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1 Introduction
Ships make waves. Sometimes these waves are like Figure 1. Sometimes they are
like Figure 2. In fact, these pictures represent the two extremes: the ambient sea is
seldom quite as calm as in Figure 1, and most ships avoid seas as rough as in Figure
2. Most of the life of most ships is spent in seas nearer to the calm state than the
rough state. This paper will therefore concentrate on ships moving steadily forward
at constant speed into a totally calm sea. The effect of (small to moderate) ambient
waves can be added later if required.

Ships and other objects (including animals) moving on or near a water sur-
face are influenced by three dominant forces, namely inertia, gravity and viscosity.
Waves are essentially a balance between the first two of these. Viscosity (i.e. fric-
tion) in fact plays only a very small role in most of the fluid domain surrounding
the body, as is the case for most flows at human scales (metres or more), whether
or not a free surface is present. However, viscosity dominates very close to the sur-
face of the body, in a thin (centimetres or less) boundary layer, where it provides
a significant fraction of the total drag. In the present paper we shall for the most
part neglect viscosity. Again, the effect of viscosity can be added later if required.

Indeed this additive characteristic of viscous and wave effects on ships was the
main thrust of the mid-19th century work of the pioneering naval architect William
Froude, and is the basis for use of model towing tanks for ship design. Essentially
a small scaled model is used to determine wave drag, which is then scaled up to
full scale by what is now called “Froude scaling” (speeds proportional to the square
root of length), and then viscous effects are added via an empirical skin friction
formula dependent on wetted surface area. Froude’s experimental work on this
scaling principle was done long before the concept of the boundary layer, e.g. as
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Figure 1. A cruise ship in a calm sea

formalised by Ludwig Prandtl in 1912 gave a rational justification for it.
Once viscosity is neglected, the mathematical and computational task is to

solve a boundary-value problem for Laplace’s equation, subject to a Neumann
boundary condition on both the body surface and the free water surface. How-
ever, the latter surface is unknown in advance, so we must add a further boundary
condition that the pressure (obtained from the flow via Bernoulli’s equation) be
constant on the free surface, in order to simultaneously determine that free sur-
face. The combination of two (nonlinear) boundary conditions on the (unknown)
free surface may be called the Stokes conditions, and the resulting boundary-value
problem a “Neumann-Stokes” problem. Although at first sight one might consider
this to be a straightforward task, the parenthetic qualifiers “nonlinear” and “un-
known” in the previous sentence give indications of trouble ahead, and it was late
in the 20th century before anything close to a complete or useful solution of the
Neumann-Stokes problem was possible.

2 Thin Ships
Meanwhile, however, even in the 19th century, a remarkable approximate solution
to the Neumann-Stokes problem was presented by the Australian mathematician
John Henry Michell [11]. Michell assumed that the ship was thin, lying close to
a vertical plane, and therefore was able to approximate the Neumann boundary
condition on the hull by a simpler “Michell” boundary condition on that plane.
Not only that, but thinness of the ship guaranteed that it made small waves, and
hence the nonlinear Stokes conditions on the unknown free surface could be replaced
by a linear “Kelvin” condition on the known undisturbed free surface, which is a
horizontal plane. The resulting “Michell-Kelvin” problem, having only plane co-



Figure 2. A tanker in heavy seas

ordinate boundaries, was immediately solvable analytically by Fourier methods.
Michell’s main concern was for the wave resistance, or inviscid drag D due to

the energy left behind in the wave system. His final result can be written

D =
2
π

ρ U2k4
0

∫ π/2

−π/2

dθ sec5 θ
∣∣∣∫∫

W

dxdz Y (x, z)eik0x sec θ+k0z sec2 θ
∣∣∣2 (1)

Here y = ±Y (x, y) is the hull surface, in a frame of reference with x from bow to
stern, y to starboard, and z upward from the free-surface (so z < 0 here). The (x, z)
integral in (1) is over the centreplane W of the ship, and ρ is the water density, U
the ship speed and k0 = g/U2 where g is gravity. The form of Michell’s integral
quoted here is for pointed hulls with Y = 0 at the ends; if this condition is not
met, e.g. for transom-hulled vessels, some extra terms must be added. The water
is assumed to be of infinite depth.

Numerical evaluation of Michell’s integral is a triple quadrature, a daunting
task in 1898, and not entirely a simple one in 2003. Nevertheless Michell himself did
present one numerical result, for an idealised choice of Y (x, z) such that the (x, z)
integral could be evaluated analytically, so he only had the θ integration to compute
numerically by Simpson’s rule. More than 100 years later, we can evaluate the full
Michell triple integral in less than a twentieth of a second with high precision, for
real ships whose offsets Y (x, z) are prescribed as data.

The 20th century history of Michell’s integral is a somewhat sad one, reviewed



by Wehausen [20] and Tuck [15]. Though published in a very well-known journal,
it lay almost unknown for a quarter of a century, until Wigley [23] and Havelock
[7] eventually gave it credit in the 1920s, and then in long series of papers used
Michell’s integral to explore the way in which various changes in simplified ship
forms affected wave resistance. Later, Weinblum [21] and others [2] developed
pre-computer numerical tools for its evaluation for actual ships, and used it in drag
minimisation studies [22]. With the dawn of the computer age, this sort of work was
carried a little further [9], but by then the approximate nature of the original formula
was a cause for (misplaced) concern, and the power of the computer was increasingly
turned instead toward the much more difficult task of solving more exact models,
such as the Neumann-Stokes problem, or even models including viscosity. However,
Michell’s integral remains a useful and often remarkably accurate estimator of wave
resistance, see [20], [15],[19].

Michell also provided formulae enabling determination of flow quantities other
than wave resistance. In particular, the actual wave elevation z = Z(x, y) made by
the thin ship y = ±Y (x, z) (with pointed ends) can be written as the quadruple
integral

Z(x, y) =
1
π2

∫∫
W

dξ dζ Y (ξ, ζ) <
∫ π/2

−π/2

dθ

∫ ∞

0

dk

k2

k − k0 sec2 θ
exp

[
−ik(x− ξ) cos θ − iky sin θ + kζ

]
(2)

The path of k-integration in (2) passes above the pole at k = k0 sec2 θ, so guaran-
teeing that waves occur only for x > 0.

Clearly (2) is much harder to compute from than (1), not least because of the
extra k integral, and Michell himself made no attempt to compute ship waves in
1898. Indeed until computers arrived, this was an almost impossible task, and even
then little progress was made until late in the 20th century.

An important advance was made by Newman [12] who in effect reduced a sig-
nificant part of the k and θ integration task to evaluation of a Chebyshev polynomial
approximation. The speed at which this can be done is such that computation of
Z(x, y) averages, for each (x, y) point, a time not more than that taken for one
evaluation of the wave resistance D. Such speed is necessary, since to capture a
realistic representation of a complete ship wave field with its complex mix of super-
posed waves, short and long, near and far, transverse and diverging, requires about
100,000 points. This takes about 5 minutes to compute on a current 2 GHz PC.
There are many other factors influencing total computer times for such detailed
wave fields, such as the balance between near-field and far-field contributions, the
efficiency of handling rapid oscillations near |θ| = π/2, and the extent to which
parts of the work done at one point can be saved and used again at other points.
For further discussion of these matters, see [18],[13],[19].

Figure 3 is an example of a computation performed in this way for a destroyer
hull at 30 knots full-scale speed. This figure is simply produced by colouring about
100,000 (x, y) pixels a shade of blue whose lightness is proportional to the computed
value of Z(x, y), with the deepest troughs nearly black and the highest crests nearly



Figure 3. Free-surface elevation due to destroyer at 30 knots

white. The red outline of the ship itself is less well represented pictorially, but is
modelled quite smoothly in the computation.

3 Pressure Distributions
Another type of travelling disturbance that potentially makes small waves, allowing
linearisation of the free-surface boundary conditions, is a surface pressure distribu-
tion with a prescribed small excess p = P (x, y) over atmospheric pressure. This
could directly be a moving meteorological disturbance or the pressure exerted by a
hovercraft, or indirectly be a model for a vessel of small draft, on the hull of which
the hydrodynamic pressure is P (x, y).

The wave resistance of such a pressure field is

D =
k3
0

2πρg

∫ π/2

−π/2

dθ sec5 θ
∣∣∣∫∫

W

dxdy P (x, y)eik0 sec2 θ(x cos θ+y sin θ)
∣∣∣2 (3)

and the wave field z = Z(x, y) is

Z(x, y) =
1

2π2ρg

∫∫
W

dξ dη P (ξ, η) <
∫ π/2

−π/2

dθ

∫ ∞

0

dk

k2

k − k0 sec2 θ
exp

[
−ik(x− ξ) cos θ − ik(y − η) sin θ

]
(4)



The formulae (3) and (4) are similar to the corresponding Michell formulae (1)
and (2), a double integral over a portion W of the plane z = 0 replacing a double
integral over a portion of the plane y = 0, and similar numerical procedures enable
efficient computation of 100,000-point wave fields, for pressures P (x, y) inputted as
data. For examples, see [19].

4 Flat Ships
Michell used “thinness” (i.e. small beam) of the hull to linearise the Neumann-
Stokes problem for a ship. This is not the only way that we can restrict the hull
shape to ensure small waves. In particular, another option is “flatness” (i.e. small
draft). If the equation of the ship is now written z = Z0(x, y), we therefore assume
Z0 is small.

In one mathematical sense, flatness is more attractive as an approximation
than thinness, since in the formal limit as Z0 → 0, the only boundary is where
z = 0. Physically, there is no longer any disturbance “in” the water. Again, Fourier
methods allow an immediate (partial) solution, and the disturbed flow field can be
seen to be caused by an apparent travelling pressure distribution p = P (x, y) on
the free surface. Since we now have efficient tools as above to compute the wave
resistance D and wave field z = Z(x, y) for such pressure distributions, this solves
the flat-ship problem once the pressure P (x, y) is known.

But unfortunately, given the hull shape Z0(x, y), the corresponding pressure
distribution P (x, y) is not immediately known. An early attempt at a flat-ship
theory was that of Hogner [8] (see also [20], pp.170–171) who assumed in effect
that P (x, y) = −ρgZ0(x, y). This is just a “hydrostatic” approximation, since it is
the fluid pressure acting on the hull of the vessel when it is at rest, noting that in
general Z0 < 0 so P > 0. One might expect that the Hogner theory would be valid
(if at all) for relatively low speeds, where the hydrostatic approximation retained
some validity.

In fact, the correct condition ultimately determining the pressure P (x, y) is
just Z(x, y) = Z0(x, y). That is, over the limiting portion W of the plane z = 0
that is occupied by the ship, we require that the apparent free-surface elevation
produced by the pressure P (x, y) is identical to the elevation (usually negative) of
the corresponding point of the ship’s surface. Equating Z(x, y) as computed from
(4) to the input Z0(x, y) gives an integral equation for the unknown P (x, y) on
the portion W of the (x, y) plane, and hence the basic task in solving the flat-ship
problem is to solve such an integral equation. This makes the flat-ship problem
very much more difficult computationally than the thin-ship problem.

However, in principle we have all the tools required. It is convenient to envis-
age the problem in discrete form on some (x, y) grid, with a vector p = {P (x, y)}
of pressures corresponding to a vector z = {Z(x, y)} of elevations. Then (4) tells us
that z = Ap, for some matrix A obtained by discretising the kernel function. The
most straightforward way to find the elements of the matrix A is just to run the
code that determines Z(x, y) many times, using some basis set of p-vectors. Now
given z = {Z0(x, y)}, we simply have to invert that system of linear equations to



Figure 4. Free-surface elevation due to “flat” plate at F = 0.5

find p = A−1z.
There are a number of difficulties with this approach, encountered and appreci-

ated by many who have attempted to solve this problem in the past, e.g. [14],[5],[4].
From the computational point of view, the matrix A appears to be ill-conditioned,
and most authors have seen grid-scale oscillations in the output pressures. Physi-
cally, this is associated with short diverging waves with crests nearly parallel to the
ship’s track that spring almost uncontrollably from each discontinuity induced in
the pressure distribution by numerical approximation of the integrals. Partial cures
are possible by various averaging techniques, but it remains difficult to produce
smooth pressure outputs.

Interestingly, though, perhaps it is not always necessary to do so. If the
pressure P (x, y) depends over-sensitively on the hull shape Z0(x, y), it follows that
the hull shape Z0(x, y) is not very sensitive to the pressure P (x, y). The present
author’s experience is that even when the inversion code produced somewhat “wob-
bly” pressures P (x, y), a back-substitution showed that this pressure nevertheless
yielded quite smooth and believable wave fields Z(x, y) agreeing with Z0(x, y), and
these results were essentially unchanged when the wobbles in P (x, y) were smoothed
away, either by eye or systematically by averaging or least square techniques.

5 Planing Surfaces
A “planing surface” is in principle just another name for a flat ship. However, it is
appropriate in introducing this alternate terminology to highlight special considera-
tions which are of particular importance in the application to actual planing boats,



Figure 5. Free-surface elevation due to “flat” plate at F = 1.0

an important feature of which is their high speed. Indeed, it is generally felt that
planing is a state that is achieved for any vessel only, if at all, when the speed is
sufficiently high.

At low speed the vessel moves forward with its hull wetted to an extent that is
little changed from its static state. As the speed increases, for some hulls there may
come a point where (often quite suddenly and simultaneously): significant hydrody-
namic lifting forces are induced, the trim and wetted domain change dramatically,
the boat lifts out of the water, with a decrease in drag or increase in speed at fixed
propulsive force, and the flow near the stern changes its character. If there is a
transom (a suddenly cut off stern end) the flow will detach smoothly from the edges
of the transom rather than wetting it, but even if there is a pointed stern, smooth
detachment and de-wetting may occur prior to the actual stern ending. In any case,
once this happens, there is a “hole in the water” at atmospheric pressure immedi-
ately behind the stern, and the smoothness of the detachment of the water from
the stern to form this hole indicates that the pressure must take the atmospheric
value not just on the surface of the water, but also at that detachment location on
the hull.

Mathematically, this means that any pressure P (x, y) that is an acceptable
output from the code described above for a flat ship must, at least at speeds above
that where planing commences, vanish at the trailing end of the wetted domain.
This is an extra condition, equivalent to the Kutta condition of aerodynamics, which
is not in general satisfied by the unique inversions of (4) for a given Z = Z0(x, y)
defined on a given wetted portion W of the (x, y) plane.

Nor indeed should we expect it to be satisfied! A given hull shape Z0(x, y)
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Figure 6. Pressure on “flat” plate at F = 1

will be wetted when planing to an extent that must be determined by the flow, and
hence the domain W over which the integral equation is solved must be determined
as part of the solution, not fixed. Although this dependency of wetted domain on
hydrodynamics holds in principle for any surface-piercing body at any speed, the
change in wettedness accompanied by changes in trim and draft (or “squat”) is
relatively small for conventional ships at low speeds. However, it is an essential
feature of planing that large changes in wettedness and trim occur as the speed
increases, and for example the wetted length of a planing boat at high speed can
be only a small fraction of that at rest. This requirement to determine the domain
W of integration in the (x, y) plane, simultaneously with solution of the integral
equation for P (x, y) on that domain, presents a real challenge to any computational
procedure for solving the planing problem.

Alternatively, if we choose to fix the wetted domain W , we must allow an
equivalent degree of freedom in the hull shape Z0(x, y). This can be computationally
more convenient, though less relevant to real planing boat design. For example, if we
set Z1(x, y) = Z0(x, y) + C(y), then the program determines C(y), thus distorting
the input hull Z0(x, y) (by bending it about a longitudinal axis) to a new shape
Z1(x, y) on the same wetted domain W , such that the Kutta condition P (x, y) = 0
is satisfied at the trailing end. Whether we like it or not, the program then solves
for the flow about the boat z = Z1(x, y), not the input boat z = Z0(x, y)!

Although much more work is needed to bring this sort of planing surface
program to a useful state, Figures 4 and 5 show examples of free-surface elevations
Z(x, y) computed in this way for a flat plate Z0(x, y) = −αx at constant angle of
attack α on a fixed 2:1 rectangular domain W . These are for two different speeds,
namely for Froude numbers F = 0.5 and F = 1.0 respectively, where F = U/

√
gL,

with L the length. In fact, at both speeds the function C(y) ≈ −0.7αL/2 is almost
constant, so to a large extent the true body z = Z1(x, y) is still a flat plate, but
simply shifted down by the flow without distortion, with the forward 30% of the



plate above the undisturbed water level (but still wetted). The scale of the highest
crests and deepest troughs shown is about ±1.5αL/2, i.e. about twice the maximum
plate submergence at the stern. Note the transverse waves (e.g. as marked by the
dark trough for F = 0.5) at low speeds, disappearing at the higher speed F = 1
to leave a mainly diverging pattern. Note also the familiar “rooster tail” of white
(highest crest) water behind the stern, which moves further downstream as the
speed increases.

Figure 6 shows an example at F = 1 of the corresponding pressure distribution
P (x, y), for a plate with L = 8 metres and αL/2 = 1 metre. The basic “bedstead”
shape of the pressure function P (x, y) seems to be smooth in both directions, with
a leading-edge singularity (inverse square root and only crudely approximated here
by a large finite pressure) modelling a splash, finite non-zero values at the sides, and
a square-root approach to zero at the trailing edge. However, the rapidly-varying
character of the diverging waves tends to compromise this smoothness computa-
tionally, and requires averaging techniques in the solution of the integral equation
to avoid spurious rapid oscillations in the output pressure.

In fact, the speeds in these examples are still relatively low for application to
actual planing boats (though high relative to conventional ship speeds), and the
large waves made at these speeds are undesirable. There is some interest in design
of large vessels which must operate at such speeds, and hence interest in minimising
these waves. On the other hand, at even higher true planing speeds, wave effects are
essentially negligible irrespective of hull shape, and the planing surface behaves like
a lifting surface in aerodynamics. There are then computational methods [3] using
aerodynamic lifting-surface theory for analysing the flow, but even these have seen
little application so far to real planing-boat design, which remains largely empirical.

6 Design, Detection and Optimisation
The above describes flow analysis tools for a given body, and in particular for
given planing surfaces reveals computational challenges that are far from resolved.
Somewhat different challenges are presented by design tasks, where the body shape
is (fully or partially) output rather than input. In some cases, the design task can
be simpler than the analysis task.

If the body shape is to be determined, then something else must be given.
One possibility is to design a body to produce a given wave field. Although this is a
somewhat unlikely design task, it is essentially the same as a detection task. That
is, we may wish to determine the shape or character of a vessel that is not readily
observable directly, by examining the wave field that it produces. Although this
is a very interesting and potentially important application, it will not be further
discussed here.

Another design objective is optimisation. In particular, it has always been
one of the main tasks of the naval architect to minimise the drag on a vessel, which
is the sum of a viscous component and a wave component. Viscous drag is largely
insensitive to hull shape, being mostly just proportional to the total wetted surface
area. Hence so long as this wetted area is kept as small as possible, the residual



design effort goes into minimising the wave resistance D.
For conventional thin ships, Michell’s integral (1) is very well adapted to this

task, being a positive definite quadratic functional in the hull shape function Y (x, z),
and there have been a number of optimisation studies [9], [20] pp. 205–214, of its
minimisation subject to various constaints, the most important of which is fixed
displacement volume 2

∫∫
Y dxdz. The results have not been too satisfactory, with

unacceptable features like negative offsets Y (x, z), corrugations in the designed
hull at low speeds, and end singularities at higher speeds. Some of these features
are perhaps inevitable: corrugations are a fruitless attempt to cancel waves that
are much shorter than the ship, while the end singularities are a fruitless attempt
to place as much of the displacement as far apart as possible in order to cancel
waves that are much longer than the ship. Features such as negative offsets can
be eliminated by including non-negativity constraints in the optimising code. This
area is one that perhaps could benefit from further research, in an era of cheap
high-speed computing capability, and sophisticated optimisation algorithms.

Unconventional vessels allow more scope for optimisation, and we discuss here
some drag minimisation issues for multihulls (catamarans, trimarans, etc) and for
pressure distributions modelling hovercraft or planing surfaces.

7 Optimal Spacing for Multihulls
Michell’s thin-ship theory provides a linear relationship (2) between hull shape Y
and waves Z, which can (with some reservations) be extended by simple linear
superposition to collections of separate thin hulls. [The reservations are associated
with vertical-axis vortices and side forces induced by each hull on every other hull,
but these are generally felt to be negligible for vessels of sufficiently small draft.]
The wave resistance D depends quadratically rather than linearly on the hull shape
function Y , but the Michell integral (1) can be written

D =
2
π

ρ U2k4
0

∫ π/2

−π/2

dθ sec5 θ
∣∣Ω(θ)

∣∣2 (5)

involving the modulus squared of a complex spectrum function Ω(θ) which for a
single hull is given by

Ω(θ) =
∫∫

W

dxdz Y (x, z)eik0x sec θ+k0z sec2 θ (6)

and thus depends linearly on the hull shape Y .
Suppose now that we have N hulls, with the jth hull having equation

y = bj + Yj(x− aj , z) , (7)

on its centreplane Wj , so that its centre point is located at (x, y) = (aj , bj). Then
the linearly superposed spectrum is

Ω(θ) =
N∑

j=0

e−ik0 sec2 θ(aj cos θ+bj sin θ)

∫∫
Wj

dxdz Yj(x, z)eik0x sec θ+k0z sec2 θ . (8)



A simple but instructive special case is where all Yj functions are proportional
to each other, i.e.

Yj(x, z) = βjY0(x, z) (9)

for constants βj . Physically, each hull has the same shape and centreplane W , but
a varying beam proportional to βj . Then

Ω(θ) = Ω0(θ) F (θ) (10)

where
Ω0(θ) =

∫∫
W

dxdz Y0(x, z)eik0x sec θ+k0z sec2 θ (11)

and

F (θ) =
N∑

j=0

βje
−ik0 sec2 θ(aj cos θ+bj sin θ) (12)

Now since D depends only on the modulus squared of Ω, for a fixed basic hull shape
Y0 and hence a fixed basic spectrum Ω0, it depends only on the modulus squared
of F (θ).

It is therefore possible to perform quite simple optimisation studies by min-
imising |F (θ)|2 as a function of the arrangement pattern (aj , bj) and beams βj , di-
vorcing this from the separate question of the optimum choice of the shape Y0(x, z)
of the hulls. Such a minimisation is potentially confused by the dependence of F (θ)
on the wave angle θ, but any choice which reduces |F (θ)|2 over a significant range
of angles θ is likely to be desirable when this quantity is integrated to give the net
wave resistance.

A systematic set of such studies was reported in [16]. The simplest example
is a conventional (side-by-side) catamaran N = 2, where we can set β1 = β2 = 1/2,
a1 = a2 = 0 and b1 = −b2 = b, where 2b is the hull centreplane separation. Then

F (θ) = cos(k0b sec2 θ sin θ) = C(θ). (13)

Good hull-separation choices then are such that C(θ) = 0 for some θ = θ0 of
importance, e.g. where the basic spectrum Ω0(θ) has a maximum. The smallest such
separation is therefore 2b = (π/k0) cos2 θ0/ sin θ0. Importantly, however, nothing
can be done by adjusting the hull separation of conventional catamarans to eliminate
or even reduce transverse waves having θ = 0, since F (0) = 1 irrespective of the
separation 2b.

A somewhat more interesting example is a “staggered” trimaran N = 3, which
is essentially the above catamaran, but with a third centrally placed hull having
a3 = −s, b3 = 0 and β3 = 1, located a distance s ahead of the side hulls. We have
chosen the central hull to have exactly half of the total displacement of the vessel,
so its beam is twice that of each of the side hulls, which is optimal for cancellation
of transverse waves. Then

F (θ) = C(θ) + eik0s sec θ (14)

where C(θ) is again given by (13). Indeed, transverse waves are easily seen to be
totally cancelled, with F (0) = 0, if the (smallest) longitudinal stagger is chosen



to be s = π/k0. Physically, this simply means that the stagger s is half of the
transverse wavelength 2π/k0, so the transverse waves made by the central hull are
exactly out of phase (and equal in amplitude because of the choice of displacement)
to the transverse waves made by the side hulls. With that choice of s, we have
finally ∣∣F (θ)

∣∣2 = 1 + C(θ)2 + 2C(θ) cos(π sec θ) (15)

and our remaining task is to choose the best separation 2b, in order to make |F (θ)|2
as small as possible over a large range of θ values.

It is not hard to see (e.g. graphically) that it is optimal to make both C(θ)
and cos(π sec θ) vanish simultaneously at some angle θ0. A good choice appears
to be sec θ0 = 5/2 (θ0 ≈ 66◦) and k0b sec2 θ0 sin θ0 = π/2, so k0b/π = b/s =
cos2 θ0/2 sin θ0 ≈ 0.262. With that choice, the spectral energy |F (θ)|2 remains
below about a quarter of that for a monohull, for a large range of angles, about
|θ| < 71◦. Notably the condition b/s ≈ 0.262 indicates that the trimaran forms an
“arrow” configuration with angle about 29◦, so lying inside the Kelvin angle of 39◦.
Actual computations from Michell’s integral [16] confirm this to be a configuration
with very low wave resistance near the design speed U =

√
gs/π. Other examples

with especially low wave resistance are studied in [16], including a laterally asym-
mmetric (staggered) catamaran (N = 2), and a tetra-hull (N = 4) in a “diamond”
arrangement.

8 Optimal Pressure Distributions
Design of pressure distributions P (x, y) to minimise an objective such as wave resis-
tance may be a worthwhile task for vessels such as hovercraft or surface-effect ships,
where there is some element of direct control of the pressure distribution. However,
it is potentially of even greater significance for planing surfaces, where the pressure
P (x, y) is that felt under the hull due to the hydrodynamics of the flow. If we can
make such an optimal choice of P (x, y), then this leads immediately to a hull shape
Z0(x, y), without the need to solve the integral equation (4).

The formula (3) allows wave resistance minimisation with respect to choice
of pressure P (x, y), subject to a fixed weight constraint of given

∫∫
P dxdy, and

there were early studies e.g. [10], [1], and more recently [6] on such optimisations.
Typically the results are oscillatory, and in particular possess unacceptable large
swings between positive and negative pressures.

An additional constraint of importance in practice, both directly for hovercraft
and indirectly for planing boats, is non-negativity of the pressure, i.e. the inequal-
ity constraint P (x, y) ≥ 0. When this constraint is implemented [17], perhaps not
surprisingly, we find zones of zero pressure, replacing but not necessarily coinciding
with the negative-pressure zones of the unconstrained solutions, interspersed with
zones of positive pressures. In effect, this implies that the optimal pressure distri-
bution is not a single patch, but rather a “multi-patch”, analogous to a multi-hull
ship as above.

At relatively high speeds the optimal positive pressure is confined to the ex-
treme bow and stern ends. The end pressure varies in magnitude smoothly across



the width, decreasing toward zero at the sides. In fact, an aerodynamic analogy
(with exact equivalence between wave resistance and induced drag in the limit as
F →∞) shows that at sufficiently high speed this lateral variation must be elliptic.

In the case of a 2:1 rectangle, so long as F > 0.96 the optimum consists only
of these two bow and stern pressure patches, and the best result is achieved in
the apparently unrealistic limit where their longitudinal extent is zero and their
magnitude is large. Such Froude numbers are high enough that transverse wave
cancellation by bow-stern interaction is ineffective, and the best that can be achieved
is to place the disturbing pressures as far apart longitudinally as possible. At lower
speeds, it is desirable to include a third patch of positive pressure, located amidships,
and this patch grows in importance and length as the speed is reduced, with the
end lines withering away, until the optimal configuration is a single patch.

However, the simple bow-stern pressure-line optimum holds in a speed range
near F = 1 of considerable interest, and has a wave resistance typically less than
a quarter of that for a constant-pressure patch bearing the same total weight. For
a hovercraft modelled by a constant-pressure patch, this occurs at “hump” speed,
which is a barrier that has to be overcome before the vessel moves to a higher
operating speed where wave-making is not a factor, so there is only a relatively
minor operational importance attached to reducing the size of this hump. In the
indirect application to a planing surface, on the other hand, the reduced wave
resistance may be a real benefit for large boats incapable of reaching these higher
speeds, whose operating speed may of necesssity be near F = 1.

At first sight, the conclusion that the optimal pressure distribution is highly
concentrated at the bow and stern of the vessel is disappointing, and perhaps not
achievable. However, at least for the planing application, it suggests that a “tan-
dem” configuration consisting of two distinct planing surfaces, each of high aspect
ratio (small length relative to width), may be optimal.

Throughout the present paper we have until now discussed only fully three-
dimensional bodies and flows. However, it is interesting that this conjectured op-
timum points toward locally two-dimensional flows near each of these two high-
aspect-ratio planing surfaces, and (especially since on the small local lengthscale
the Froude number is high and wave effects locally negligible) there is scope for
simplified two-dimensional flow analysis. It should however be noted that although
the far-field waves made by the tandem configuration are small, so yielding low
wave resistance, this does not necessarily imply a small free-surface elevation every-
where, and indeed, there are indications (see e.g. [19]) of a large trough between
the bow and stern patches.
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