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ABSTRACT

We show that smooth local modifications to a

parabolic leading edge can delay separation of

the laminar boundary layer on the upper sur-

face of an airfoil. Symmetric modifications,

of the nature sharpening the nose allow to

achieve an increase of up to 8% in the unsep-

arated angle of attack. Further improvements

are possible (at least 11% increase) for unsym-

metrical (drooped) noses.
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An asymptotic approximation for a harmonic

flow past a slender airfoil is constructed by

matching the thin-airfoil solution and the so-

lution for an apparent parabola in a uniform

stream. The geometry of the flow near the

leading edge, in particular the location of the

stagnation point, depends on a parameter di-

rectly connected with the airfoil’s angle of at-

tack. Used as an input into Prandtl’s boundary

layer equations this data allows to predict crit-

ical angles of attack, at which boundary layer

separation occurs, and thereby to look for the

shapes delaying the leading edge separation.
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THIN-AIRFOIL SUMMARY

Consider a wing in a subsonic uniform stream:

An ideal flow shown on this picture meets the

wing at angle α, called the angle of attack. At

small angles α the viscous flow remains unsep-

arated and the resulting lift is proportional to

α. Hence a greater α generates a greater lift.

However, we can increase α with the flow re-

maining unseparated only up to a certain value

αcritical. Transition from the phase of unsepa-

rated flow to the the phase of separated flow

is accompanied by a sudden loss of lift and is

called stall. Delaying the stall to larger values

of α is therefore one of the aims of a good

aerodynamic design.
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The outline of the wing’s cross-section can be

written as:

y = fC(x)± fT (x), 0 ≤ x ≤ c,

where fC(x) is the middle line and
fT (x) describes thickness.

Denote by r the radius of the outline’s curva-

ture at the leading edge.
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SMALL NOSE RADIUS OF CURVATURE

Assume that r is small and

fT (x) = (2r)1/2(x1/2 +O(x3/2))

α = O(
√
r)

fC(x) =
√
rFC(x)

where FC(x) depends on x only and is bounded
together with its derivative. Keep the stream
horizontal and rotate the airfoil by angle α.

Since r and α are small the outline of the
turned airfoil can be written as

y = −αx+ fC(x)± fT (x)

0 ≤ x ≤ c.
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Consider the flow ∇(Ux + φ) past this airfoil.

The perturbation potential φ(x, y) satisfies the

Laplace equation and the boundary conditions:

φy = (U + φx)y′(x) on y = y(x), (1)

|∇φ| → 0, as
√
x2 + y2 →∞, (2)

Kutta condition (3)

The Kutta condition is a requirement that the

speed of the flow be finite at the trailing edge.

It effectively decides on the value of circulation

about the wing and therefore controls the lift.

If we use our assumptions about α, fC and fT ,

and expand the kinematic condition (1) near

y = 0, x ∈ (0, c), retaining only O(
√
r) terms,

we obtain the boundary condition:

φy = U(−α+ f ′C(x)± f ′T (x)), y = 0± . (4)
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Combining conditions (2), (3) and (4) with

∇2φ = 0 gives the “thin-airfoil” problem. The

complex velocity potential

w(z) = φ+ iψ

for this problem is known, its derivative (com-

plex velocity) is

dw

dz
=−

U

πi

√
z − c
z

∫ c
0

√
s

c− s
(−α+ f ′C(s))

(s− z)
ds

−
U

π

∫ c
0

f ′T (s)

(s− z)
ds . (5)

This solution fails in a neighbourhood of the

leading edge giving infinite velocities. It must

be replaced there with a properly matched per-

turbation term from the solution describing a

flow past a parabola in a uniform stream.
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SOLUTION NEAR LEADING EDGE

The flow near the leading edge can be approx-

imately described by the complex velocity po-

tential [Z ≡ z/r]:

Finner(z) = rUf(Z)

where f(Z) = Z + (β − i)(2Z − 1)1/2.

On the parabola y2 = 2rx,

ImFinner(z) = rUβ = const,

hence Finner(z) is a complex potential for a

uniform flow U past the parabola y2 = 2rx.

The complex velocity for Finner(z) is

F ′inner(z) = U
(
1 + (β − i)(2Z − 1)−1/2

)
.
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MATCHING

The x → 0+ behaviour of w′(z) on airfoil’s

“surface” is given by

dw

dz
= ±U

[
(α− α0)

√
c

x
− i

√
r

2x

]
+ γ(x, r), (6)

where |γ(x, r)| ≤ const ·
√
r and

α0 =
1

π

∫ c
0

f ′C(s)

[s(c− s)]1/2
ds

(
is O(

√
r)
)
. (7)

The complex velocity F ′inner(z) on the surface

y = ±
√

2rx can be written as

F ′inner(z) = U + U(β − i)/(i±
√

2x/r) (8)

Solution (8) is to approximate the flow in a

small neighbourhood of the leading edge (dis-

tances ∼ r), whereas (6) is to describe the

perturbation potential at distances � r from

the leading edge.
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Comparing (6) and the corresponding mem-

ber from (8) in some intermediate region, e.g.

taking x ∼ r1−δ (0 < δ < 1), we find that the

principal terms (∼ rδ/2) coincide if

β = (α− α0)
(

2c

r

)1/2
.

If we choose the initial orientation of the airfoil

so as to generate fC for which the integral (7)

is zero, then this can be written as

β = α

(
2c

r

)1/2
. (9)

More details about this formula can be found

in Ruban (1981) and Tuck (1991).
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NON-PARABOLIC NOSES

Consider now the complex velocity of the form:

F ′inner(z) = U

(
1 +

β − i√
2Z − 1

+ ω(Z)

)
(10)

where ω(Z) is analytic in the flow domain and

is O(Z−1) as |Z| → ∞.

The matching procedure used in the case of

a parabolic inner solution identically applies to

the inner solution of this form since introduc-

tion of ω(Z) has no influence on the leading

terms in the intermediate region. Thus the

formula (9) relating parameter β and the an-

gle of attack α can be used for (10) as well.
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FAMILY OF NOSE SHAPES

The solution for a parabola can be derived by

considering the complex velocity potential

f =
1

2
(ζ + β − i)2

and the conformal mapping Z = 1
2(ζ2 + 1).

This gives the complex velocity potential we

used earlier:

f =
(
Z + (β − i)(2Z − 1)1/2

)
.

13



In order to obtain the flow satisfying (10), con-

sider the complex velocity potential defined by

the f(ζ) &Z(ζ) pair

f =
1

2
(ζ + β − i)2 ,

Z =
1

2
(ζ2 + 1) +

p+ iq

[ζ − (a+ ib)]m

(m positive integer, b < 1).

This flow in the ζ plane is the same as before.

In the physical plane, however, f(Z) describes

a flow past a shape distorted near the nose but

asymptotically approaching parabola at large

|Z|. For example, if m = 1, the parametric

form of such a shape is

x =
1

2
t2 +

p(t− a) + q(1− b)
(t− a)2 + (1− b)2

y = t+
q(t− a)− p(1− b)
(t− a)2 + (1− b)2

(setting ζ = t+ i, (t ∈ (−∞,∞)).
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Examples of symmetrical shapes

for m = 1.
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Examples of non-symmetrical shapes

for m = 1.
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Formally, assumptions of the adopted asymp-

totic approximation do not imply that the

shape must become “parabolic” within a fixed

bounded region. However, if we wish to ease

requirements on smallness of r, we should con-

sider the shapes which approach parabola as

quickly as possible. In this sense m = 1 is

not a particularly good choice as the result-

ing shape becomes parabolic at considerable

distances from the nose. The curves corre-

sponding to m ≥ 2 quickly approach parabola,

but, as we found out, do not give a significant

delay in separation. We reached a compromise

by considering the mapping

Z =
1

2
(ζ2 + 1) +

1

1− ihζ
·

p+ iq

ζ − (a+ ib)

This modification allows to achieve a better

control as we increase β0, with the shape chan-

ges remaining local to the nose when h is small.
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BOUNDARY LAYER COMPUTATION

The non-dimensional equations governing ste-
ady 2D laminar flow of a viscous fluid near a
curved surface are:

∂u

∂s
+
∂v

∂n
= 0 (11)

(continuity equation),

u
∂u

∂s
+ v

∂u

∂n
= ue

due

ds
+
∂2u

∂n2
(12)

(Prandtl’s equation) where s and n are non-
dimensional curvilinear coordinates measured
along and normal to the surface starting from
the stagnation point; u and v are respective
velocity components.
The boundary conditions are

u(s,0) = v(s,0) = 0 (13)

(no-slip and impermeability conditions) and

u(s, n)→ ue(s) as n→∞ (14)

(u matches the non-viscid velocity at the edge
of the boundary layer).
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Following Werle & Davis we introduce the

Görtler variables

ξ =
∫ s

0
ueds and η =

ue√
2ξ
n ,

in which (11) and (12) become

2ξ
∂F

∂ξ
+ F +

∂V

∂η
= 0 (15)

2ξ
∂F

∂ξ
+ V

∂F

∂η
+ P ′(ξ)(F2 − 1) =

∂2F

∂η2
(16)

where

u = ueF and v =
ue√
2ξ
V −

∂η

∂s

√
2ξF

and the pressure gradient input is

P ′(ξ) =
2ξ

ue

due

dξ
.

In these variables the boundary conditions take

the form:

F (ξ,0) = V (ξ,0) = 0, lim
η→∞F (ξ, η) = 1. (17)
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We solve the system of (15) and (16) subject

to the boundary conditions (17) for the various

shapes described above analyzing the results in

terms of the skin friction factor

τ = (∂/∂η)F |η=0 .

The flow remains unseparated if τ > 0 for all

ξ. The separation criterion is thus τ = 0.
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A sequence of symmetrical noses

with increasing β0
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A sequence of non-symmetrical noses

with increasing β0.
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The empirical rule illustrated below facilitates the search
for optimal shapes.

Taking P ′(ξ) for a parabola (= P ′parab – shown with a red

line) with maximum value of β (= 1.156) as a reference

we consider a set of values a, b, p and q to be a “good”

choice if (a) the plot P ′(ξ) for the same value of β lies

above Pparab(ξ) after the second intersection, and (b)

the local minimum of P ′(ξ) is not lower than the local

minimum of P ′parab(ξ). Condition (b) is needed to avoid

an early crisis, whereas condition (a) indicates delayed

boundary-layer separation. The blue line in the diagram

satisfies (a) and (b), whereas the green lines do not

satisfy conditions (a) and (b).
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