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COMPUTATION OF EXTENSIONAL FALL OF SLENDER VISCOUS
DROPS BY A ONE-DIMENSIONAL EULERIAN METHOD∗
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Abstract. We develop a one-dimensional Eulerian model suitable for analyzing the behavior
of viscous fluid drops falling from rest from an upper boundary. The method allows examination of
development and behavior from early time, when a drop and filament begin to form, out to large
times when the bulk of the fluid forms a drop at the bottom of a long thin filament which connects
it with the upper boundary. This model overcomes problems seen in Lagrangian models, caused by
excessive stretching of grid elements, and enables a better examination of the thin fluid filament.
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1. Introduction. Formation of drops via extensional flow and break-off has
been much studied (see the review article by Eggers [6]), motivated by a wide range
of applications such as ink-jet printing, spinning and drawing of polymer or glass
fibers, glass blowing and blow-molding in the manufacture of containers, light bulbs
and glass tubing, rheological measurement by fiber extension, and fiber spinning for
polymers and glasses [3, 4, 9, 13]. Considerable progress has been made towards an
understanding of the breakup of a thin filament into drops, although the exact details
of the final stages of breakup are yet to be resolved. However, the evolution of the drop
and filament from some initial configuration, and the influence of initial conditions
on the final breakup, are still relatively unexplored and have been the focus of our
attention for some time [15, 14]. Some work by others on this topic includes [20, 18].

The problem of interest is a drop of very viscous fluid hanging beneath a solid
wall/boundary and extending under gravity, similar to honey dripping from an up-
turned spoon. Analyses with and without inertia have been done and compared by
the present authors [15, 14]. Surface tension was neglected in those studies, on the
basis that a mean diameter � =

√
R0L0 of the drop is large compared to the meniscus

scale
√
γ/(ρg), or equivalently that the Bond number Bo = ρg�2/γ is large. Here g

is the gravitational acceleration, ρ, γ are respectively the density and surface tension
coefficient of the fluid, R0 is a length scale for the drop’s cross section (e.g., the radius
of the drop at the wall), and L0 is the initial length of the drop. As the fluid filament
extends and gets thinner, this neglect of surface tension may become less justifiable,
and an examination of the effect of surface tension is desirable.

Because of the slender geometries involved, one-dimensional models are common
in analysis of filament breakup [8, 1, 19, 5, 7, 17, 11]. However, the development of
a drop and filament may also involve nonslender geometries at early times, requiring
numerical solution of the full Navier–Stokes equations. Our previous work [15, 14] has
involved both one-dimensional models and numerical solution of the Navier–Stokes
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equations for axisymmetric drops and two-dimensional sheets.
For all of our work, a Lagrangian reference frame has been used, with grids that

move with moving fluid elements. However, as the filament thins and surface tension
potentially becomes important, Lagrangian numerics begin to fail due to the stretch-
ing of the grid. For example, in finite-element simulations of the full Navier–Stokes
equations [14], mesh elements in and near the filament region become excessively elon-
gated or distorted, leading to loss of accuracy. Similarly, in one-dimensional models
the grid points become sparse in the filament region while congregating in the main
drop, so that we lose the ability to examine the development of the filament. Hence, if
we are to better investigate the filament evolution, including possible effects of surface
tension, we must modify our methods.

A number of techniques are available to address the resolution problem in the
filament region. First, we can begin with an irregular mesh that has a concentration
of grid points in the section of the drop that will develop into the filament region.
This, however, will only be successful until that section of the mesh becomes very
stretched. Another option is to remesh when grid points become too sparse in the
filament. This method becomes difficult (although not impossible) with the inclusion
of inertia (see, for example, [18]), as all unknowns and their time derivatives must be
interpolated from the old mesh onto the new mesh. In this paper, we wish to present
a further alternative in which the congregation of mesh points does not occur.

We have therefore developed a one-dimensional model in an Eulerian reference
frame, where the Lagrangian coordinate (a fluid particle label equal to the initial
distance ξ from the wall) is sought as a function of time t and that particle’s physical
distance x from the wall. This model may be derived directly from the Navier–Stokes
and continuity equations, as described below. It may also be obtained (in the absence
of surface tension) by a transformation of our previous one-dimensional Lagrangian
model [14] for the cross-sectional area A as a function of time t and Lagrangian
coordinate ξ, which will also be outlined here.

The resulting PDE for ξ = Z(x, t) is formally of higher order in space than the
original PDE for A(ξ, t). Also, while the original problem could be solved in a fixed
spatial domain 0 < ξ < L0, where L0 is the initial drop length, the transformation
results in a moving boundary problem in the domain 0 < x < L(t), where the actual
drop length L(t) must be determined as part of the problem. Both of these aspects
mean that the problem in physical coordinates is considerably harder to solve than
that in Lagrangian coordinates, but it has the major benefit that grid elements do
not become stretched over time and is therefore worth pursuing in order to better
understand the filament behavior.

The increased complexity of the problem is partly a result of the transformation
employed, with a further element of difficulty added by the inclusion of surface tension.
In the absence of surface tension, the equations may be directly integrated, simplifying
the numerical problem. In this paper we explore the new model and its solution in
the absence of surface tension, which will be considered in a future paper. We will,
however, derive here the equations with surface tension included.

2. A one-dimensional Eulerian model. For an axisymmetric column of in-
compressible fluid, a one-dimensional lubrication approximation to the Navier–Stokes
equations yields (see, for example, [5, 11, 10])

(2.1)
∂u

∂t
+ u

∂u

∂x
= g − γ

ρ

∂K

∂x
+

ν∗

h2

∂

∂x

(
h2 ∂u

∂x

)
,
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while the continuity equation becomes

(2.2) (h2)t + (uh2)x = 0,

where subscripts denote derivatives, ν∗ = 3μ/ρ is the elongational (Trouton) kine-
matic viscosity [16] of a fluid with shear viscosity μ and density ρ, g is gravitational
acceleration in the downward (positive) direction, γ is the coefficient of surface ten-
sion, u(x, t) is the downward velocity of the fluid at position x and time t, h(x, t) is
the radius of the drop, and K(x, t) is the curvature of the drop, given by

(2.3) K =
1√

1 + (hx)2

[
1

h
− hxx

1 + (hx)2

]
.

The cross-sectional area of the drop is given by A = πh2, so (2.2) can be rewritten
as

(2.4) At + uAx = −Aux

and substituted into (2.1) to obtain

ut + uux = g − γ

ρ
Kx − ν∗

A

∂

∂x

(
∂A

∂t
+ u

∂A

∂x

)
or

(2.5)
Du

Dt
= g − γ

ρ
Kx − ν∗

A

∂

∂x

DA

Dt
,

where D/Dt = ∂/∂t + u ∂/∂x denotes the material time derivative.
In a Lagrangian reference frame [15, 14, 19] we let x = X(ξ, t), where ξ is a

fluid-particle label such that x = ξ at t = 0. The initial drop geometry is assumed
to have a cross-sectional area distribution given by some function A0(ξ). That is,
A(ξ, 0) = A0(ξ), 0 ≤ ξ ≤ L0, where A(ξ, t) is the cross-sectional area at label ξ and
time t, and L0 is the initial drop length. Conservation of mass demands [14]

A
∂X

∂ξ
= A0

or, on integration,

(2.6) X(ξ, t) =

∫ ξ

0

A0(ξ1)

A(ξ1, t)
dξ1.

Now, defining ξ = Z(x, t), we have

A = A0Zx, u = Xt = −Zt

Zx
, and

∂A0

∂x
= A′

0Zx,

where primes denote differentiation with respect to ξ. Substituting for A and u in
(2.5) gives

− D

Dt

(
Zt

Zx

)
= g − γ

ρ
Kx − ν∗

A0Zx

∂

∂x

[
A0

D

Dt
(Zx)

]
= g − γ

ρ
Kx − ν∗

[
A′

0

A0

D

Dt
(Zx) +

1

Zx

∂

∂x

(
D

Dt
(Zx)

)]
= g − γ

ρ
Kx − ν∗

D

Dt

(
A′

0

A0
Zx +

Zxx

Zx

)
,(2.7)
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with

D

Dt
=

∂

∂t
− Zt

Zx

∂

∂x
.

The transformation to the dependent variable Z(x, t) has yielded a PDE (2.7) that
is second order in time and third order in space, whereas the Navier–Stokes equation
(2.1) is first order in time and second order in space. The main reason for this increase
in order is that the dependant variable is a position rather than a velocity (as in the
Navier–Stokes equations). In order to solve (2.7), we must also solve for the length
of the drop L(t) = X(L0, t), which is increasing with time. Thus, we need two initial
conditions and four boundary conditions. One initial condition is obtained from the
definition of the Lagrangian coordinate such that ξ = x at t = 0, so that

(2.8) Z(x, 0) = x.

The other comes from the condition that the flow starts from rest, so u(x, 0) = 0 or

(2.9) Zt(x, 0) = 0.

With respect to boundary conditions, two (one at each end) come from the definition
of the Lagrangian coordinate such that x = 0 at ξ = 0 and x = L(t) at ξ = L0, giving

Z(0, t) = 0,(2.10)

Z(L(t), t) = L0.(2.11)

Since the drop is falling from under a solid plane boundary where the normal velocity
is zero for all time, i.e., u = 0 at x = 0, then Du/Dt = 0 at x = 0, and hence, from
(2.7),

(2.12) 0 = g − γ

ρ
Kx − ν∗

D

Dt

(
A′

0

A0
Zx +

Zxx

Zx

)
at x = 0.

We require a further boundary condition which comes from a balance between viscous
stresses and surface tension at the bottom of the drop x = L(t). One-dimensional
theory yields

(2.13)
∂

∂x

(
Zt

Zx

)
= − γ

ρν∗
K, or, equivalently,

D

Dt
(Zx) = − γ

ρν∗
ZxK.

Equation (2.7) subject to initial and boundary conditions (2.8)–(2.13) describes
the fall of a drop of viscous fluid from underneath a solid boundary, starting from
a known initial configuration. Gravitational, viscous, inertial, and surface tension
effects are all included. The model derived involves the fluid-particle label ξ = Z(x, t)
as the dependent variable, with the physical space coordinate x and time t as the
independent variables.

For zero surface tension (γ = 0), (2.7) simplifies considerably, by integration with
respect to the material time derivative. With nonzero surface tension (γ �= 0), such
a procedure is computationally problematic due to the necessity of time-integrating
the surface-tension term while holding the particle label ξ = Z(x, t) constant. We
leave consideration of this matter to a future paper and, from here on, neglect surface
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tension (i.e., set γ = 0). Integration with respect to t at fixed ξ = Z, subject to Z = x
and Zt = 0 at t = 0, then yields

−Zt

Zx
= gt− ν∗

(
A′

0

A0
(Zx − 1) +

Zxx

Zx

)
or

(2.14) Zt = ν∗Zxx − gtZx − ν∗
A′

0(Z)

A0(Z)
Zx(1 − Zx).

Equation (2.14) is in general a nonlinear PDE which, like the Navier–Stokes equation
(2.1), is first order in time and second order in space. It is worth noting in passing that
in the special case of an initially cylindrical drop where A0 = constant, it becomes
linear, and in the further special case where gravity can be neglected (such as in a
liquid bridge problem [2]), it reduces to the ordinary linear heat-conduction equation,
with diffusivity ν∗.

The appropriate initial and boundary conditions are

Z(x, 0) = x at t = 0,

Z(0, t) = 0 at x = 0,

Z(L(t), t) = L0 at x = L(t),

Zx(L(t), t) = 1 at x = L(t).

(2.15)

Note that we no longer need boundary condition (2.12), which in integrated form is
equivalent to u = 0 at x = 0, and which is automatically satisfied by demanding
Z(0, t) = 0. Also, with γ = 0, (2.13) can be integrated with respect to the material
time derivative to give Zx = 1 at x = L(t) as we have in (2.15).

The Lagrangian equivalent to (2.14) in terms of the cross-sectional area A(ξ, t)
as a function of Lagrangian coordinate ξ and time t is readily (by manipulation of
(2.14)) shown to be

u = gt− ν∗

A0

∂

∂ξ
(A−A0).

Differentiating with respect to ξ, using (2.6), and rearranging gives

(2.16)
∂A

∂t
= ν∗

A2

A0

∂

∂ξ

(
1

A0

∂

∂ξ
(A−A0)

)
, 0 ≤ ξ ≤ L0.

The corresponding initial and boundary conditions are

(2.17) A(ξ, 0) = A0(ξ),
∂

∂ξ
(A−A0)(0, t) =

gt

ν∗
A0(0), A(L0, t) = A0(L0).

The Lagrangian model given by (2.16) and (2.17) was derived directly in [14] by bal-
ancing viscous and gravitational forces; the inertialess version was considered in [15].
Comparison between solutions to these models and those for the new Eulerian model
of present interest, (2.14) and (2.15), will be given below. We note that the Eulerian
model involves gravity explicitly in the PDE (2.14), whereas the Lagrangian model
involves gravity only in a boundary condition at ξ = 0 (2.17).
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3. Eulerian-model solution. For the remainder of this paper, we will be pri-
marily interested in initially paraboloidal slender drops, given in Lagrangian coordi-
nates by A0(ξ) = A0(0)(1 − ξ/L0) with small aspect ratio αr =

√
A0(0)/L0 � 1, as

considered in [14].
Defining dimensionless variables (denoted by bars)

(3.1) A0(ξ) =
A0(ξ)

A0(0)
, ξ = Z =

ξ

L0
=

Z

L0
, x =

x

L0
, t =

gL0

ν∗
t,

the dimensionless form of (2.14) for the initially paraboloidal drop A0(Z) = 1 − Z is
(after removing the bars)

(3.2) ReZt = Zxx − tZx +
Zx

1 − Z
[1 − Zx],

with the Reynolds number Re given by

Re =
gL3

0

ν∗2
.

The initial and boundary conditions (2.15) become

(3.3) Z(x, 0) = x, Z(0, t) = 0, Z(L(t), t) = 1, and Zx(L(t), t) = 1.

Equation (3.2) subject to (3.3) is most easily solved using the explicit forward-
time-centered-space finite difference method. Setting the time step Δt and spatial
step Δx, we approximate (3.2) in the usual manner by

Re
Zj+1
i − Zj

i

Δt
=

Zj
i+1 − 2Zj

i + Zj
i−1

Δx2
− t

Zj
i+1 − Zj

i−1

2Δx

+
1

1 − Zj
i

Zj
i+1 − Zj

i−1

2Δx

[
1 −

Zj
i+1 − Zj

i−1

2Δx

]
,(3.4)

where Zj
i = Z(xi, tj) is the value of Z(x, t) at the jth time step and the ith grid point.

For numerical stability, we must ensure that the diffusion number Δt/Re(Δx)2 < 0.5.
The initial and wall boundary conditions are easily specified by setting Z0

i = iΔx

and Zj
0 = 0. However, the boundary conditions at the free end are not quite so

straightforward to implement, due to the moving boundary. At each time step, the
drop becomes longer and some of the drop (at the bottom) will move beyond the
current computational domain. Hence we need to extend the grid to the new position
of the bottom of the drop.

Specifically, having computed Zj+1
i , i = 1, . . . , Nj − 1, using (3.4), we seek an

extrapolation procedure that approximates the bottom of the drop, satisfying the
boundary conditions Z = Zx = 1 at the (as yet unknown) drop bottom x = L(tj+1),
and that matches our already computed solution above the bottom. The most obvious
choice is a linear polynomial extrapolation, but this can only be first order accurate,
and we prefer to preserve the second order accuracy of the finite difference scheme.
To achieve this, we could seek a quadratic polynomial extrapolation

Z(x, tj+1) = aj+1(x− xNj−1)
2 + bj+1(x− xNj−1) + cj+1,

where the unknown coefficients aj+1, bj+1, cj+1 and the unknown length L(tj+1) of
the drop are determined by satisfying the two boundary conditions at x = L(t) and
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matching the already computed solution at xNj−2 and xNj−1. An equally good second
order extrapolation is to use the exponential approximation

(3.5) Z(x, tj+1) = ex−L(tj+1), where e−L(tj+1) = Zj+1
Nj−1e

−xNj−1 .

In fact, (3.5) is just the local form of the solution from the corresponding Lagrangian
model neglecting inertia as in [15], and hence has a stronger physical motivation than
the quadratic extrapolant.

Earlier work [15, 14] has shown that, with neglect of surface tension, the drop
shape very near to the bottom is given quite accurately by the inertialess solution.
This is because at early times, accelerations are very small and Stokes flow solutions
are applicable; at later times, the main drop is essentially in free fall and (with
neglect of surface tension) does not change in shape. Furthermore, for some initial
configurations, including the initially paraboloidal drop considered here, we can obtain
an exact analytic solution to the Lagrangian model neglecting inertia and use this to
assign appropriate values of Z(x, t) to the new grid points. Specifically, using (3.1),
the dimensionless form of the Lagrangian PDE (2.16) is (after removing the bars)

(3.6) Re
∂A

∂t
=

A2

A0

∂

∂ξ

(
1

A0

∂

∂ξ
(A−A0)

)
, 0 ≤ ξ ≤ 1,

with initial and boundary conditions

(3.7) A(ξ, 0) = A0(ξ),
∂

∂ξ
(A−A0)(0, t) = t, A(1, t) = A0(1, t).

In the inertialess limit (Re = 0) this has the explicit solution

(3.8) A(ξ, t) = A0(ξ) − tV (ξ), V (ξ) =

∫ 1

ξ

A0(ξ1) dξ1.

As discussed by Stokes, Tuck, and Schwartz [15], the cross-sectional area of the drop
vanishes at the position ξ = ξ∗ such that t = t∗ = A0(ξ∗)/V (ξ∗) is a minimum, so
that the drop formally breaks with A(ξ∗, t∗) = 0. The time t∗ is the “crisis” time; at
this time the length of the drop, given by (2.6) with ξ = 1, formally becomes infinite
in this inertialess approximation. No solution exists for t > t∗; i.e., we have a finite-
time blow up at the crisis time t∗. However, for larger times t > t∗ the main drop is
effectively falling as a solid body, and in the absence of surface tension it retains the
same shape given by (3.8) with t = t∗.

For the initially paraboloidal drop A0(ξ) = 1 − ξ, (3.8) becomes

(3.9) A(ξ, t) = (1 − ξ)

(
1 − 1

2
t(1 − ξ)

)
,

from which we see that ξ∗ = 0 and t∗ = 2; i.e., the drop breaks at the wall at the
crisis time t = 2. Hence, for all t ≥ 2,

(3.10) A(ξ) = ξ(1 − ξ),

which is a solution to (3.6). It is readily verified using Zx = A/A0 that (3.9) satisfies
the condition Zx = 1 at x = L(t) (i.e., ξ = 1) for all t ≤ 2.
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Fig. 3.1. (a) Drop shape as a function of distance L(t) − x from the bottom of the drop.
Inertialess solution (3.9) at t = 1.5 (solid); solution to the Lagrangian PDE (3.6) at t = 1.5 (dotted)
and t = 4.0 (dashed); the inertialess large-time solution (3.10) is indistinguishable from the dashed
curve. (b) Percentage relative difference between the solution to the Lagrangian PDE (3.6) and
the inertialess solution (3.9) for t < 2 or (3.10) for t ≥ 2. The percentage relative difference
is calculated as 100 × (AL − AI)/AI , where AL is the calculated solution to (3.6) and AI is the
inertialess solution (3.9) or (3.10). Here (3.6) was solved using implicit backward differencing with
Re = 0.1, Δξ = 10−3, Δt = 10−3.

The extrapolant for Z(x, t) is obtained by substituting A0 = 1 − Z, and A(Z, t)
given by (3.9) for t < 2 or (3.10) for t ≥ 2, into Zx = A/A0. Integrating then yields

(3.11) Z(x, t) =

⎧⎨⎩ 1 − 2

t
+ c(t) ext/2 for 0 < t < 2,

c(t) ex for t ≥ 2.

We solve for the value of the unknown function of time c(t) at time tj+1 using the
already computed value of Z at xNj−1. The expression so obtained for t ≥ 2 is (3.5)
exactly. It is also readily seen that the expression obtained for t < 2 is second-order
accurate. Thus, we use (3.11) to calculate values of Zj+1

Nj+k, k = 0, 1, . . . , stopping

when Zj+1
Nj+k > 1, and thus extending the computational domain to Nj+1 grid points.

The actual position of the bottom of the drop is given by solving Z(L(tj+1), tj+1) = 1.
The accuracy of this procedure is demonstrated for Re = 0.1 in Figure 3.1. Figure

3.1(a) compares the drop shape at t = 1.5 given by the inertialess solution (3.9) and
as found by solving (3.6); also shown is the large- (i.e., crisis) time inertialess solution
(3.10), which is indistinguishable from the solution to (3.6) at Re = 0.1, t = 4. Figure
3.1(b) shows the percentage relative difference between solutions to (3.6) at Reynolds
number Re = 0.1 and the inertialess solution at different times. At the very bottom
of the drop, the relative difference is much less than 1%. As the Reynolds number
increases, the inertialess solution becomes less accurate as a global approximation for
the drop shape, but each (dimensionless) time step represents a decreasing physical
time interval so that still only very few grid points are extrapolated. Even for Reynolds
numbers as high as Re = 10, it gives a good approximation for the local region near
the bottom of the drop. Thus the method remains (second-order) accurate. In fact,
because only a very few grid points are ever extrapolated, the choice of extrapolation
procedure has only a minor effect on the solution.
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Having determined the Lagrangian coordinate Z(x, t) over the new, extended,
computational domain, the actual shape of the drop can be calculated via R =

√
A =√

A0Zx.

4. Results and comparison between Eulerian and Lagrangian models.
The numerical solution to (3.2) for the particle label Z(x, t) as a function of physical
space and time is shown, for Reynolds number Re = 0.1, in Figure 4.1. The growth
of the computational domain as a result of the moving boundary at Z = 1 can be
clearly seen.

The axisymmetric drop shape is shown in Figure 4.2(a), alongside drop shapes
from the numerical solution to the Lagrangian equation (3.6), in Figure 4.2(b). The
solution to (3.6) was calculated using the implicit backward-time-centered-space finite
difference method. The two different models produce the same drop shapes with the
same overall length; however, there are some differences to be highlighted.

First, for times t � 2.6 the computed solutions to the Lagrangian model (Figure
4.2(b)) appear to move away from the wall. This is due to stretching of the grid and
a consequent loss of grid points in the filament region and accumulation of grid points
in the main drop below the filament, as seen in Figure 4.3(b). The fluid particle that
is initially a distance x = Δξ from the wall (i.e., the closest point to the wall for which
we calculate A(ξ, t)) falls ever downwards, so that there is a continually lengthening
region in physical space, which is essentially the fluid filament connecting the drop to
the wall, about which we know virtually nothing. Unfortunately, it is in this filament
region that our greatest interest lies, since this is where the drop will eventually
break. While decreasing the grid spacing near the wall will extend the time over
which we have near complete information, there will always come a time (soon after
the crisis time t∗ of the inertialess theory, when accelerations approach gravitational
acceleration) when the grid becomes too stretched in the filament region. This loss
of information in the filament region is completely overcome with the Eulerian model
(Figure 4.2) because gridpoints are fixed in space and the grid constantly extended as
the drop length increases. This leads to a uniform spacing of grid points over the full
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Z

Fig. 4.1. Solution to PDE (3.2) for Z(x, t), with Re = 0.1, at times t = 0, 0.1, . . . , 3.9, 4.0.
Here Δx = 10−2, Δt = 4 × 10−6.
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Fig. 4.2. Drop shapes for Re = 0.1 at times t = 0, 0.2, . . . , 3.8, 4.0. (a) Shape calculated using
Eulerian framework (3.2) (Δx = 10−2, Δt = 4. × 10−6). (b) Shape calculated using Lagrangian
framework (3.6) (Δξ = 10−3, Δt = 10−3).

length of the drop, as seen in Figure 4.3(a). The greater knowledge of the filament
region that results from the Eulerian model will better enable a future study of the
effect of surface tension on filament breakup and drop pinch-off.

A second point of difference between the Eulerian and Lagrangian models is with
respect to the behavior near the wall boundary at x = ξ = 0. At this boundary, the
Lagrangian boundary condition (3.7) for the initially paraboloidal drop is

(4.1)
∂A

∂ξ
(0, t) + 1 = t.

For the Lagrangian model it is a simple matter to check that this boundary condition
is indeed satisfied, by computing Aξ(0, t) using the forward-space finite difference
formula, i.e.,

Aξ(0, t) =
A(Δξ, t) −A(0, t)

Δξ
.

The value of Aξ(0, t) + 1 so computed is plotted against time t in Figure 4.4 (solid
curve). The wall boundary condition is satisfied until t ≈ 2.0 and then Aξ(i, t) begins
to move away from t. At t ≈ 2.4 there is a rapid deviation from the correct solution
as the value of Aξ(0, t) decreases and appears to approach a constant unit value. This
highlights the fact that the Lagrangian solution cannot be relied upon at large times
when the grid becomes excessively stretched in physical space.

The equivalent condition on Aξ(0, t) for the Eulerian model is obtained by differ-
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Fig. 4.3. Comparison of Lagrangian and Eulerian solution methods at t = 3.4. Each figure
has approximately 260 grid points. (a) Drop shape calculated using the Eulerian model (3.2), (3.3)
(Δx = 5 × 10−2, Δt = 10−4). (b) Drop shape calculated using the Lagrangian model (3.6), (3.7)
(Δx = 1/260, Δt = 10−3). The extra grid points in the filament region of the Eulerian model can
be clearly seen.
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Fig. 4.4. The accuracy of the Lagrangian and Eulerian models as indicated by the wall boundary
condition (3.7)2. For an initially paraboloidal drop we require Aξ +1 ∼ t. This condition is satisfied
by the Eulerian model but not the Lagrangian model.
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Fig. 4.5. Percentage relative differences at t = 1.5 between the inertialess radius
√
AI with AI

given by (3.9), and Lagrangian and Eulerian solutions with Re = 0.1. The difference is given by
100 × (

√
A −

√
AI)/

√
AI , where A denotes the Lagrangian solution (solid), the Eulerian solution

with extension of the computational domain using the inertialess solution at crisis time (dashed),
and the Eulerian solution with extension of the computational domain using the forward-difference
representation of Zx(L(t), t) = 1 (dotted).

entiating A = A0Zx with respect to ξ, i.e. (for the initially paraboloidal drop),

Aξ = A′
0Zx +

A0Zxx

Zx

= −Zx + (1 − Z)
Zxx

Zx
.

The slope, Aξ at the wall can thus be found from the calculated values of Z(0, t),
Z(Δx, t), and Z(2Δx, t) using first order forward-space finite difference formulae for
Zx and Zxx, i.e.,

Zx(0, t) =
Z(Δx, t) − Z(0, t)

Δx
and Zxx(0, t) =

Z(2Δx, t) − 2Z(Δx, t) + Z(0, t)

Δx2
.

Figure 4.4 (dashed line) shows that Aξ + 1 ∼ t for times well beyond t = 2.4; i.e.,
the wall boundary condition (4.1) is satisfied. Thus, we see that, for large times, the
solution obtained from the Eulerian model is more reliable than that obtained from
the Lagrangian model, especially in the filament region.

This is also shown by Figures 4.5 and 4.6. Figure 4.5 shows the relative differences
between the inertialess prediction (3.9) of the drop/filament radius (R =

√
A) and

solutions at Re = 0.1 to the Lagrangian and Eulerian models, as a function of physical
distance x from the upper wall boundary, at time t = 1.5 before the crisis time of
inertialess theory. There is excellent agreement between the Lagrangian and Eulerian
models at this time, with a difference visible only at the very bottom of the drop.
Figure 4.6 gives the same comparisons but at time t = 4, well after the crisis time of
inertialess theory. Now we see considerably more difference between the Lagrangian
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Fig. 4.6. As for Figure 4.5 but at time t = 4, with AI given by the inertialess large-time
solution (3.10).

and Eulerian solutions, which is due to error in the Lagrangian solution resulting from
an excessively stretched grid. Note also that grid stretching limits our comparison to
the bottom third of the drop where the Lagrangian solution is available; in the region
0 ≤ x < 16 no information is available from the Lagrangian solution due to a lack of
grid points.

For interest, Figures 4.5 and 4.6 also show results for the Eulerian solution ob-
tained using the finite difference approximation to the boundary condition Zx = 1 at
x = L(t), discussed earlier as an alternative to pasting of the inertialess solution to the
bottom of the drop. This differs from the other curves by only about 0.1% over most
of the drop length, with the difference increasing to about 1% at the very bottom;
note that the overall drop length is slightly less, as mentioned earlier, although it is
not noticable with the grid size used here or at the scales shown.

It is interesting to note that at small Reynolds number the time at which the
numerical solution to (3.6) begins to become inaccurate in the filament region (as
indicated by Figure 4.4) is approximately equal to the crisis time of inertialess theory,
as predicted in [15] (t∗ = 2), when accelerations increase rapidly up to gravitational
acceleration. This correlation between the inertialess crisis time and the time at which
the small-Reynolds-number Lagrangian solution becomes inaccurate is also observed
with other initial drop shapes.

5. Discussion and conclusions. The major benefit of reformulating the ex-
tensional flow problem using an Eulerian framework is that, in contrast to other
one-dimensional Lagrangian models, we now include many grid points in the filament
region. The Eulerian scheme is computationally more costly, as there is a rapid in-
crease in the number of grid points as the computational domain extends with the
falling drop. However, this method provides us with information about the filament
region which we cannot obtain using a Lagrangian method. Accuracies such as those
achieved in Figure 4.2 can still be obtained in a matter of minutes. This greater res-
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olution in the filament region enables us to better study the dynamics and behavior
of the developing filament. In particular we are now much better equipped to inves-
tigate the effects of surface tension on the filament, the drop shape, and pinch-off of
the main drop by solving (2.7) with γ �= 0. This will be considered in a future paper.

Meanwhile, reformulating the problem also enables us to address a question pre-
viously posed in Stokes and Tuck [14]. In that paper, we saw that at small Reynolds
numbers and large times, the main part of the drop is indistinguishable from a solid
object that fell from rest at an apparent time t0. Identification of this apparent time
with the crisis time of inertialess theory leads to the conclusion that the large-time
drop shape is the drop shape obtained at the crisis time when neglecting inertia. Con-
versely, it can be shown that equating the large-time drop shape at small Reynolds
numbers with the drop shape at the crisis time of inertialess theory, which is strongly
supported by the numerical solutions (both here and in [14]), implies that the apparent
time t0 and the crisis time t∗ are identical. This relationship between the inertialess
theory and the large-time limit of the flow with inertia implies the expected large-time
shape for an initially paraboloidal drop [14]

(5.1) A(x, t) = e−(L−x)
[
1 − e−(L−x)

]
,

where L = L(t) is the length of the drop at time t. However, the asymptotic theory
described in [14] did not provide an estimate of the actual length L(t) of the drop.
We can now supply that estimate.

In the physical coordinate system, the cross-sectional area of the drop is given by
A(x, t) = A0Zx. The expected large-time drop shape obtained from the inertialess
theory, for the initially paraboloidal drop, is given by (3.11)2 as Z(x, t) = c(t)ex, so
that

A(x, t) = (1 − Z)Zx

= (1 − c(t) ex)c(t) ex.(5.2)

Comparing this with (5.1), we see that

(5.3) c(t) = e−L(t) or L(t) = − ln c(t).

Furthermore, since (3.11)2 must be a solution to the PDE in physical coordinates,
we may substitute it into (3.2) to obtain a first order differential equation for c(t).
Upon solving this, we find

(5.4) c(t) = exp

[
− 1

2Re
(t− 2)2 − L̃0

]
,

where L̃0 is a constant. The length of the drop at large times is then given by

(5.5) L(t) =
1

2Re
(t− 2)2 + L̃0,

and the velocity of the bottom of the drop can be found by differentiating to get

(5.6) L′(t) =
1

Re
(t− 2).

The constant L̃0 is seen to be the apparent initial length of the drop at the crisis time
t∗ = 2 of inertialess theory when the main drop essentially enters free fall from rest.
That is, at later times, the bottom of the drop falls as if it were dropped from rest at
time t∗ with apparent initial length L̃0.
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Fig. 5.1. Plot of the function −(t − 2)2/(2Re) − ln c(t) for Re = 0.1, 1.0, 10, which at large

time t gives the apparent initial length L̃0 of an initially paraboloidal drop. We obtain L̃0 ≈ 3.3 for
Re = 0.1, L̃0 ≈ 2.6 for Re = 1.0, and L̃0 ≈ 2.0 for Re = 10.

Our solution of the Eulerian model for initially paraboloidal slender drops involves
computation of the function c(t) for extension of the computational domain. Then,
at large time, an approximate value for the apparent initial length is given by

L̃0 = − 1

2Re
(t− 2)2 − ln c(t).

With Reynolds numbers Re = 0.1, 1.0, 10, we find L̃0 ≈ 3.3, 2.6, 2.0 (see Figure 5.1).
As the Reynolds number increases we must compute to (dimensionless) times well

beyond the crisis time t∗ = 2 of inertialess theory to determine L̃0. Figure 5.2 shows
Re

(
L(t) − L̃0

)
, Re = 0.1, 1, 10, versus time t, where L(t) is the length of the drop

found by solving (3.2) as described above. At large time this approaches (t − 2)2/2,
as predicted by (5.5), although, again, as the Reynolds number increases we must
compute to times increasingly larger than the crisis time of the inertialess limit to see
the agreement.

Another point of interest is that the large-time drop (5.1) (Lagrangian coordi-
nates) or (5.2) (Eulerian coordinates), which derives from the inertialess large-time
drop shape (3.10) is observed to be a good representation for the main body of the
drop and the lower portion of the filament, as seen by a comparison of Figures 4.6
and 4.2(a); the inertialess large- (crisis) time solution is accurate to within 1% over
x > 15 (see Figure 4.6), which we see from Figure 4.2(a) is over the bottom third
of the drop and filament at this time. The inertialess solution is less accurate in the
upper filament region, which is to be expected since inertia and viscous fluid flow are
significant in this region of transition from rigid body motion (at increasing velocity)
back to zero velocity at the wall; the inertialess solution can be justified only at early
time when accelerations are much smaller than gravity, or at larger times in the main
drop region which is falling as a rigid body.
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Fig. 5.3. Dripping golden syrup from a knife. The drop shape is paraboloidal, in contrast to
the globular shape of glycerine dripping from a capillary tube as in [12]. Note that the scale is in
inches.

Finally we consider the extent to which our computed drop shapes agree with
observation. Typically, photographs of viscous fluid drops in the literature (e.g., as
in [12]) are of liquids like glycerine dripping from a capillary tube. These drops
appear to be considerably more globular in shape than those computed here, but this
is essentially a matter of initial conditions. For glycerine-like drops, the initial drop
shape is determined by (essentially static) capillarity, as the drop forms slowly at
the bottom of the capillary, so that it begins its fall with an already quite globular
shape. On the other hand, in the present paper we are assuming an initial shape
which is paraboloidal, which is quite like that seen for larger and more viscous drops
of liquids like honey falling from a knife or upturned spoon (Figure 5.3). The initial
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shape of such rapidly formed drops is influenced very little by surface tension, and
their subsequent shape in fall is then quite like those presented here.

Acknowledgments. We gratefully acknowledge valuable discussions with Prof.
P. Broadbridge and Dr. Michael Teubner. We are also grateful to an anonymous
referee whose helpful comments have resulted in an improved paper.

REFERENCES

[1] L. E. Cram, A numerical model of droplet formation, in Computational Techniques & Appli-
cations: CTAC-83, J. Noye and C. Fletcher, eds., Elsevier Science/North–Holland, Am-
sterdam, 1984, pp. 182–188.

[2] P. Concus, R. Finn, and J. McCuan, Liquid bridges, edge blobs, and Scherk-type capillary
surfaces, Indiana Univ. Math. J., 50 (2001), pp. 411–441.

[3] J. DeWynne, J. R. Ockendon, and P.Wilmott, On a mathematical model for fiber tapering,
SIAM J. Appl. Math., 49 (1989), pp. 983–990.

[4] P. J. Doyle, Glass Making Today, Portcullis Press, Surrey, UK, 1994.
[5] J. Eggers, Universal pinching of 3D axisymmetric free surface flow, Phys. Rev. Lett., 71

(1993), pp. 3458–3460.
[6] J. Eggers, Nonlinear dynamics and breakup of free surface flows, Rev. Modern Phys., 69

(1997), pp. 865–929.
[7] J. Eggers and T. F. Dupont, Drop formation in a one-dimensional approximation of the

Navier-Stokes equation, J. Fluid Mech., 262 (1994), pp. 205–221.
[8] M. A. Matovich and J. R. A. Pearson, Spinning a molten threadline, Indust. Engrg. Chem.

Fundamentals, 8 (1969), pp. 512–520.
[9] J. E. Matta and R. P. Titus, Liquid stretching using a falling cylinder, J. Non-Newton.

Fluid, 35 (1990), pp. 215–229.
[10] W. W. Schultz and S. H. Davis, One-dimensional liquid fibers, J. Rheol., 26 (1982), pp.

331–345.
[11] S. Senchenko and T. Bohr, Shape and stability of a viscous thread, Phys. Rev. E (3), 71

(2005), paper 56301.
[12] X. Shi, M. P. Brenner, and S. R. Nagel, A cascade of structure in a drop falling from a

faucet, Science, 265 (1994), pp. 219–222.
[13] T. Sridhar, V. Tirtaatmadja, D. A. Nguyen, and R. K. Gupta, Measurement of extensional

viscosity of polymer solutions, J. Non-Newton. Fluid, 40 (1991), pp. 271–280.
[14] Y. M. Stokes and E. O. Tuck, The role of inertia in extensional fall of a viscous drop, J.

Fluid Mech., 498 (2004), pp. 205–225.
[15] Y. M. Stokes, E. O. Tuck, and L. W. Schwartz, Extensional fall of a very viscous fluid

drop, Quart. J. Mech. Appl. Math., 53 (2000), pp. 565–582.
[16] F. T. Trouton, On the coefficient of viscous traction and its relation to that of viscosity, Proc.

Roy. Soc. A, 77 (1906), pp. 426–440.
[17] D. Vaynblat, J. R. Lister, and T. P. Witelski, Symmetry and self-similarity in rupture

and pinchoff: A geometric bifurcation, European J. Appl. Math., 12 (2001), pp. 209–232.
[18] E. D. Wilkes, S. D. Phillips, and O. A. Basaran, Computational and experimental analysis

of dynamics of drop formation, Phys. Fluids, 11 (1999), pp. 3577–3598.
[19] S. D. R. Wilson, The slow dripping of a viscous fluid, J. Fluid Mech., 190 (1988), pp. 561–570.
[20] D. F. Zhang and H. A. Stone, Drop formation in viscous flows at a vertical capillary tube,

Phys. Fluids, 9 (1997), pp. 2234–2242.


