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ABSTRACT

The problem addressed in the paper is that of two-dimensional irrotational flow past a finite-depth planing hydrofoil under
gravity. Linearized planing surface theory is applied. A simple numerical approach is used to obtain data on hydrodynamic
coefficients and flow pattern for various ranges of input parameters. These data are partly verified through the analysis of
two limiting cases of the considered problem: first, the infinite depth, Froude number being finite and second, finite depth
with very high Froude numbers.

1 INTRODUCTION

The linearized problem of a 2D hydrofoil planing un-
der gravity is well-known and its theory was addressed
by many authors. The first references are the papers by
Sretensky [14], Wagner [19], Sedov [11], Kochin [7], and
Y.S. Chaplygin [1], where some numerical results were pro-
duced for the planing flat plate. Haskind [6] extended Se-
dov’s approach to finite depth, but gave no numerical results.
In [9] some results for the free surface elevations are pre-
sented. Linearized planing surface theory was also treated
by Maruo [8]. Squire [13] analyzed a planing flat plate us-
ing a method similar to that by Sretensky and Maruo, and
Cumberbatch [2] used a method similar to Sedov’s.

Tuck [15, 16, 17, 18] used a procedure involving numer-
ical solution to the planing integral equation. In a paper by
the present author [4], Sedov’s approach was used to ana-

lyze the influence of a spoiler upon the hydrodynamic coef-
ficients of a planing hydrofoil. Lately [3] the method of sin-
gular integral equations along with discrete vortices method
was applied to the problem under consideration.

The linear theory adequately describes the flow pattern for
small incidence angles and curvatures of the hydrofoils ev-
erywhere except in the vicinity of the leading and trailing
edges. The stagnation point, the spray jet, and the spoiler
occur in these regions and therefore the perturbations can
not be considered to be small there. Asymptotic analysis
has shown that the linear solution loses its correctness in the
proximity of the leading edge at distances ofO(α2), where
α denotes the incidence angle. The linear solution is also not
correct in the vicinity of the trailing edge with the spoiler.
The scale of the region of invalidity is ofO(ε̄), whereε̄ de-
notes the relative spoiler length [10].
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Figure 1: Sketch of the flow pattern around a finite-depth planing hydrofoil under gravity.



2 STATEMENT OF THE PROBLEM

The planing hydrofoily = η(x), x ∈ [−l; l] is assumed to
be in the uniform finite-depth flow of an ideal incompress-
ible fluid under gravity.V∞ andp0 denote the stream veloc-
ity and pressure at infinity. A cartesian coordinate system
(x, y) has its origin at the middle point of the foil’s wet-
ted length projection onto the stream direction, which coin-
cides with thex–axis direction, they–axis being directed
vertically upwards, see Fig. 1. The depth of the incom-
ing flow at upstream infinity ish. The problem is rendered
non-dimensional by dividing all the length variables by half
of the wetted length projectionl, and all velocity variables
by V∞. The Froude number based on the lengthl is intro-
duced:Fr = V∞/

√
gl , whereg denotes the gravity accel-

eration.
The problem is considered to be solved when the velocity

potential functionϕ(x, y) is found. The harmonic function
ϕ(x, y) is the real part of an analytical function of complex
potentialw(z) = ϕ+iψ, wherez = x+iy, and has to satisfy
the boundary kinematic condition on the wetted length

∂ϕ

∂n
= − sin θ(x) ,

the dynamic condition on the free surface

∂ϕ

∂x
− 1

2

((∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2
)
− νy = 0 ,

and the impermeability condition on the bottomy = −h

∂ϕ

∂y
= 0 ,

where∂/∂n denotes the derivative in the normal direction,
θ(x) = η′(x) denotes the tangential angle to the foil at
point x, andν = gl/V∞ = 1/(2Fr2). Finally, at infinity
we require, following [11], thatw(z) ∼ (A1 + i A2) e−i νz

asx → +∞)
Assumingθ(x) is small, we can neglect the second-order

terms in the above boundary conditions and summarise the
boundary-value problem for linearized finite-depth planing
as:

∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0 for − h < y < 0 ,

∂ϕ

∂y
= −θ(x) at y = 0 , |x| < 1

∂ϕ

∂x
− νy = 0 at y = 0 , |x| > 1

∂ϕ

∂y
= 0 at y = −h

(1)

Additionally,dw/dz should be finite everywhere in the flow
domain except in the vicinity of the leading edgez = 1. In
other words, if we introduce the pressure coefficientp(x)
which is connected to the velocity potential through the re-
lation (in the framework of the linear theory)

p(x) =
∂ϕ

∂x
− νy ,

thenp(x) ∼ B/
√

1− x asx → 1.

3 THE FINITE-DEPTH PLANING EQUATION

Kashkind [6] was the first to obtain an expression for the
relationship between a smooth distribution of pressurep(x)
acting in the interval|x| < 1, y = 0 and the free-surface
elevationη(x) on the same interval. This expression can be
used to formulate the finite-depth planing equation as fol-
lows

η(x) + C =

1∫

−1

p(ξ)K(x− ξ) dξ , (2)

where the kernel function has the form

K(x− ξ) = − 1
π

∞∫

0

cos λ(x− ξ) sinh(λh)
ν sinh(λh)− λ cosh(λh)

dλ−

−H(νh− 1)
sinh(λ0 h) cosh(λ0 h)

ν h− cosh2(λ0 h)
sin λ0(x− ξ) .

(3)
In the above expressionλ0 is the real positive root of the
equation

λ− ν tanh(λh) = 0 (4)

andH(x) denotes the unit step function. This means that
the second term in (3) contributes only ifνh > 1. Note
that equation (4) has only pure imaginary roots ifνh < 1.
The integral equation (2) should be solved in the∞ − 0
solution class, which means thatp(x) has to have an inverse
square-root singularity at the leading edge of the planing hy-
drofoil, and has to behave like

√
1 + x in the vicinity of the

trailing edge. The absence of the second term in (3) when
νh < 1 corresponds to the absence of an infinite train of
trailing waves.

The role of the unknown constantC in the integral equa-
tion (2) is discussed in [15, 16, 17, 18]. In fact, the correct
choice ofC ensures that the Kutta–Joukowsky condition at
the trailing edgep(−1) = 0 is satisfied, and hence a unique
solution to (2) exists.

4 NUMERICAL SOLUTION

A simple numerical solution readily results from the as-
sumption thatp(x) is a step-wise constant function, a dis-
cretization of the wetted length−1 < x < 1 being intro-
duced. Such an approach was successfully used in [18] for
the infinite-depth planing flow problem.

Assume thatp(ξ) ≈ pj when ξj−1 < ξ < ξj , j =
1, . . . , N and ξ0 = −1, ξN = 1. Then, using the collo-
cation method, the integral equation (2) can be re-written in
the form

η(xi) + C =
N∑

j=1

pj

ξj∫

ξj−1

K(xi − ξ) dξ , (5)

wherexi, i = 1, . . . , N denotea collocation points at which
the integral equation (2) is considered to be satisfied. In the
present paper the Chebyshev grid is applied with

ξj = −1
2

(
1−cos

πj

N

)
, xi = −1

2

(
1−cos

π(i− 0.5)
N

)
.



In fact, the collocation pointsxi, i = 1, . . . , N are the ze-
ros of the Chebyshev polynomial of the first kindTN (x)
while ξj , j = 1, . . . , N − 1 are the zeros of the Chebyshev
polynomial of the second kindUN−1(x). Such a choice of
discretization along with the simple conditionp(−1) = 0
accounts for the fact that we seek a solution in∞− 0 solu-
tion class.

Note that in the case of infinite depth, comparison of this
numerical method with that based on Fourier series expan-
sion of the pressure distribution coefficientp(x), see [5],
demonstrated a good agreement for a wide range of the flow
parameters.

5 NUMERICAL RESULTS AND DISCUSSION

Consider two important limiting cases of the finite-depth
planing problem under gravity, first, the infinite depthh →
∞, Froude number being finiteFr < ∞ and second,
h < ∞, Fr → ∞. Both cases are well studied and there-
fore can be used as a verification of the numerical results
obtained in the section.

5.1 Limiting case I: infinite depth, finite Fr

This corresponding problem was addressed in many works,
some references to which are mentioned in the Introduction
to the present paper. Note thatνh À 1 and hence the sec-
ond term in (3) vanishes. Thus, ash →∞, the kernel of the
governing integral equation reduces into

K∞(x− ξ) = − 1
π

∞∫

0

cos λ(x− ξ)
ν − λ

dλ + sin νx . (6)

After a little algebra this expression can be shown to coin-
cide with well-known kernel formula for the infinite-depth
planing.

5.2 Limiting case II: finite depth, infinite Fr

Sedov [12] was the first to consider the corresponding lin-
ear problem of the planing hydrofoil on the surface of a
fluid of finite depth, gravity influence being neglected. With
the assumption that the planing hydrofoil makes only small
perturbations to the incoming flow, and in the notation of
the present paper, the perturbed conjugate velocityω(z) =
u− iv can be written in the form

ω(z) =
2 i
π

√
sinh 2(ζ + a)
sinh 2(ζ − a)

×

×
a∫

−a

θ(t)
sinh 2(t− ζ)

√
sinh 2(ζ − a)
sinh 2(ζ + a)

dt ,

(7)

wherea = π/(4h) andζ = πz/(4h). The free-surface ele-
vation is obtained by integration of (7)

yfs(x) = −Im

±∞∫

x

ω(t) dt

and the height of the trailing edge is given by

C∞ = −Im

∞∫

1

ω(t) dt− η(1) .

5.3 Pressure distribution and flow pattern

An arc of a parabola with the topography of the wetted por-
tion y(x) = 2d(1− x2) + αx was chosen for calculations.

Figures 2 and 3 demonstrate the pressure coefficientp(x)
for the planing parabolic hydrofoil withα = 10o, d = 0.05
andν = 2 whenh = 1 andh = 2 correspondingly. Here
30 collocation points were used. In the same graphs,p(x)
is also shown for the case of infinite depth. It is seen that in
the case ofh = 2 both lines practically coincide.
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Figure 2: Pressure distribution forh = 1 (solid line) and
h → ∞ (dashed line);α = 10o, d = 0.05, ν = 2
(Fr = 0.5) andM = 30.
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Figure 3: Pressure distribution forh = 2 (solid line) and
h → ∞ (dashed line);α = 10o, d = 0.05, ν = 2
(Fr = 0.5) andM = 30.

Flow pattern for the same set of the flow parameters are de-
picted in Figs. 4 and 5, shift of the trailing edgeη(−1) + C
being−0.3446 and−0.3351 correspondingly. Again, in the
case ofh = 2 flow pattern is close to that in the case of
h → ∞ (shift of the trailing edge is−0.3279). In both
figures the value ofνh is greater than1 and therefore an in-
finite train of trailing waves is present. Next two figures 6
and 7 demonstrate flow patterns with no trailing waves for
νh < 1. Though the Froude number is not very high, both
flow patterns are similar to those in the case ofFr →∞.
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Figure 4: The flow pattern forh = 1: α = 10o, d = 0.05, ν = 2 (Fr = 0.5) andM = 30. Shift of the trailing edge
η(−1) + C = −0.3446.
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Figure 5: The flow pattern forh = 2: α = 10o, d = 0.05, ν = 2 (Fr = 0.5) andM = 30. Shift of the trailing edge
η(−1) + C = −0.3351.

-6 -4 -2 2

-1

-0.5

0.5

1

Figure 6: The flow pattern forh = 1: α = 10o, d = 0.05, ν = 0.25 (Fr =
√

2 ) andM = 30. Shift of the trailing edge
η(−1) + C = 0.1787. νh < 1 – no trailing waves.
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Figure 7: The flow pattern forh = 2: α = 10o, d = 0.05, ν = 0.25 (Fr =
√

2 ) andM = 30. Shift of the trailing edge
η(−1) + C = 0.4049. νh < 1 – no trailing waves.



5.4 Hydrodynamic coefficients

Derivatives of the lift coefficient with respect toα andd for
the planing hydrofoily(x) = 2d(1−x2)+αx versus Froude
numberFr are depicted in Figs. 8 and 9 correspondingly for

h = 1, h = 2 andh →∞. In fact, total lift can be calculated
using a simple expression

CL =
∂CL

∂α
α +

∂CL

∂d
d .
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Figure 8: Derivative of the lift coefficient with respect toα for the planing hydrofoily(x) = 2d(1− x2) + αx versus Froude
numberFr. Depthh = 1 (solid line),h = 2 (dashed line) andh →∞ (chain-dotted line).
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Figure 9: Derivative of the lift coefficient with respect tod for the planing hydrofoily(x) = 2d(1− x2) + αx versus Froude
numberFr. Depthh = 1 (solid line),h = 2 (dashed line) andh = ∞ (chain-dotted line).



6 CONCLUSIONS

Integral equation and some corresponding numerical results
has been derived for the lift coefficient, pressure distribution
and free surface shape of the finite-depth planing hydrofoil
of an arbitrary topography under gravity for a wide range of
the flow parameters.
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