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Introduction

Suppose that we have a family of unitary operators U(h),
parametrized by h > 0. As unitary operators, the spectrum
lies on the unit circle. Let us make the assumption that the
spectrum is discrete away from the point 1 on the unit circle.
Then we can count the number of eigenvalues in any interval
I of the circle away from 1.

When the family U(h) arises from a geometric/analytic
setting, one might expect to have an asymptotic for the
number of eigenvalues of U(h) in I, as h→ 0.

I will describe several examples where this has been
achieved.
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Semiclassical potential scattering

The first example is semiclassical scattering by a potential
function. The Hamiltonian is

H = h2∆ + V (x)

on Rn, where V (x) is a smooth potential function. We fix an
energy level E > 0 and consider solutions to the equation

Hψ = Eψ.

I will assume one of the following two conditions:
• V compactly supported and C∞;
• V is a classical symbol at infinity with order −α, α > n. In
particular,

V (x) ∼ V0(x/|x |)|x |−α as |x | → ∞, V0 6≡ 0.
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Scattering matrix

The scattering matrix Sh(E) may be defined through the
asymptotics of generalized eigenfunctions ψ of H. As is well
known, for each f ∈ C∞(Sn−1) there is a unique generalized
eigenfunction ψf with asymptotics

ψf (x) = r−(n−1)/2
(

e−i
√

Er/hf (x̂) + ei(n−1)π/2ei
√

Er/hg(−x̂)
)

+ O(r−(n+1)/2), r = |x |, x̂ =
x
|x | , g ∈ C∞(Sn−1).

The map f 7→ g is the scattering matrix Sh(E). It extends to a
unitary transformation on L2(Sn−1). It is normalized so that
the scattering matrix for the zero potential is the identity.
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Properties of the scattering matrix

• It is unitary, so its spectrum lies on the unit circle.

• For compactly supported potentials, Sh(E) = Id +Ah(E)
where Ah(E) is a smoothing operator, in particular compact.
• For potentials in S−αcl , α > 1, Ah(E) is a pseudodifferential
operator of order −α + 1, for fixed h, and again compact. For
α > n, then Ah(E) is trace class.
• In either case, the spectrum of Sh(E) is discrete away
from 1 on the unit circle.

• Hence we can count the number of eigenvalues of the
scattering matrix in a closed interval I of the unit circle not
containing 1. What are the asymptotics as h→ 0?
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Semiclassical scattering matrix

The structure of the semiclassical scattering matrix is known
due to work of Guillemin, Majda-Ralston, Robert-Tamura,
Alexandrova, Hassell-Wunsch. If the potential is nontrapping
at energy E , then the scattering matrix is a semiclassical FIO,
associated to a canonical transformation called the reduced
scattering transformation determined by the classical
motion for the classical Hamiltonian |ξ|2 + V (x) at energy E .
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For a compactly supported potential:

Given (y ′, η′) ∈ T ∗Sn−1, there is a unique trajectory of the
form

x(t) = ty ′ + η′, t → −∞.
Here we think of y ′ as a unit vector in Rn and η′ as a vector
orthogonal to y . For t large, assuming that the trajectory is
not trapped, then we have

x(t) = ty + η, |y | = 1, η ⊥ y .

The reduced scattering transformation is (y ′, η′)→ (y , η). It
is a symplectic map on T ∗Sn−1.
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Figure: The scattering relation. Here (y ′, η′) lies in the interaction
region I. The long-dashed line depicts how the outgoing data (y , η)
is also in I.
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Central potentials

For a central potential, the dynamics is essentially
two-dimensional. Working on T ∗S1 with coordinates (θ, η),
the scattering transformation takes the form

(θ, η) 7→ (θ + Σ(η), η)

due to rotational invariance and conservation of angular
momentum. Here Σ(η) is (manifestly) the scattering angle,
i.e. the difference between the final and initial angle.
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Suppose that V is both compactly supported and central,
and n = 2. The scattering matrix is then a map on L2(S1),
depending on h. So its integral kernel is a function of two
angle variables θ, θ′.

Rotational symmetry implies that Sh(E)(θ, θ′) depends only
on θ − θ′, and the angular momentum is preserved. It follows
that the scattering matrix takes the form

(2πh)−1
∫

ei
(
(θ−θ′)η+G(η)

)
/ha(θ − θ′, η,h) dη (1)

where −G′(η) = Σ(η) is the scattering angle.
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More general potentials

If the potential is not central, the scattering matrix is a more
general Fourier integral operator of the form

(2πh)−1
∫

ei
(
(θ−θ′)η+G(θ,η)

)
/ha(θ, θ′, η,h) dη. (2)

In either case, the canonical relation, i.e. the set{
(θ, θ′,dθΦ,−dθ′Φ) | dηΦ = 0

}
is the graph of the reduced scattering transformation. This is
the classical-quantum correspondence in this setting.
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To state our result, let V be a compactly supported potential.
Define the interaction region I ⊂ T ∗Sn−1 to be the set of all
(y , η) ∈ T ∗Sn−1 such that the corresponding classical
trajectory meets the support of V . It is not hard to see that
this is invariant under the reduced scattering transformation.
Also, because V is compactly supported, I is compact,
hence has finite measure.

We also let Nh(φ0, φ1) denote the number of eigenvalues eiβ

of Sh(E) such that φ0 ≤ β ≤ φ1 (mod 2π), counted with
multiplicity.
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Theorem (Gell-Redman, H., Zelditch)

Let V be a compactly supported potential. Assume that
• E is a nontrapping energy for |ξ|2 + V and
• On I, the fixed point set of every power of the reduced
scattering transformation has measure zero.

Then for all 0 < φ0 < φ1 < 2π, we have

Nh(φ0, φ1)

(2πh)−(n−1) →
φ1 − φ0

2π
vol(I) as h→ 0. (3)
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• Previously, Datchev, Gell-Redman, H. and Humphries
proved this result (with slightly different assumptions) for
central, compactly supported potentials.

• Compare with the usual Weyl asymptotics for a positive
self-adjoint elliptic semiclassical operator A ∈ Ψ0

h(M) with
principal symbol a(x , ξ) on a closed manifold M of dim. d . If
Nh(E) is the number of eigenvalues of A less than E , then

Nh(E)

(2πh)−d → vol{(x , ξ) ∈ T ∗M | a(x , ξ) ≤ E}.

• We can express the result as follows: if we define the
measure

µh = (2πh)(n−1)
∑

eiβ∈specSh(E)

δeiβ ,

then µh tends weak-∗ to vol(I) dθ/2π on I ⊂ S1 \ {1}.
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Potentials with polynomial decay

Our second result is about the scattering matrix for potentials
V ∈ S−α(Rn) that satisfy

V (x) = r−αa0(x̂) + O(r−(α+ε)), x →∞,

where a0 is smooth and strictly positive.

• Not clear how our first result might generalize to potentials
with noncompact support. However, we argue heuristically:

• For each h, there is an effective interaction region of
radius h−β outside of which V is semiclassically negligible.
• # eigenvalues of Sh(E) essentially different from 1 should
be about h−(n−1) × h−β(n−1), where h−β(n−1) is the approx.
volume of phase space meeting this effective support.
• So the number of eigenvalues that lie in a given interval
away from 1 should grow as h−(n−1)(1+β).
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It turns out that β = 1/(α− 1). So we define

µh = (2πh)(n−1)α/(α−1)
∑

eiβ∈specSh(E)

δeiβ .

Let µa1,a2 denote the measure on S1 that is the pushforward
of the measure on R{

a1x−γ dx , x > 0
a2|x |−γdx , x < 0

γ = 1 +
n − 1
α− 1

by the map x 7→ eix . Notice 1 < γ < 2, so x−γdx has finite
mass as x →∞. Therefore µa1,a2 is finite except for an
infinite accumulation of mass near 1.
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Theorem (Gell-Redman, H.)

Suppose that V ∈ S−αcl (Rn) is as above, and is nontrapping at
energy E. Then for some constants a1,a2 depending on the
leading asymptotic of V , and all 0 < φ0 < φ1 < 2π, we have

N(φ0, φ1)

(2πh)−(n−1)α/(α−1) → c
∫ φ1

φ0

dµa1,a2 as h→ 0. (4)

Equivalently,

µh → µa1,a2 in the weak-∗ topology on I, as h→ 0.
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Dirichlet-to-Neumann operator

Our third result comes from compact Riemannian manifolds
M. Let ∆ be the positive Laplacian on M. Using the
Laplacian, we define a unitary transformation C(h) as
follows. Given f ∈ C∞(∂M), we solve the equation

(h2∆− 1)u = 0 on M, hdnu − iu = f at ∂M.

We then define

C(h)f = hdnu + iu
∣∣∣
∂M
.
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This is related to the Dirichlet-to-Neumann operator R(h).
This operator sends f ∈ C∞(∂M) to dnu

∣∣
∂M where u is the

solution to
(h2∆− 1)u = 0, u

∣∣∣
∂M

= f .

It is easy to check that C(h) is the Cayley transform of hR(h):

C(h) = (hR(h) + i)−1(hR(h)− i).

However, R(h) is undefined whenever h−2 is a Dirichlet
eigenvalue of the Laplacian, while C(h) is well defined for all
h > 0. So C(h) seems to be a more natural family of
operators than R(h).
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Theorem (H., Ivrii)

Suppose that the set of periodic geodesics on M has
measure zero (as a subset of T ∗M). Define a measure

µh = h(n−1)
∑

eiβ∈specC(h)

δeiβ .

Then, the measure µh converges weak-∗ to a measure
m(θ)dθ, where m is smooth for θ ∈ [0,2π) and tends to
infinity as θ → 2π. In three dimensions we have

m(θ) =
Area(∂M)

4π

(
2− (θ − sin θ)

cos(θ/2)

sin3(θ/2)

)
. (5)

In other dimensions, we have an integral expression for m(θ).
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Proofs

The idea of the proof comes from an earlier paper of Zelditch
on quantized contact transformations. These are given by
families of unitary matrices with the dimension N →∞.

Given a sequence UN of N-dimensional unitary matrices, we
form a sequence of measures on the unit circle,

µN =
1
N

∑
eiβ∈specUN

δeiβ .

The measures µN equidistribute, i.e. tend to dθ/2π weak-∗,

if and only if lim
N→∞

∫
S1

f (z)dµN(z)→
∫

S1
f (z)

dθ
2π

for all continuous f (using z = eiθ as a coordinate on S1).
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It is enough to show for f = zm, for m ∈ Z. But∫
S1

zmdµN(z) =
1
N

tr(Um
N ),

so a sufficient condition for equidistribution is that

lim
N→∞

1
N

tr(UN)m = 0 for all m 6= 0 ∈ Z.
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Proof of the first result

We use the method above, but we must deal with the fact
that the scattering matrix has infinitely many eigenvalues for
every h. We define the measure

µh = (2πh)n−1
∑

eiβ∈specSh(E)

δeiβ . (6)

The theorem asserts that µh → (vol I)dθ/2π weak-∗ away
from the point 1. That is, we need to show∫

S1
fdµh → vol I

∫
S1

f (eiθ)
dθ
2π

(7)

for each continuous f (z) supported away from z = 1.
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To deal with the accumulation of delta-measures at z = 1, we
define a weighted Banach space

C0
w (S1) := {f ∈ C0(S1) : f = (z − 1)g, g continuous}. (8)

with norm
‖f‖w = sup

|z|=1,z 6=1

∣∣∣ f (z)

z − 1

∣∣∣. (9)

Then it turns out that the measure µh is in the dual space of
this Banach space for all h > 0. (This is equivalent to
Sh(E)− Id being trace class.)
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We have

Lemma
The set

{p ∈ C0
w (S1) | p polynomial, p(1) = 0}

is dense in C0
w (S1) (with respect to the C0

w (S1) norm).

Lemma

For every f ∈ C0
w (S1), we have an estimate

〈µh, f 〉 ≤ C‖f‖C0
w (S1)

with C independent of h.
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As a consequence of these two lemmas, to show (7), it
suffices to show that for each m 6= 0 ∈ Z, we have

〈µh,1− zm〉 → vol(I) as h→ 0. (10)

But the LHS is precisely (2πh)n−1 times the trace of
Id−Sh(E)m.
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In the case of a compactly supported potential, Sh(E) is an
FIO which is equal to the identity (microlocally) outside the
interaction region in T ∗Sn−1. That is, Sh(E)− Id has
compact microsupport.
The trace of a semiclassical FIO F (h) of order zero and
compact microsupport is given, in dim. n − 1, by

tr F (h) = (2πh)−(n−1)
∫

Fix(C)
eiτ(F )/hσ(F ) + o(h−(n−1))

where Fix(C) is the fixed point set for the canonical relation
of F . Here, the difference between Id and Sm

h (E) is O(h∞)
away from the interaction region I, while on the interaction
region, by assumption the canonical relation for Sm

h (E) has
zero measure fixed point set. So the only contribution is from
the identity restricted to the interaction region, showing (10).
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Proof of the second result

Next consider the proof of (4) for V with polynomial decay.
In two dimensions, the proof goes as follows: we know that
we can write the scattering matrix in the form

(2πh)−1
∫

ei
(
(θ−θ′)η+G(θ,η)

)
/ha(θ, θ′, η,h) dη. (11)

Here, G(θ, η) will be O(|η|1−α) as η → ±∞. It turns out that
the mth power of the scattering matrix takes the form

(2πh)−1
∫

ei
(
(θ−θ′)η+mG(θ,η)+G̃(θ,η)

)
/ha(θ, θ′, η,h) dη,

where |G̃(θ, η)| ≤ C|η|2(1−α),

that is, it is smaller at infinity than the leading term mG.
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We then get an expression for the trace of Id−Sh(E)m of the
form

ch−α/α−1
(∫ (

eimG(θ,η)/h − 1
)

dθdη + o(1)

)
.

We compute the integral and find that it gives a power of m,
namely c(sgn m)mγ−1.

• This matches the integrals of µa1,a2 against 1− zm, for
suitable a1,a2, which completes the proof.
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On equidistribution and non-equidistribution

The first result, on equidistribution, can only occur if there is
an infinite atom at 1 (since the total mass of µ must be
infinite). This implies that the measure can be cleanly
separated into two parts. Classically this requires that the
phase space is also divided cleanly into two parts, which is
true in the compactly supported case but not the
polynomially decaying case. Equidistribution doesn’t even
make sense as a possibility in the latter case!
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Proof of the third result

The proof of the third result, (5), on C(h), is completely
different. Here we relate the number of eigenvalues of C(h)
in an interval I of the unit circle to eigenvalue counting
functions for the domain Ω.
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Notice that if f is an eigenfunction of C(h) with eigenvalue
eiθ, then it is an eigenvalue of the semiclassical
Dirichlet-to-Neumann operator R(h) with eigenvalue
a = − cot(θ/2). Then the corresponding Helmholtz function u
is in the domain of the operator Pa, where Pa is the operator
h2∆− 1 with

D(Pa) = {u ∈ H2(M) : (h∂ν − a)u = 0 at ∂M}. (12)

Moreover, Pau = 0.

P0 = Neumann Laplacian, and “P−∞ = Dirichlet Laplacian.”
For other a this is a genuinely semiclassical family of
operators.
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The operator Pa is the self-adjoint operator associated to the
quadratic form on H1(M) given by

h2‖∇u‖2M − ‖u‖2M − ha‖u‖2∂M . (13)

Since this quadratic form is monotone in a, the operators Pa
are monotone (decreasing) in a. In particular, the
eigenvalues are decreasing in a.
Let N−h (a) denote the number of negative eigenvalues of Pa.
The Birman-Schwinger principle tells us that

N−h (− cot(θ2/2))−N−h (− cot(θ1/2)) = #{spec(C(h)∩(θ1, θ2]}.

The proof is a diagram!
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2. Reduction to semiclassical spectral asymptotics 9

a

µ a = a1 a = a2

Figure 1: Diagram showing the variation of eigenvalues µ(a, h) of Pa,h as
a function of a for fixed h. The eigenvalues are strictly decreasing in a.
Consequently, the number of negative eigenvalues of Pa2,h is equal to the
number of negative eigenvalues of Pa1,h together with the number that cross
the a-axis between a = a1 and a = a2.

eigenfunctions satisfy the boundary condition h@⌫u = �au, which shows
that if u vanishes at the boundary, so does @⌫u, which is impossible.

The eigenvalues µn(a, h) are thus continuous, strictly decreasing functions
of a. Let a1 < a2 be real numbers. The Birman-Schwinger principle [Ivr1,
Prop. 9.2.7] says that the number of negative eigenvalues of Pa2,h is equal to
the number of negative eigenvalues of Pa1,h, plus the number of eigenvalues
µn(a, h) of Pa,h that change from nonnegative to negative as a varies from a1

to a2. A diagram makes this clear: see Figure 1.
The strict monotonicity of µ(a, h) in a shows that the number of eigen-

values µn(a, h) of Pa,h that change from nonnegative to negative as a varies
from a1 to a2 is the same as the number of µ(a, h) (counted with multiplicity)
equal to zero, for a 2 [a1, a2). Next, we observe that the space of eigenfunc-
tions un(a, h) of Pa,h with zero eigenvalue, i.e. µn(a, h) = 0 is in one-to-one
correspondence with the space of eigenfunctions of C (�), � = h�1, with
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Then the result follows from a two-term expansion of the
counting function for the operator Pa. This takes the form

N−h (a) = (2πh)−nωn voln(M)+h1−nκ(a) voln−1(∂M)+o(h1−n),

where

κ(a) = (2π)1−nωn−1

(
− 1

2π

∫ 1

−1
(1− η2)(n−1)/2 a

a2 + η2 dη

− 1
4

+ H(a)(1 + a2)(n−1)/2
)

(14)

provided that the set of periodic billiard orbits in M has
measure zero. Then m in (5) is

m(θ) =
d
dθ
(
κ(− cot(θ/2))

)
.
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