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II. BUNDLE GERBES WITH CONNECTION AND THEIR HOLONOMY

• Bundle gerbes - an example of higher structures: 1-degree higher as line bundles

• Introduced by M. K. Murray [1] in 1996 as geometric examples of more abstract gerbes of J. Giraud [2]
and J.-L. Brylinski [3].

• They were applied in physics e.g. to describe topological Wess-Zumino amplitudes in conformal field
theory in line with earlier works of O. Alvarez [4] and K.G. [5] that used a cohomological language.

• Topic of the talk: a relation of gerbes to the topological insulators.

Definition. A bundle gerbe G with unitary connection (below, gerbe for short) over manifold M is a
triple (Y,B,L) s.t.

- Y is a manifold equipped with a surjective submersion π : Y →M
- B is a 2-form on Y

- L is a line bundle (always with hermitian structure and unitary connection) over Y [2] ≡ Y ×M Y
p1−→
−→
p2

Y

with the curvature p∗2B − p∗1B
- L comes with a groupoid multiplication L(y1,y2) × L(y2,y3)−→L(y1,y3) respecting the structure of L.

• Necessarily, dB = π∗H where H is a closed 3-form on M called the curvature of the gerbe G.

• Gerbes over M form a 2-category with 1-morphisms η : G1 −→ G2 and 2-morphisms µ : η1 −→ η2

between a pair of 1-morphisms η : G1 −→ G2 [6].

• As line bundles, gerbes may be tensored dualized or pulled back.

• The abelian group (under ⊗) G(M) of 1-isomorphism classes of gerbes over M is

isomorphic to the (real) Deligne hyper-cohomology group H3(M) [8] and to the group Ĥ3(M)
of Cheeger-Simons differential characters [9].

• If Σ is an oriented closed 2-surface and φ : Σ −→M is a smooth then for any gerbe G over M ,

[φ∗G] ∈ G(Σ) = U(1).

The corresponding phase in U(1) is called the holonomy of G along the map φ and is denoted HolG(φ).
Physicists’ name for HolG(φ) is the Wess-Zumino amplitude eiSWZ(φ) of φ [10].

• If there exists an extension of φ to a map φ̃ : Σ̃ −→M from an oriented 3-manifold Σ̃ with the

boundary ∂Σ̃ = Σ then

HolG(φ) = exp
[
i

∫
Σ̃

φ̃∗H
]
.



III. EXAMPLE: BASIC GERBE OVER U(N)

• Let M = U(N) and H = 1
12π tr(u−1du)3 be the closed bi-invariant 3-form on U(N).

• A gerbe G on U(N) with curvature H is called basic. It is unique up to 1-isomorphisms.

• A convenient construction of such a gerbe exploits the ambiguities in taking the logarithm of a unitary
matrix. It is essentially due to Murray-Stevenson [7].

• In this construction, G = (Y,B,L) where

- Y =
{

(ε, u) ∈ ]− 2π, 0[×U(N) | e−iε 6∈ spec(u)
}

with π : Y −→ U(N) forgetting ε
- B such that dB = π∗H is defined from the Poincaré Lemma using the homotopy χ : [0, 2π]×Y −→ Y

χ(t, ε, u) = (ε, e−ithε(u))

where hε(u) = i
2π ln−ε(u) with the the values of ln−ε(z) in R× i]− ε− 2π,−ε[

- For ε ≤ ε′,
hε(u)− hε′(u) = pε,ε′(u)

where pε,ε′(u) is the spectral projector of u on the subspace Eε,ε′(u) ⊂ CN corresponding
to the eigenvalues e−ien with ε < en < ε′. One takes

L(ε,ε′,u) = ∧maxEε,ε′(u)

for the fiber of line bundle L over (ε, ε′, u) ∈ Y [2]

- The connection on L is essentially the Berry one (modified by the addition of a 1-form)
- The groupoid multiplication on L is induced by the isomorphism

∧maxEε,ε′(u) ⊗ ∧maxEε′,ε′′(u) ∼= ∧maxEε,ε′′(u)

for ε ≤ ε′ ≤ ε′′.

IV. SQUARE ROOT OF THE GERBE HOLONOMY

Suppose that G is a gerbe over M with curvature H and Θ : M −→M is an involution preserving H.

Definition (...,[11],...) A Θ-equivariant structure on G is composed of

- a 1-isomorphism η : G −→ Θ∗G
- a 2-isomorphism µ : Θ∗η ◦ η −→ IdG between 1-isomorphisms of gerbe G s.t.
- µ is Θ-invariant (i.e. Idη ◦ µ = Θ∗µ ◦ Idη as 2-isomorphisms between the 1-isomorphisms
η ◦Θ∗η ◦ η : G −→ Θ∗G and η : G −→ Θ∗G).

• We shall call a gerbe G over M equipped with a Θ-equivariant structure a Θ-gerbe.

• Let ϑ : Σ −→ Σ be an orientation-preserving map with a discrete set of fixed points.
Example: for the 2-torus R2/(2πZ2) ≡ T2 we take ϑ generated by k 7→ −k for k ∈ R2.

Proposition. Let φ : (Σ, θ) −→ (M,Θ) (i.e. φ is equivariant: φ ◦ ϑ = Θ ◦ φ). Assume that the fixed
point set MΘ ⊂M of Θ is 1-connected. Then a Θ-equivariant structure on a gerbe G over M permits
to define to a unique square root

√
HolG(φ) of the holonomy of G along φ.

• If there exists an extension φ̃ : (Σ̃, θ̃) −→ (M,Θ) of φ for an orientation-preserving involution

ϑ̃ : Σ̃ −→ Σ̃ reducing to ϑ on ∂Σ̃ = Σ then√
HolG(φ) = exp

[
i

2

∫
Σ̃

φ̃∗H
]
.
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V. A 3d INDEX

• Let R be an oriented compact 3-manifold without boundary and ρ : R −→ R an orientation-reversing
involution with a discrete set of fixed points.
Example: for the 3-torus R3/(2πZ3) ≡ T3 we take ρ generated by k 7→ −k for k ∈ R3.

• Let F ⊂ R be the closure of a fundamental domain for ρ that is a submanifold with boundary of
R. Then ρ preserves ∂F together with its orientation inherited from R.
Example: for R = T3 with ρ as above we may take F = [0, π]× T2 with ∂F composed of two
connected components: {π} × T2 ≡ T2

π and {0} × T2 ≡ T2
0.

Proposition. Let G be a Θ-gerbe over M with curvature H and Φ : (R, ρ) −→ (M,Θ).
If MΘ ⊂M is 1-connected then the ratio

exp
[

i
2

∫
F

Φ∗H
]

√
HolG(Φ|∂F )

≡ KG(Φ)

taking the values ±1 is independent of the choice of the fundamental domain F ⊂ R .

Remark. The proof of Proposition relies on local expressions for
√
HolG(φ) provided by gerbes or the

cohomological approach of [5].

VI. TIME-REVERSAL ON U(N)

• In quantum mechanics with the space of states CN , the time reversal is realized by an anti-unitary
map θ : CN −→ C such that θ2 = ±I (with N necessarily even for the minus sign)..

• In both cases, θ induces an involution Θ : U(N) −→ U(N) by the formula Θ(u) = θuθ−1 and
Θ∗H = H for the bi-invariant 3-form H considered above.

Proposition. 1. If θ2 = I then ∃ a Θ-equivariant structure on the basic gerbe G over U(N). However,
in this case U(N)Θ ∼= O(N) is not 1-connected.
2. If θ2 = −I then ∃ no Θ-equivariant structure on the basic gerbe G over U(N). However Θ lifts

to the involution Θ̂ on the double cover Û(N) of U(N) and ∃ a Θ̂-equivariant structure on the pullback

Ĝ to Û(N) of the basic gerbe over U(N). The fixed point set Û(N)Θ̂ ∼= Sp(N) t Sp(N) is simply
connected but not connected.

• For θ2 = I the lack of 1-connectivity of U(N)Θ does not allow to define the square root√
HolG(φ) nor of the 3d index K(Φ) for equivariant maps φ and Φ.

• For θ2 = −I, every map φ : (T2, ϑ) −→ (U(N),Θ) and every map Φ : (T3, ρ) −→ (U(N),Θ) may be

lifted to φ̂ : (T2, θ) −→ (Û(N), Θ̃) and Φ̂ : (T3, θ) −→ (Û(N), Θ̃), respectively, and one can still

define uniquely
√
HolĜ(φ̂) and K(Φ̂) in spite of the lack of connectivity of Û(N)Θ̃. Besides, these

quantities do not depend on the choice of the lifts φ̂ and Φ̂. We shall use the notation
√
HolG(φ)

and K(Φ) for them.

Remark. 1. The last point does not hold for all (Σ.ϑ) and (R, ρ).
2. The obstruction to the existence of Θ-equivariant structure for θ2 = −I is the non-triviality

of the flat line bundle over U(N)

Q = Y × C/ ∼ where (ε, u, z) ∼ (ε′, u, (−1)dim(Eε,ε′ (u))z) (1)

that excludes the existence of 2-isomorphism µ.
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VII. APPLICATION TO TOPOLOGICAL INSULATORS

• In the simplest case, the d-dimensional insulators are described by lattice Hamiltonians that, after
the discrete Fourier-Bloch transformation, give rise to a map

Td 3 k 7−→ h(k) = h(k)† ∈ End(CN )

and all the hermitian matrices h(k) have a spectral gap around the Fermi energy εF . Denote by p(k)
the spectral projectors on the eigenstates of h(k) with energies < εF .

• For the fermionic time-reversal symmetric insulators,

θh(k)θ−1 = h(−k) and θp(k)θ−1 = p(−k)

where θ2 = −I.

• Denote by up(k) the unitary matrix I − 2p(k). In two or three dimensions, the map
Td 3 k 7−→ up(k) ∈ U(N) is then equivariant, i.e. Θ(up(k)) = up(−k).

Theorem. 1. For d = 2,
√
HolG(up) = (−1)KM where KM ∈ Z2 is the Fu-Kane-Mele [12, 13]

invariant of the time-reversal symmetric 2d topological insulators.
2. For d = 3, K(up) = (−1)KM

s

where KMs ∈ Z2 is the strong Fu-Kane-Mele invariant [14] of
the time-reversal symmetric 3d topological insulators.

Remark. 1. One has a relation between the strong and weak invariants: KMs = KM |T2
0

+KM |T2
π
.

2. The KM and KMs invariants count modulo 2 the massless modes carrying edge currents
on half-infinite lattice (the bulk-edge correspondence).

VIII. APPLICATION TO FLOQUET SYSTEMS

• Floquet systems are described by lattice Hamiltonians periodically depending on time that, after the
discrete Fourier-Bloch transformation, give rise to a map

R× Td 3 (t, k) 7−→ h(t, k) = h(t+ 2π, k) ∈ End(CN )

(we fixed for convenience the period of temporal driving to 2π).

• The evolution of such systems is described by the unitary matrices u(t, k) such that

i∂tu(t, k) = h(t, k)u(t, k), u(0, k) = I, u(t+ 2π, k) = u(t, k)u(2π, k).

• Floquet theory is based on the diagonalization of the unitary matrices u(2π, k) with eigenvalues e−ien(k)

where en(k) are called the (band) “quasienergies”.

• Suppose that ε ∈ [−2π, 0[ is such that e−iε 6∈ spec(u(2π, k)) (i.e. ε is in the quasienergy gsp) for all k.
Then hε(k) ≡ hε(u(2π, k)) = i

2π ln−ε(u(2π, k)) is well defined and

vε(t, k) = u(t, k) e−ithε(k) = vε(t+ 2π, k)

may be viewed as a periodized evolution.

• For ε ≤ ε′,
hε′(k)− hε(k) = pε,ε′(u(2π, k)) ≡ pε,ε′(k)

where pε,ε′(k) is the spectral projector of u(2π, k) on quasienergies ε < en(k) < ε′

• For the fermionic (θ2 = −I) time-reversal symmetric Floquet systems with θh(t, k)θ−1 = h(−t,−k),

Θ(vε(t, k)) = vε(−t,−k) and θpε,ε′(k)θ−1 = pε,ε′(−k)

for ε ≤ ε′.
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• In particular, in 2d one may consider the Kane-Mele invariants KM ε,ε′ ∈ Z2 of the quasienergy bands
between ε and ε′ given by the relation

(−1)KMε,ε′ =
√
HolG(upε,ε′ )

where upε,ε′ (k) = I − 2pε,ε′(k).

Definition. In 2d take R = R/(2πZ)× T2 = T3 with the orientation-reversing involution
ρ(t, k) = (−t,−k). Then vε : (R, ρ) −→ (U(N),Θ) and we defined [15, 16] the additional dynamical
topological invariants Kε ∈ Z2 of the gapped time-reversal symmetric Floquet system by the relation

(−1)Kε = K(vε).

Proposition. The above invariants that dependend on the qusienergy gap ε are related by the identity

Kε′ −Kε = KM ε,ε′ .

Remark. The invariants Kε are the counterparts for time-reversal symmetric gapped Floquet systems of
the dynamical invariants for such systems without time-reversal symmetry introduced in [17].

• Similarly in 3d we may define the strong Fu-Kane-Mele invariants KMs
ε,ε′ ∈ Z2 of the quasienergy

bands between ε and ε′ by

(−1)KM
s
ε,ε′ = K(upε,ε′ ).

Definition. In 3d take R = T3 with the orientation-reversing involution ρ(k) = −k. Then
vε|t=π : (R, ρ) −→ (U(N),Θ) and we defined the additional dynamical topological invariants Ks

ε ∈ Z2

of the time-reversal symmetric gapped Floquet system by the relation

(−1)K
s
ε = K(vε|t=π).

Proposition. 1. (Relation to the strong Kane-Mele invariant) Ks
ε′ −Ks

ε = KMs
ε,ε′ .

2. (Relation to weak invariants) KMs
ε = KM ε|T2

0
+KM ε|T2

π
.

Remark. The indices Kε and KMs
ε should count the parity of the massless modes of the one-period

evolution operator that carry edge currents on the half-space lattice system and appear in
the bulk spectral gap around quasienergy ε.
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