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Abstract J.H. Michell solved in 1898 the problem of a thin ship moving steadily
forward in a calm sea, and was able, in spite of the total absence of
computing equipment, to evaluate with 2-�gure accuracy the triple in-
tegral for the resulting inviscid drag force or wave resistance. Michell's
formulation allowed in principle determination of the actual ship-wave
pattern, but this task was not completed for the whole wave �eld for
about another century. Far-�eld waves can be computed with only
marginally more diÆculty than wave resistance, and some such compu-
tations appeared a few decades ago, but even then there are subtleties
and �ne details such as very short diverging waves that are diÆcult to
capture with adequate accuracy. Waves near the ship are an order of
magnitude harder to compute. We have produced very fast code for
both near and far �elds, that can determine a �nely detailed pattern in
about an hour on an inexpensive PC, a task that J.H. Michell would no
doubt have carried out himself if he had such a device on his desk in
1898. A feature that Michell might not have included is an empirical
dissipation factor for the far-�eld waves, incorporating an eddy viscosity
coeÆcient which damps out some of the shortest diverging waves. Re-
sults are given for a destroyer hull where agreement with experiment is
reasonable, and in particular is not necessarily worse than that for codes
incorporating features such as nonlinearity and full viscous e�ects.
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THIN-SHIP THEORY

The free-surface elevation z = Z(x; y) due to a thin ship with o�sets
y = �Y (x; z) moving steadily at speed U in the �x direction in water
of in�nite depth is

Z(x; y) = �
2

k0

Z Z
R
Y�(�; �)Gx(x� �; y; z; �)d� d� : (1)

Here R is the centreplane y = 0 of the ship and � = G(x; y; z; �) is the
velocity potential for a unit \Havelock" source at (x; y; z) = (0; 0; �),
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Figure 1. Computed wave pattern of a destroyer hull at 30 knots.

satisfying a linearised free-surface boundary condition k0�z + �xx = 0
on z = 0, with k0 = g=U2, namely (Wehausen and Laitone, 1962, p. 484)
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k � k0 sec2 �
ek(z+�)dk d�

with r the distance to the source, and the k-integration path passing
above the pole at k = k0 sec2 �. The task of computing Z(x; y) thus
requires a total of four numerical integrations.
An alternative formula results from interchange of the order of (�; �)

and (k; �) integrations, namely
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where

P + iQ = �
1

ik cos �
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ik cos ��+k� d� d� : (4)

This alternative is sometimes described (see e.g. Noblesse, 2000) as a
\Fourier-Kochin" representation, although it is in the spirit of Michell's
(1898) wave-resistance formula.
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Although there are still four integrations to perform, the alternative
form has advantages when computing the elevation at a large number of
points (x; y), since the P;Q functions can be computed and stored once
and for all. Nevertheless, direct quadruple numerical integration remains
prohibitively expensive for all but benchmark checking purposes.

FAR FIELD AND WAVE RESISTANCE

When x is large and positive, i.e. far behind the ship, the dominant
contribution to the wave elevation comes from the residue at the pole
k = k0 sec

2 � in (3), namely

ZF (x; y) = �
2k20
�
< i

Z �=2

��=2
e�ik0 sec

2 �(x cos �+y sin �) sec4 �(P + iQ) d� :

(5)
Equation (5) shows that the far-�eld wave pattern ZF is the sum over
all possible directions �, of plane waves of amplitude proportional to
P + iQ, or energy proportional to P 2 +Q2. The total energy yields the
wave resistance

R =
2�g4

�U6

Z �=2

��=2
(P 2 +Q2) sec5 � d� : (6)

In combination with (4), this is Michell's (1898) triple integral for the
wave resistance of a ship. The similarity between (5) and (6) suggests
that the task of computation of the far-�eld wave elevation at each sep-
arate point (x; y) will be comparable to that of computing one value for
the wave resistance, a daunting prospect for a �eld of 100,000 points.
We have developed an eÆcient routine (Tuck 1987, Tuck and Lazauskas

1999), for evaluation of Michell's integral (6),(4), which uses Filon's
quadrature (Abramowitz and Stegun, 1964, p. 890) in the �-direction,
a Filon-like method in the �-direction, and Simpson's rule for the �-
integral. The �-wise Filon quadrature captures the correct decay as
j�j ! �=2, when the integrand of (4) with k = k0 sec2 � becomes a
rapidly oscillating function of �, whereas conventional (e.g. Simpson)
quadratures fail to produce the correct decay of the diverging part of
the wave spectrum. This program computes the wave resistance of a
typical ship to 4-�gure accuracy in less than a �fth of a second on an
inexpensive 500MHz PC.
Essentially the same numerical methods that have been successful

for wave-resistance computations are now used to compute the far-�eld
wave elevation ZF (x; y). In addition, a special algorithm as in Tuck et

al (1971) also captures the stationary-phase character of this integral as
x; y ! 1, thus allowing uniform accuracy of computation as we move
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far away from the ship. The PC time to compute a single far-�eld wave
elevation is then about a quarter of a second. However, because the
P;Q functions can be stored and used repetitively, the time to compute
a wave �eld of 100,000 points is only about the same as for about 4000
separate single-point calculations, i.e. about 15 minutes.

NEAR FIELD

Suppose we now write G = GF +GL where GF is the \far-�eld" por-
tion of the Havelock source potential (2), de�ned for all x as the residue
component when x > 0 and zero otherwise, and GL is the remaining \lo-
cal" potential which decays rapidly as we move away from the source in
all directions. Then correspondingly the wave elevation can for all (x; y)
values be separated into Z = ZF + ZL. For x values aft of the stern of
the ship, ZF (x; y) is as described in the previous section, and for x values
ahead of the bow it vanishes. Between bow and stern, a similar compu-
tational procedure can be adopted for ZF (x; y), albeit with a slight loss
of eÆciency, because the P;Q functions need to be re-computed for each
new x (but not y) value.
It remains to compute the local �eld ZL(x; y), and in principle this re-

mains a formidable quadruple-integration task. Fortunately, a signi�cant
part of this task has already been done for us, since Newman (1987) has
provided economised polynomial approximations for GL. Hence we need
merely substitute this polynomial code into the original formula (1) and
carry out the (�; �) integrations by Simpson's rule (no Filon treatment
is needed as the local integrand is not rapidly varying). Nevertheless,
one cannot entirely escape the fact that near-�eld computations require
more arithmetic e�ort than far-�eld, and the local part of the compu-
tation always dominates computer times, typically by a factor of about
four. The net e�ect is that the total PC time to compute a complete
100,000-point �eld is about an hour.

RESULTS AND EDDY VISCOSITY

Figure 1 is a sample of a typical computed wave �eld, for a destroyer
travelling at 30 knots. This Figure was produced on a 400 by 250 grid,
i.e. 100,000 separate wave elevations were computed in the region shown.
A nice feature of the present program is that we can now \zoom in" on
arbitrarily-�ne details of this pattern, although what we actually do
is repeat the computations with the 100,000 points distributed over a
smaller region. In contrast, the resolution of \panel" methods is set in
advance by the choice of the number of panels. Figure 2 shows a four



5

times magni�ed view of the centre of Figure 1. Only the top (starboard)
half is immediately relevant to this discussion.
Of particular interest is the diverging-wave structure, which manifests

itself as very short long-crested \ripples", which are especially apparent
as we move away from the large crests near the Kelvin angle, toward the
track of the ship. This �ne structure is genuine in inviscid theory and
cannot be captured without careful attention to accuracy and numer-
ical convergence | in particular it tends to be lost without the Filon
treatment of the ��integral in (4).
However, in one sense it should be lost! In the real world, such very

short waves are damped out by viscosity. It is possible in an empirical
manner to account for this e�ect as follows.
Suppose we insert a multiplicative factor in the �-integrand for the

far-�eld waves (5), of the form

exp

�
�2�k20

x

U
sec4 �

�
: (7)

This factor is taken from Lamb (1932, p. 625), for damping of plane
waves. The actual kinematic molecular viscosity of water � � 10�6m2s�1

is far too small to see any e�ect. However, oceanographically relevant
(e.g. Cushman-Roisin, 1994, pp. 45, 63, 72 and Mei, 1983, pp. 9, 413)
eddy viscosities of the order of � = 0:005 m2s�1 do damp out the shortest
diverging waves as j�j ! �=2.
Figure 2 shows in its bottom (portside) half, the e�ect of including the

factor (7). Our investigations have shown there is little dependence of
the free-surface elevation on the actual value of the viscosity, unless � is
varied over several orders of magnitude. We have used the exaggerated
value � = 0:05 m2s�1 in Figure 2 to enhance the comparison. Compared
with the zero-viscosity top half of the �gure, the �nest diverging ripples
in the pattern have disappeared. It is these ripples, which propagate
almost perpendicular to the ship's track, that the eddy viscosity a�ects
most, due to the sec4 � term in (7). The e�ect is similar to a low-pass
�lter used by Sclavounos et al (1993). Larger viscosities remove even
more detail, eventually even inappropriately damping transverse waves,
and � = 0:005 m2s�1 seems a good compromise. An eddy viscosity of
this magnitude has essentially no other e�ect on the wave pattern.

COMPARISONS

The particular destroyer hull (\DTMB Model 5415") of Figures 1{
2 is one for which extensive experimental towing-tank tests were done
in 1991, and comparisons made with various then state-of-the-art com-
puter programs, as reported by Lindenmuth et al (1991). Raven (1996)
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Figure 2. Waves made by a destroyer { doubly expanded view. Top half (starboard
side of ship) is at zero viscosity, bottom half (port side) is with � = 0:05 m2s�1.

has since also provided computations for this ship, and Noblesse (2000)
has recently reviewed extended developments of one of the most suc-
cessful of the 1991 codes. Figure 3 shows these results together with our
computations, for a wave trace along a parallel cut at a �xed value of y.
No attempt has been made to distinguish the (lightly-sketched) curves

for the various competing codes in this Figure; the \clutter" of these
curves is in itself a useful measure of the extent to which computational
tools can predict ship waves quantitatively. All codes do quite a reason-
able job considering the magnitude of the task, and ours is at least as
good as any of the others, sometimes signi�cantly better. Some of the
other codes are nonlinear and some include viscous e�ects throughout
the ow �eld, but there is no evidence that discrepancies with this partic-
ular experiment (which could be due to de�ciencies in the experimental
measurements rather than in the computations) are reduced signi�cantly
by including such e�ects.

MULTIHULLS

The present program can also be used for multihulls (Tuck and Lazaus-
kas, 1998). Figure 4 shows an example of an asymmetric catamaran
where there is almost total wave cancellation on the starboard side.
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Figure 3. Comparison between experiment (solid curve), the present code (dashed
curve) and other codes (light curves) for a destroyer hull.

Figure 4. An asymmetric \Weinblum" catamaran.
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