Gerbes and time-reversal-invariant topological insulators

Krzysztof Gawędzki

IGA/AMSI Workshop, Adelaide, September 2016

Partly based on the joint work with David Carpentier, Pierre Delplace, Michel Fruchart and Clément Tauber [15, 16]. For a more complete account see [18].

I. PLAN

- 1. Bundle gerbes with connection and their holonomy
- 2. Basic gerbe over U(N)
- 3. Square root of the gerbe holonomy
- 4. A 3d index
- 5. Time-reversal on U(N)
- 6. Application to topological insulators
- 7. Application to Floquet systems

II. BUNDLE GERBES WITH CONNECTION AND THEIR HOLONOMY

- Bundle gerbes an example of higher structures: 1-degree higher as line bundles
- Introduced by M. K. Murray [1] in 1996 as geometric examples of more abstract gerbes of J. Giraud [2] and J.-L. Brylinski [3].
- They were applied in physics e.g. to describe topological Wess-Zumino amplitudes in conformal field theory in line with earlier works of O. Alvarez [4] and K.G. [5] that used a cohomological language.
- Topic of the talk: a relation of gerbes to the topological insulators.

Definition. A bundle gerbe \mathcal{G} with unitary connection (below, gerbe for short) over manifold M is a triple (Y, B, \mathcal{L}) s.t.

- Y is a manifold equipped with a surjective submersion $\,\pi:Y\to M$
- $B\,$ is a 2-form on $\,Y\,$
- \mathcal{L} is a line bundle (always with hermitian structure and unitary connection) over $Y^{[2]} \equiv Y \times_M Y \xrightarrow{p_1}_{p_2} Y$ with the curvature $p_2^*B - p_1^*B$
- \mathcal{L} comes with a groupoid multiplication $\mathcal{L}_{(y_1,y_2)} \times \mathcal{L}_{(y_2,y_3)} \longrightarrow \mathcal{L}_{(y_1,y_3)}$ respecting the structure of \mathcal{L} .
- Necessarily, $dB = \pi^* H$ where H is a closed 3-form on M called the *curvature* of the gerbe \mathcal{G} .
- Gerbes over M form a 2-category with 1-morphisms $\eta : \mathcal{G}_1 \longrightarrow \mathcal{G}_2$ and 2-morphisms $\mu : \eta_1 \longrightarrow \eta_2$ between a pair of 1-morphisms $\eta : \mathcal{G}_1 \longrightarrow \mathcal{G}_2$ [6].
- As line bundles, gerbes may be tensored dualized or pulled back.
- The abelian group (under \otimes) $\mathbb{G}(M)$ of 1-isomorphism classes of gerbes over M is isomorphic to the (real) Deligne hyper-cohomology group $\mathbb{H}^3(M)$ [8] and to the group $\hat{H}^3(M)$ of Cheeger-Simons differential characters [9].
- If Σ is an oriented closed 2-surface and $\phi : \Sigma \longrightarrow M$ is a smooth then for any gerbe \mathcal{G} over M, $[\phi^*\mathcal{G}] \in \mathbb{G}(\Sigma) = U(1).$

The corresponding phase in U(1) is called the holonomy of \mathcal{G} along the map ϕ and is denoted $Hol_{\mathcal{G}}(\phi)$. Physicists' name for $Hol_{\mathcal{G}}(\phi)$ is the Wess-Zumino amplitude $e^{iS_{WZ}(\phi)}$ of ϕ [10].

• If there exists an extension of ϕ to a map $\widetilde{\phi}: \widetilde{\Sigma} \longrightarrow M$ from an oriented 3-manifold $\widetilde{\Sigma}$ with the boundary $\partial \widetilde{\Sigma} = \Sigma$ then

$$Hol_{\mathcal{G}}(\phi) = \exp\left[i\int_{\widetilde{\Sigma}}\widetilde{\phi}^*H\right].$$

III. EXAMPLE: BASIC GERBE OVER U(N)

- Let M = U(N) and $H = \frac{1}{12\pi} \operatorname{tr}(u^{-1}du)^3$ be the closed bi-invariant 3-form on U(N).
- A gerbe \mathcal{G} on U(N) with curvature H is called *basic*. It is unique up to 1-isomorphisms.
- A convenient construction of such a gerbe exploits the ambiguities in taking the logarithm of a unitary matrix. It is essentially due to Murray-Stevenson [7].
- In this construction, $\mathcal{G} = (Y, B, \mathcal{L})$ where
 - $Y = \{(\epsilon, u) \in] 2\pi, 0 | \times U(N) | e^{-i\epsilon} \notin spec(u)\}$ with $\pi: Y \longrightarrow U(N)$ forgetting ϵ
 - B such that $dB = \pi^* H$ is defined from the Poincaré Lemma using the homotopy $\chi: [0, 2\pi] \times Y \longrightarrow Y$

$$\chi(t,\epsilon,u) = (\epsilon, \mathrm{e}^{-\mathrm{i}th_{\epsilon}(u)})$$

where $h_{\epsilon}(u) = \frac{i}{2\pi} \ln_{-\epsilon}(u)$ with the values of $\ln_{-\epsilon}(z)$ in $\mathbb{R} \times i - \epsilon - 2\pi, -\epsilon$ - For $\epsilon \leq \epsilon'$,

$$h_{\epsilon}(u) - h_{\epsilon'}(u) = p_{\epsilon,\epsilon'}(u)$$

where $p_{\epsilon,\epsilon'}(u)$ is the spectral projector of u on the subspace $E_{\epsilon,\epsilon'}(u) \subset \mathbb{C}^N$ corresponding to the eigenvalues e^{-ie_n} with $\epsilon < e_n < \epsilon'$. One takes

$$\mathcal{L}_{(\epsilon,\epsilon',u)} = \wedge^{max} E_{\epsilon,\epsilon'}(u)$$

for the fiber of line bundle \mathcal{L} over $(\epsilon, \epsilon', u) \in Y^{[2]}$

- The connection on \mathcal{L} is essentially the Berry one (modified by the addition of a 1-form)
- The groupoid multiplication on \mathcal{L} is induced by the isomorphism

$$\wedge^{max} E_{\epsilon,\epsilon'}(u) \otimes \wedge^{max} E_{\epsilon',\epsilon''}(u) \cong \wedge^{max} E_{\epsilon,\epsilon''}(u)$$

for $\epsilon \leq \epsilon' \leq \epsilon''$.

SQUARE ROOT OF THE GERBE HOLONOMY IV.

Suppose that \mathcal{G} is a gerbe over M with curvature H and $\Theta: M \longrightarrow M$ is an involution preserving H.

Definition (...,[11],...) A Θ -equivariant structure on \mathcal{G} is composed of

- a 1-isomorphism $\eta: \mathcal{G} \longrightarrow \Theta^* \mathcal{G}$
- a 2-isomorphism $\mu: \Theta^*\eta \circ \eta \longrightarrow Id_{\mathcal{G}}$ between 1-isomorphisms of gerbe \mathcal{G} s.t. μ is Θ -invariant (i.e. $Id_\eta \circ \mu = \Theta^*\mu \circ Id_\eta$ as 2-isomorphisms between the 1-isomorphisms $\eta \circ \Theta^*\eta \circ \eta: \mathcal{G} \longrightarrow \Theta^*\mathcal{G}$ and $\eta: \mathcal{G} \longrightarrow \Theta^*\mathcal{G}$).
- We shall call a gerbe \mathcal{G} over M equipped with a Θ -equivariant structure a Θ -gerbe.
- Let $\vartheta: \Sigma \longrightarrow \Sigma$ be an *orientation-preserving* map with a discrete set of fixed points. **Example:** for the 2-torus $\mathbb{R}^2/(2\pi\mathbb{Z}^2) \equiv \mathbb{T}^2$ we take ϑ generated by $k \mapsto -k$ for $k \in \mathbb{R}^2$.

Proposition. Let $\phi: (\Sigma, \theta) \longrightarrow (M, \Theta)$ (i.e. ϕ is equivariant: $\phi \circ \vartheta = \Theta \circ \phi$). Assume that the fixed point set $M^{\Theta} \subset M$ of Θ is 1-connected. Then a Θ -equivariant structure on a gerbe \mathcal{G} over M permits to define to a unique square root $\sqrt{Hol_{\mathcal{G}}(\phi)}$ of the holonomy of \mathcal{G} along ϕ .

• If there exists an extension $\widetilde{\phi}: (\widetilde{\Sigma}, \widetilde{\theta}) \longrightarrow (M, \Theta)$ of ϕ for an *orientation-preserving* involution $\widetilde{\vartheta}: \widetilde{\Sigma} \longrightarrow \widetilde{\Sigma}$ reducing to ϑ on $\partial \widetilde{\Sigma} = \Sigma$ then

$$\sqrt{Hol_{\mathcal{G}}(\phi)} = \exp\left[\frac{\mathrm{i}}{2}\int_{\widetilde{\Sigma}}\widetilde{\phi}^*H\right].$$

V. A 3d INDEX

- Let R be an oriented compact 3-manifold without boundary and $\rho : R \longrightarrow R$ an orientation-reversing involution with a discrete set of fixed points. **Example:** for the 3-torus $\mathbb{R}^3/(2\pi\mathbb{Z}^3) \equiv \mathbb{T}^3$ we take ρ generated by $k \mapsto -k$ for $k \in \mathbb{R}^3$.
- Let F ⊂ R be the closure of a fundamental domain for ρ that is a submanifold with boundary of R. Then ρ preserves ∂F together with its orientation inherited from R.
 Example: for R = T³ with ρ as above we may take F = [0, π] × T² with ∂F composed of two connected components: {π} × T² ≡ T²_π and {0} × T² ≡ T²₀.

Proposition. Let \mathcal{G} be a Θ -gerbe over M with curvature H and $\Phi : (R, \rho) \longrightarrow (M, \Theta)$. If $M^{\Theta} \subset M$ is 1-connected then the ratio

$$\frac{\exp\left[\frac{\mathrm{i}}{2}\int\limits_{F} \Phi^{*}H\right]}{\sqrt{Hol_{\mathcal{G}}(\Phi|_{\partial F})}} \equiv \mathcal{K}_{\mathcal{G}}(\Phi)$$

taking the values ± 1 is independent of the choice of the fundamental domain $F \subset R$.

Remark. The proof of Proposition relies on local expressions for $\sqrt{Hol_{\mathcal{G}}(\phi)}$ provided by gerbes or the cohomological approach of [5].

VI. TIME-REVERSAL ON U(N)

- In quantum mechanics with the space of states \mathbb{C}^N , the time reversal is realized by an anti-unitary map $\theta : \mathbb{C}^N \longrightarrow \mathbb{C}$ such that $\theta^2 = \pm I$ (with N necessarily even for the minus sign)..
- In both cases, θ induces an involution $\Theta: U(N) \longrightarrow U(N)$ by the formula $\Theta(u) = \theta u \theta^{-1}$ and $\Theta^* H = H$ for the bi-invariant 3-form H considered above.

Proposition. 1. If $\theta^2 = I$ then \exists a Θ -equivariant structure on the basic gerbe \mathcal{G} over U(N). However, in this case $U(N)^{\Theta} \cong O(N)$ is not 1-connected.

2. If $\theta^2 = -I$ then \exists no Θ -equivariant structure on the basic gerbe \mathcal{G} over U(N). However Θ lifts to the involution $\widehat{\Theta}$ on the double cover $\widehat{U}(N)$ of U(N) and \exists a $\widehat{\Theta}$ -equivariant structure on the pullback $\widehat{\mathcal{G}}$ to $\widehat{U}(N)$ of the basic gerbe over U(N). The fixed point set $\widehat{U}(N)^{\widehat{\Theta}} \cong Sp(N) \sqcup Sp(N)$ is simply connected but not connected.

- For $\theta^2 = I$ the lack of 1-connectivity of $U(N)^{\Theta}$ does not allow to define the square root $\sqrt{Hol_{\mathcal{G}}(\phi)}$ nor of the 3*d* index $\mathcal{K}(\Phi)$ for equivariant maps ϕ and Φ .
- For $\theta^2 = -I$, every map $\phi : (\mathbb{T}^2, \vartheta) \longrightarrow (U(N), \Theta)$ and every map $\Phi : (\mathbb{T}^3, \rho) \longrightarrow (U(N), \Theta)$ may be lifted to $\hat{\phi} : (\mathbb{T}^2, \theta) \longrightarrow (\widehat{U}(N), \widetilde{\Theta})$ and $\hat{\Phi} : (\mathbb{T}^3, \theta) \longrightarrow (\widehat{U}(N), \widetilde{\Theta})$, respectively, and one can still define uniquely $\sqrt{Hol_{\widehat{G}}(\widehat{\phi})}$ and $\mathcal{K}(\widehat{\Phi})$ in spite of the lack of connectivity of $\widehat{U}(N)^{\widetilde{\Theta}}$. Besides, these quantities do not depend on the choice of the lifts $\widehat{\phi}$ and $\widehat{\Phi}$. We shall use the notation $\sqrt{Hol_{\mathcal{G}}(\phi)}$ and $\mathcal{K}(\Phi)$ for them.

Remark. 1. The last point does not hold for all $(\Sigma \cdot \vartheta)$ and (R, ρ) .

2. The obstruction to the existence of Θ -equivariant structure for $\theta^2 = -I$ is the non-triviality of the flat line bundle over U(N)

$$Q = Y \times \mathbb{C}/\sim \quad \text{where} \quad (\epsilon, u, z) \sim (\epsilon', u, (-1)^{\dim(\mathcal{E}_{\epsilon, \epsilon'}(u))} z) \tag{1}$$

that excludes the existence of 2-isomorphism μ .

VII. APPLICATION TO TOPOLOGICAL INSULATORS

• In the simplest case, the *d*-dimensional insulators are described by lattice Hamiltonians that, after the discrete Fourier-Bloch transformation, give rise to a map

$$\mathbb{T}^d \ni k \longmapsto h(k) = h(k)^{\dagger} \in End(\mathbb{C}^N)$$

and all the hermitian matrices h(k) have a spectral gap around the Fermi energy ϵ_F . Denote by p(k) the spectral projectors on the eigenstates of h(k) with energies $< \epsilon_F$.

• For the fermionic time-reversal symmetric insulators,

$$\theta h(k)\theta^{-1} = h(-k)$$
 and $\theta p(k)\theta^{-1} = p(-k)$

where $\theta^2 = -I$.

• Denote by $u_p(k)$ the unitary matrix I - 2p(k). In two or three dimensions, the map $\mathbb{T}^d \ni k \longmapsto u_p(k) \in U(N)$ is then equivariant, i.e. $\Theta(u_p(k)) = u_p(-k)$.

Theorem. 1. For d = 2, $\sqrt{Hol_{\mathcal{G}}(u_p)} = (-1)^{KM}$ where $KM \in \mathbb{Z}_2$ is the Fu-Kane-Mele [12, 13] invariant of the time-reversal symmetric 2d topological insulators. 2. For d = 3, $\mathcal{K}(u_p) = (-1)^{KM^s}$ where $KM^s \in \mathbb{Z}_2$ is the *strong* Fu-Kane-Mele invariant [14] of the time-reversal symmetric 3d topological insulators.

- **Remark.** 1. One has a relation between the strong and weak invariants: $KM^s = KM|_{\mathbb{T}^2_0} + KM|_{\mathbb{T}^2_{\pi}}$.
 - 2. The KM and KM^s invariants count modulo 2 the massless modes carrying edge currents on half-infinite lattice (the bulk-edge correspondence).

VIII. APPLICATION TO FLOQUET SYSTEMS

• Floquet systems are described by lattice Hamiltonians periodically depending on time that, after the discrete Fourier-Bloch transformation, give rise to a map

$$\mathbb{R} \times \mathbb{T}^d \ni (t,k) \longmapsto h(t,k) = h(t+2\pi,k) \in End(\mathbb{C}^N)$$

(we fixed for convenience the period of temporal driving to 2π).

• The evolution of such systems is described by the unitary matrices u(t, k) such that

$$i\partial_t u(t,k) = h(t,k) u(t,k), \qquad u(0,k) = I, \qquad u(t+2\pi,k) = u(t,k) u(2\pi,k).$$

- Floquet theory is based on the diagonalization of the unitary matrices $u(2\pi, k)$ with eigenvalues $e^{-ie_n(k)}$ where $e_n(k)$ are called the (band) "quasienergies".
- Suppose that $\epsilon \in [-2\pi, 0[$ is such that $e^{-i\epsilon} \notin spec(u(2\pi, k))$ (i.e. ϵ is in the quasienergy gsp) for all k. Then $h_{\epsilon}(k) \equiv h_{\epsilon}(u(2\pi, k)) = \frac{i}{2\pi} \ln_{-\epsilon}(u(2\pi, k))$ is well defined and

$$v_{\epsilon}(t,k) = u(t,k) e^{-ith_{\epsilon}(k)} = v_{\epsilon}(t+2\pi,k)$$

may be viewed as a periodized evolution.

• For $\epsilon \leq \epsilon'$,

$$h_{\epsilon'}(k) - h_{\epsilon}(k) = p_{\epsilon,\epsilon'}(u(2\pi,k)) \equiv p_{\epsilon,\epsilon'}(k)$$

where $p_{\epsilon,\epsilon'}(k)$ is the spectral projector of $u(2\pi,k)$ on quasienergies $\epsilon < e_n(k) < \epsilon'$

• For the fermionic $(\theta^2 = -I)$ time-reversal symmetric Floquet systems with $\theta h(t, k)\theta^{-1} = h(-t, -k)$,

$$\Theta(v_{\epsilon}(t,k)) = v_{\epsilon}(-t,-k)$$
 and $\theta p_{\epsilon,\epsilon'}(k)\theta^{-1} = p_{\epsilon,\epsilon'}(-k)$

for $\epsilon \leq \epsilon'$.

• In particular, in 2d one may consider the Kane-Mele invariants $KM_{\epsilon,\epsilon'} \in \mathbb{Z}_2$ of the quasienergy bands between ϵ and ϵ' given by the relation

$$(-1)^{KM_{\epsilon,\epsilon'}} = \sqrt{Hol_{\mathcal{G}}(u_{p_{\epsilon,\epsilon'}})}$$

where $u_{p_{\epsilon,\epsilon'}}(k) = I - 2p_{\epsilon,\epsilon'}(k)$.

Definition. In 2d take $R = \mathbb{R}/(2\pi\mathbb{Z}) \times \mathbb{T}^2 = \mathbb{T}^3$ with the orientation-reversing involution $\rho(t,k) = (-t,-k)$. Then $v_{\epsilon} : (R,\rho) \longrightarrow (U(N),\Theta)$ and we defined [15, 16] the additional dynamical topological invariants $K_{\epsilon} \in \mathbb{Z}_2$ of the gapped time-reversal symmetric Floquet system by the relation

$$(-1)^{K_{\epsilon}} = \mathcal{K}(v_{\epsilon}).$$

Proposition. The above invariants that dependend on the quienergy gap ϵ are related by the identity

$$K_{\epsilon'} - K_{\epsilon} = KM_{\epsilon,\epsilon'}.$$

- **Remark.** The invariants K_{ϵ} are the counterparts for time-reversal symmetric gapped Floquet systems of the dynamical invariants for such systems without time-reversal symmetry introduced in [17].
- Similarly in 3d we may define the strong Fu-Kane-Mele invariants $KM^s_{\epsilon,\epsilon'} \in \mathbb{Z}_2$ of the quasienergy bands between ϵ and ϵ' by

$$(-1)^{KM^s_{\epsilon,\epsilon'}} = \mathcal{K}(u_{p_{\epsilon,\epsilon'}}).$$

Definition. In 3d take $R = \mathbb{T}^3$ with the orientation-reversing involution $\rho(k) = -k$. Then $v_{\epsilon}|_{t=\pi} : (R, \rho) \longrightarrow (U(N), \Theta)$ and we defined the additional dynamical topological invariants $K_{\epsilon}^s \in \mathbb{Z}_2$ of the time-reversal symmetric gapped Floquet system by the relation

$$(-1)^{K^s_{\epsilon}} = \mathcal{K}(v_{\epsilon}|_{t=\pi}).$$

- **Proposition.** 1. (Relation to the strong Kane-Mele invariant) $K_{\epsilon'}^s K_{\epsilon}^s = KM_{\epsilon,\epsilon'}^s$. 2. (Relation to weak invariants) $KM_{\epsilon}^s = KM_{\epsilon}|_{\mathbb{T}^2_0} + KM_{\epsilon}|_{\mathbb{T}^2_{\pi}}$.
- **Remark.** The indices K_{ϵ} and KM_{ϵ}^{s} should count the parity of the massless modes of the one-period evolution operator that carry edge currents on the half-space lattice system and appear in the bulk spectral gap around quasienergy ϵ .
- [1] M. K. Murray: Bundle gerbes. J. London Math. Soc. (2) 54 (1996), 403-416

- [5] K. Gawędzki: Topological actions in two-dimensional quantum field theory, in: Non-Perturbative Quantum Field Theory, eds. G. 't Hooft, A. Jaffe, G. Mack, P. Mitter et R. Stora, Plenum Press, New York, London 1988, pp. 101-142
- [6] D. Stevenson: Bundle 2-gerbes, Proc. Lond. Math. Soc. 88 (2004), 405-435
- [7] M. K. Murray and D. Stevenson: The basic bundle gerbe on unitary groups. J. Geom. Phys. 58 (2008), 1571-1590
- [8] P. Deligne: Thorie de Hodge : II. Publ. Math. de l'IHS 40 (1971), 557
- J. Cheeger and J. Simons: Differential characters and geometric invariants. Lect. Notes Math. vol. 1167, Springer Verlag, 1985, pp. 50-80
- [10] E. Witten: Global aspects of current algebra Nucl. Phys. B 223 (1983), 422-432
- [11] K. Gawędzki, R. R. Suszek and K. Waldorf: Bundle gerbes for orientifold sigma models. Adv. Theor. Math. Phys. 15 (2011), 621-688

^[2] J. Giraud: Cohomologie Non-Abélienne. Springer 1971

^[3] J.-L. Brylinski: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhauser, Boston 1993

^[4] O. Alvarez: Topological quantization and cohomology. Commun. Math. Phys. 100 (1985), 279-309

^[12] C. L. Kane and E. J. Mele: \mathbb{Z}_2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95 (2005) 146802

- [13] L. Fu and C. L. Kane: Time reversal polarization and a Z₂ adiabatic spin pump. Phys. Rev. B 74 (2006), 195312
- [14] L. Fu, C. L. Kane and E. J. Mele: Topological insulators in three dimensions. Phys. Rev. Lett. 98 (2007), 106803
- [15] D. Carpentier, P. Delplace, M. Fruchart and K. Gawdzki: Topological index for periodically driven time-reversalinvariant 2D systems. Phys. Rev. Lett. 114 (2015), 106806
- [16] D. Carpentier, P. Delplace, M. Fruchart, K. Gawdzki and C. Tauber: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896 (2015), 779-834
- [17] M. S. Rudner, N. H. Lindner, E. Berg and M. Levin: Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3 (2013), 031005
- [18] K. Gawędzki: Bundle gerbes for topological insulators. arXiv:1512.01028 [math-ph]