s) =
1
2π

∞∑
j=0

qjPj(s/`)
[
σj − log

√
1 − s2/`2

]
(6)

where

σj = 1 +
1
2

+
1
3

+ . . . +
1
j

, σ0 = 0 . (7)

We have particular cause in the present paper to be
interested in choices of q(s) such that f(s) is deter-
mined locally from q(s), with the functions f(s) and
q(s) proportional to each other, such that the ratio

f(s)
q(s)

=
λ

2π
(8)

is a constant, independent of the co-ordinate s. This
choice means that the whole velocity potential given
by (4) has an s-variation proportional to q(s), irre-
spective of the value of r. This property is needed for
matching to the inner expansion. Thus substituting
(8) in (6) and setting t = s/`, we need to solve

∞∑
j=0

qjPj(t)
[
σj − log

√
1 − t2

]
= λ

∞∑
j=0

qjPj(t) (9)

in |t| < 1, for the coefficients qj and the constant λ,
which plays the role of an eigenvalue.

Numerical solution of (9) is immediate by truncat-
ing to N terms and collocating at an appropriate set

of N values of t, giving a generalised eigenvalue prob-
lem which can be solved for large N ≈ 100 by stan-
dard numerical methods. The first few eigenvalues
λ = λn, for n = 0, 1, 2, 3, 4, are

λn = 0.2332, 1.4437, 1.9409, 2.2833, 2.5317. (10)

The lowest eigensolution n = 0, corresponding to
λ = λ0 = 0.2332, has an amplitude that is one-
signed along the pool, and this and all even modes
n = 0, 2, 4, . . . potentially allow non-zero net verti-
cal flux of volume across the whole free surface. Ac-
tual non-zero flux occurs only when such longitudinal
modes are combined with lateral modes which have a
similar “pumping” property.

On the other hand, all odd longitudinal modes
n = 1, 3, 5, . . . are antisymmetric with respect to s,
and hence give zero net volume flux across the whole
free surface. However, when these odd longitudi-
nal modes are combined with (even) lateral pumping
modes, there is an apparent 2D flux at each section
s = constant, which is converted three-dimensionally
into longitudinal motion. In particular, the mode
n = 1 with λ = λ1 = 1.4437 has a single node at
s = 0, and is the fundamental “sloshing” mode. The
actual mode shapes are quite non-sinusoidal, and in
particular have large end slopes.

In summary, when we have chosen q(s) to be pro-
portional to one of the above eigensolutions, the inner
expansion of the outer solution (4) becomes the state-
ment that

φ → q(s)
2π

[
log

r

2`
+ λ

]
(11)

when r/` is small, and λ = λn takes one of the above
eigenvalues, n = 0, 1, 2, . . .

3. INNER EXPANSION

We now assume that x, y = O(b), while s remains
O(`), and also that the frequency ω is high, such that
k = ω2b/g = O(1). Then to leading order φ satisfies
the 2D Laplace equation with respect to (x, y), and
the full free-surface condition (2) is retained. The co-
ordinate s plays only a parametric role and can be
suppressed in the inner problem. Meanwhile, match-
ing requires that the outer expansion of this inner
solution agrees with the inner expansion of the outer
solution, i.e. (11) becomes the “2D far-field” bound-
ary condition for the inner solution as r/b → ∞.

The solution of the 2D Laplace equation in y ≤ 0,
with a to-be-determined vertical velocity distribution
V (x) = φy(x, 0−) across y = 0, |x| < b, is

φ = − 1
π

∫ b

−b

V (ξ)

[
log

√
(x − ξ)2 + y2

2`
+ λ

]
dξ ,

(12)
which satisfies the far-field condition (11) with flux

q = −2
∫ b

−b

V (ξ) dξ . (13)



Setting y = 0 in (12) and implementing the free-
surface boundary condition (2) gives an integral equa-
tion for V (x), namely

V (x) = −ω2

πg

∫ b

−b

V (ξ)
[
log

|x − ξ|
2`

+ λ

]
dξ . (14)

To solve this integral equation numerically, we expand
in a Fourier-Chebyshev series

V (x) =
∞∑

j=0

vj
cos jθ

sin θ
(15)

where x = b cos θ. Then (14) becomes

∞∑
j=0

vj
cos jθ

sin θ
= k


v0β +

∞∑
j=1

vj
cos jθ

j


 , (16)

where

β = log
4`

b
− λ . (17)

Equation (16) is now also immediately amenable to
numerical solution as a generalised eigenvalue prob-
lem with eigenvalue k, by truncating and collocating.
The lateral eigenvalues k = km, m = 0, 1, 2, . . ., can
then be found for each specification of the constant
β, which is determined as in (17) by the values of the
longitudinal eigenvalue λ and the aspect ratio `/b.

However, the odd-numbered modes m = 1, 3, 5, . . .
only involve odd-numbered terms in the series (15),
with v0 = 0. Hence they are independent of β and
so also of these parameters λ and `/b, and yield
purely two-dimensional lateral sloshing modes of mo-
tion. For example, the lowest such frequency takes
the well-known (see e.g. [4]) value k1 = 2.006119.

On the other hand, all even-numbered modes m =
0, 2, 4, . . . have v0 6= 0 in (16) and hence do depend
on β and hence on λ and `/b. This is especially sig-
nificant for the fundamental lateral mode m = 0,
which specifies a wave elevation which is one-signed
across the section. For example, with λ = 1.4437
(one-noded longitudinal sloshing mode) and aspect
ratio `/b = 16, we have k0 = 0.5523, which gives a
value ω2(2`)/(πg) = 5.624 in close agreement with
Figure 9 of [1], at the limiting draft ratio h/b = 0.
Good agreement with that Figure is also seen for the
less-slender case `/b = 4, where k0 = 1.0646 and
ω2(2`)/(πg) = 2.711.

The case `/b = 4 was also studied by Newman and
Lee [5] by a full solution (using the code WAMIT)
for the response of a barge of finite length, beam and
draft containing a moonpool of that aspect ratio. For
drafts h such that h/b = 0.25 and h/b = 0.125 re-
spectively, Newman and Lee [5] found k0 = 0.92 and
k0 = 1.00, giving reasonable indications of an ap-
proach as h/b → 0 to the above value k0 = 1.0646.
This was for the first longitudinal sloshing mode
n = 1; similar trends hold for the lowest longitudinal

pumping mode n = 0 and also for higher longitudinal
modes n = 2, 3, 4.

Other longitudinal modes can be specified simply
by changing the input value of λ within the set of
eigenvalues (10) already found from the outer expan-
sion, modifying the constant β, and then re-solving
the inner eigenvalue problem (16) for k = km(β). In
fact, the present theory allows output data to be pre-
sented in a single graph of k = km(β), as in the at-
tached Figure 1. The horizontal axis of this Figure
contains scales for recovering the dependence of k on
the actual aspect ratio `/b, separately for each longi-
tudinal mode n.

4. CONCLUSIONS

In the present paper we have used ideas from aero-
dynamic slender body theory to construct an asymp-
totic solution valid for large aspect ratio `/b for waves
in elongated moonpools. The application of these
slender body ideas in this context is unusual. In par-
ticular, the type of outer expansion used here, where
eigensolutions for the source distribution are chosen
so that the whole velocity potential due to a line of
sources is proportional to a single function q(s) of the
coordinate s measured along the “body”, is new, and
may have applications elsewhere.

From the point of view of application to the actual
moonpool problem, the present solution suffers from
the defect relative to previous solutions that it is ap-
proximate, applying only to elongated pools. How-
ever, in compensation, the results can be expressed
very compactly, and allow systematic study of ef-
fects of various geometric parameters. The present
paper only discusses a special inner geometry with
zero draft and an infinite plane rigid sheet surround-
ing the moonpool, but is easily generalised [2] to allow
arbitrary inner geometry.
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Figure 1: Non-dimensional wavenumber k = ω2b/g as a function of parameter β = log(4`/b)−λ. Separate curves
k = km are for different lateral modes m = 0, 1, 2, . . . Odd lateral modes m = 1, 3, . . . are two-dimensional,
and hence independent of β. Also shown are the corresponding scales for the moonpool’s aspect ratio `/b, a
different scale applying to each longitudinal mode λ = λn, n = 0, 1, 2, . . .


