Objective

Analytic Pontryagin Duality

Johnny Lim

School of Mathematical Sciences

Supervisor: Elder Professor Mathai Varghese

Analysis on Manifolds @The University of Adelaide

Oct 1, 2019

Objective

Objective

Let X be a smooth compact manifold. The Universal Coefficient Theorem for K-theory with coefficients in \mathbb{R}/\mathbb{Z} asserts that there is an isomorphism

$$K^0(X,\mathbb{R}/\mathbb{Z}) o \text{Hom}(K_0(X),\mathbb{R}/\mathbb{Z}).$$

Using a geometric model of $K^0(X, \mathbb{R}/\mathbb{Z})$ and $K_0(X)$, we study an explicit analytic pairing implementing this map of the following form

$$\underline{\bar{\eta}}(\underline{\phi})$$
 analytic term $-\underbrace{\int_{M} x \mod \mathbb{Z}}_{\text{topological term}}$.

The group $K^0(X, \mathbb{R}/\mathbb{Z})$

Definition (\mathbb{R}/\mathbb{Z} K^0 -cocycles)

Let X be a smooth compact manifold. Define a \mathbb{R}/\mathbb{Z} K^0 -cocycle over X as a triple

$$(g,(d,g^{-1}dg),\mu)$$

where

Objective

- $\blacksquare g: X \to U(N)$ is a smooth map, i.e. a K^1 -representative of X;
- \blacksquare $(d, g^{-1}dg)$ is a pair of flat connections on the trivial bundle τ ;
- $\mu \in \Omega^{\text{even}}(X)/\text{im}(d)$ satisfying

$$d\mu = ch(g, d) - Tr(g^{-1}dg)$$

Here, ch(g, d) is the odd Chern character defined by

$$ch(g,d) = \sum_{n=0}^{\infty} \frac{n!}{(2n+1)!} \text{Tr}(g^{-1}dg)^{2n+1}.$$

Definition (\mathbb{R}/\mathbb{Z} K^0 -relation)

Objective

Let $\mathcal{E}_i = (g_i, (d, g_i^{-1} dg_i), \mu_i)$ where $g_i : X \to U(N_i)$, for i = 1, 2, 3. The \mathbb{R}/\mathbb{Z} K^0 -relation is given by $\mathcal{E}_2 = \mathcal{E}_1 + \mathcal{E}_3$ whenever we have $g_2 \simeq g_1 \oplus g_3$ (i.e. g_2 is homotopic to the unitary matrix $\text{Diag}(g_1, g_3)$) and

$$\mu_2 = \mu_1 + \mu_3 - \mathsf{T}\mathit{ch}(g_1, g_2, g_3).$$

Here, $Tch(g_1, g_2, g_3)$ denotes the transgression form of the odd Chern character which satisfies

$$dTch(g_1, g_2, g_3) = ch(g_1) - ch(g_2) + ch(g_3).$$

Definition (\mathbb{R}/\mathbb{Z} K^0 -group)

The group $K^0(X, \mathbb{R}/\mathbb{Z})$ consists of all \mathbb{R}/\mathbb{Z} K^0 -cocycles with zero virtual trace modulo the \mathbb{R}/\mathbb{Z} K^0 -relation.

Baum-Douglas Geometric K-homology

Let X be a smooth compact manifold. The (even) Baum-Douglas geometric K-homology $K_0(X)$ of X is a group generated by geometric Kcycles

where

Objective

- M is an even-dimensional smooth closed Spin^c-manifold, E is a complex vector bundle over M and $f: M \rightarrow X$ is a smooth map modulo the following relation
 - Direct sum-disjoint union :

$$(M, E_1 \oplus E_2, f) \sim (M, E_1, f) \sqcup (M, E_2, f)$$

■ Bordism : $\exists (W, F, \varphi)$ s.t.

$$(\partial W, F_{\mid \partial W}, \varphi_{\mid \partial W}) \sim (M_1, E_1, f_1) \sqcup (-M_2, E_2, f_2)$$

Vector bundle modification:

$$(M, E, f) \sim (\Sigma H, \beta_H \otimes \rho^* E, f \circ \rho)$$

Analytic term: the Dai-Zhang eta-invariant

Let (M, E, f) be an even K-cycle over X. Let $h = g \circ f : M \to U(N)$ be a K^1 -representative of M.

■ Consider the twisted Dirac operator $\emptyset_{E \otimes \tau, M}$ acting on $L^2(S \otimes E \otimes \tau)$. Extend the bundle data trivially to the cylinder $M \times [0, 1]$.

Objective

Objective

Analytic term: the Dai-Zhang eta-invariant

Let (M, E, f) be an even K-cycle over X. Let $h = g \circ f : M \to U(N)$ be a K^1 -representative of M.

- Consider the twisted Dirac operator $\emptyset_{E \otimes \tau, M}$ acting on $L^2(S \otimes E \otimes \tau)$. Extend the bundle data trivially to the cylinder $M \times [0, 1]$.
- Over $M \times [0,1]$ consider the Dirac-type operator

$$\mathscr{J}_{E\otimes\tau,M\times[0,1]}^{\psi,h}=\mathscr{J}_{E\otimes\tau}+(1-\psi)h^{-1}[\mathscr{J}_{E\otimes\tau},h].$$

Let
$$P^{\partial} = P_{>0,M} + P_{\mathcal{L}} : L^2(S \otimes E \otimes \tau|_M) \to L^2_{>0}(S \otimes E \otimes \tau|_M) \oplus \mathcal{L}$$
 be the modified APS projection, where $\mathcal{L} \in \text{Lag}(\ker(\partial_M^{E \otimes \tau}))$.

Objective

Analytic term: the Dai-Zhang eta-invariant

Let (M, E, f) be an even K-cycle over X. Let $h = g \circ f : M \to U(N)$ be a K^1 -representative of M.

- Consider the twisted Dirac operator $\phi_{E \otimes \tau.M}$ acting on $L^2(S \otimes E \otimes \tau)$. Extend the bundle data trivially to the cylinder $M \times [0, 1]$.
- Over $M \times [0, 1]$ consider the Dirac-type operator

$$\mathscr{J}_{E\otimes\tau,\mathsf{M}\times[0,1]}^{\psi,h}=\mathscr{J}_{E\otimes\tau}+(1-\psi)h^{-1}[\mathscr{J}_{E\otimes\tau},h].$$

Let
$$P^{\partial} = P_{>0,M} + P_{\mathcal{L}} : L^2(S \otimes E \otimes \tau|_M) \to L^2_{>0}(S \otimes E \otimes \tau|_M) \oplus \mathcal{L}$$
 be the modified APS projection, where $\mathcal{L} \in \text{Lag}(\ker(\partial_M^{E \otimes \tau}))$.

Equip at both ends respectively with the boundary conditions

$$\begin{cases} P^{\partial} & \text{on } M \times \{0\} \\ \mathrm{Id} - h^{-1} P^{\partial} h & \text{on } M \times \{1\}. \end{cases}$$

Then, $(\partial_{E\otimes\tau,M\times[0,1]}^{\psi,h},P^{\partial},\operatorname{Id}-h^{-1}P^{\partial}h)$ forms an elliptic self-adjoint boundary problem.

Its eta function is defined by

$$\eta(\mathscr{J}_{E\otimes\tau,\mathsf{M}\times[0,1]}^{\psi,h},s) = \sum_{\lambda\neq 0,\lambda\in\operatorname{spec}(\mathscr{J})}\frac{\operatorname{sgn}(\lambda)}{|\lambda|^s}$$

$$\text{for Re}(s) >> 0. \text{ Take } \eta(\emptyset_{E \otimes \tau, M \times [0,1]}^{\psi,h}) := \eta(\emptyset_{E \otimes \tau, M \times [0,1]}^{\psi,h}, 0).$$

Objective

Its eta function is defined by

$$\eta(\mathscr{O}_{E\otimes\tau,\mathsf{M}\times[0,1]}^{\psi,h},s) = \sum_{\lambda\neq 0,\lambda\in\operatorname{spec}(\mathscr{Y})}\frac{\operatorname{sgn}(\lambda)}{|\lambda|^s}$$

for $\operatorname{Re}(s) >> 0$. Take $\eta(\partial^{\psi,h}_{E\otimes \tau,M\times[0,1]}) := \eta(\partial^{\psi,h}_{E\otimes \tau,M\times[0,1]},0)$.

The Dai-Zhang eta-invariant

$$\hat{\eta}(M, E, h) = \tilde{\eta}(\mathcal{J}_{E \otimes \tau, M \times [0, 1]}^{\psi, h}) - \mathsf{sf}\{\mathcal{J}_{E \otimes \tau, M \times [0, 1]}^{\psi, h}(t)\}_{t \in [0, 1]}$$

- $\quad \blacksquare \ \tilde{\eta}(\partial^{\psi,h}_{E\otimes\tau,M\times[0,1]}) = \tfrac{1}{2}(\dim\ker\partial^{\psi,h}_{E\otimes\tau,M\times[0,1]} + \eta(\partial^{\psi,h}_{E\otimes\tau,M\times[0,1]})).$
- sf denotes the spectral flow of $\partial_{E\otimes \tau, M\times[0,1]}^{\psi,h}(t)$ for $t\in[0,1]$.

In our case, we take

$$\bar{\eta}_{DZ}(\partial_{E\otimes au,M imes[0,1]}^{\psi,h})\equiv \hat{\eta}(M,E,h) mod \mathbb{Z}.$$

Analytic pairing $K_0(X) \times K^0(X, \mathbb{R}/\mathbb{Z})$

Theorem

Objective

Let M be an even dimensional closed Spin^c manifold, $E \rightarrow M$ be a complex vector bundle. Let X be a smooth compact manifold, with $f: M \to X$ a smooth map. Let τ be the trivial bundle acted on by $h=g\circ f:M o U(N).$ Let $\emptyset_{E\otimes au,M imes[0,1]}^{\psi,h}$ be the Dirac-type operator twisted by E and τ extended on the cylinder $M \times [0, 1]$, defined by

$$\mathscr{J}_{E\otimes\tau,M\times[0,1]}^{\psi,h}=\mathscr{J}_{E\otimes\tau}+(1-\psi)h^{-1}[\mathscr{J}_{E\otimes\tau},h].$$

Let $\bar{\eta}_{DZ}(\partial_{E\otimes\tau,M\times[0.1]}^{\psi,n})$ be its reduced eta-invariant. Then, the analytic pairing $K_0(X) \times K^0(X, \mathbb{R}/\mathbb{Z}) \to \mathbb{R}/\mathbb{Z}$ given by

$$egin{aligned} \langle (\textit{M},\textit{E},\textit{f}), (\textit{g},(\textit{d},\textit{g}^{-1}\textit{d}\textit{g}),\mu)
angle \ &= ar{\eta}_{\textit{DZ}} ig(
oting_{\textit{E} \otimes au,\textit{M} imes [0,1]}^{\psi,h} ig) - \int_{\textit{M}} f^* \mu \wedge \textit{ch}(\textit{E}) \wedge \textit{Td}(\textit{M}) \ \mathsf{mod} \ \mathbb{Z} \end{aligned}$$

is well-defined and non-degenerate.

Proof Sketch.

Objective

For the well-definedness, we verify that the analytic pairing formula

- is independent of the Riemannian metric of the manifold M and Hermitian metric and connection on E; (consider the cylinder connecting $M_i = (M, g_i)$ and (E_i, ∇^{E_i}) , then take the difference of the two pairings and apply the Dai-Zhang Toeplitz index theorem on cylinder and Stokes theorem)
- respects the Baum-Douglas K-homology relations; (For vector bundle modification, the non-trivial step is to show that the equality

$$\bar{\eta}_{DZ}(M, E, f) = \bar{\eta}_{DZ}(\Sigma H, \beta_{\Sigma H} \otimes \rho^* E, f \circ \rho)$$

holds.)

respects the \mathbb{R}/\mathbb{Z} K^0 -relation.

Continued.

Idea: apply the argument of the Mayer-Vietoris sequence in K-theory and the Five lemma for the non-degeneracy. Let $X = U \cup V$, consider

$$\longrightarrow K_c^0(U\cap V,\mathbb{R}/\mathbb{Z}) \longrightarrow K_c^0(U,\mathbb{R}/\mathbb{Z}) \oplus K_c^0(V,\mathbb{R}/\mathbb{Z}) \longrightarrow K^0(U\cup V,\mathbb{R}/\mathbb{Z}) \longrightarrow \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\rightarrow \operatorname{Hom}(K_0(U\cap V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_0(U),\mathbb{R}/\mathbb{Z}) \oplus \operatorname{Hom}(K_0(V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_0(U\cup V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_0(U\cup V),\mathbb{R}/$$

Continued.

Objective

Idea : apply the argument of the Mayer-Vietoris sequence in K-theory and the Five lemma for the non-degeneracy. Let $X = U \cup V$, consider

$$\longrightarrow K_c^0(U\cap V,\mathbb{R}/\mathbb{Z}) \longrightarrow K_c^0(U,\mathbb{R}/\mathbb{Z}) \oplus K_c^0(V,\mathbb{R}/\mathbb{Z}) \longrightarrow K^0(U\cup V,\mathbb{R}/\mathbb{Z}) \longrightarrow \downarrow \qquad \qquad \downarrow$$

$$\rightarrow \operatorname{Hom}(K_0(U\cap V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_0(U),\mathbb{R}/\mathbb{Z}) \oplus \operatorname{Hom}(K_0(V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_0(U\cup V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_0(U\cup V),\mathbb{R}/\mathbb{Z})$$

- It suffices to consider the case of $U \cong \mathbb{R}^n$ for even $n \in \mathbb{Z}_+$.
- The relevant K-homology is $K_0(\mathbb{R}^n) \cong \widetilde{K}_0(S^n)$, generated by $(S^n, \beta, \mathsf{Id})$, where β is the Bott bundle.
- We verify that the map $\widetilde{K}^0(S^n,\mathbb{R}/\mathbb{Z}) \to \mathsf{Hom}(\widetilde{K}_0(S^n),\mathbb{R}/\mathbb{Z})$ implemented by

$$ar{\eta}ig(
oting^eta_{S^n imes[0,1]} ig) - \int_{S^n} ig(\mu - ch(eta) ig) \wedge ch(eta) \wedge \mathsf{Td}(S^n) \ \mathsf{mod} \ \mathbb{Z}$$

is an isomorphism.

Apply induction on the size of open covers.

Analytic Pairing $H_2(X) \times H^2(X, \mathbb{R}/\mathbb{Z})$

- Using the identification $H_2(X) \cong \Omega_2^{or}(X)$, we can consider a representative in $H_2(X)$ as $[S^2 \xrightarrow{f} X]$.
- The pairing reduces to $H_2(S^2) \times H^2(S^2, \mathbb{R}/\mathbb{Z}) \to \mathbb{R}/\mathbb{Z}$.
- Not clear how to twist a Dirac operator by a (flat) gerbe with connection.

Lemma

Objective

An alternative description of $H^2(S^2, \mathbb{R}/\mathbb{Z})$ is given by

$$H^2(S^2,\mathbb{R}/\mathbb{Z})\cong H^2(S^2,\mathbb{R})/\widetilde{H}^2(S^2,\mathbb{Z})$$

whose representative is a pure Hermitan local line bundle *L* ala Melrose [10], with the curvature $B/2\pi$.

Objective

Together with a smooth composition isomorphism over $N_{\epsilon}(\text{Diag}_3)$

$$H: \pi_3^*L \otimes \pi_1^*L \xrightarrow{\sim} \pi_2^*L.$$

 $L\cong \mathcal{L}|_{U_i imes \{p_i\}}\otimes \mathcal{L}^{-1}|_{\{p_i\} imes U_i}$ over $U_i imes U_i$ using H. mult. Herm. struc.

$$\langle u, v \rangle = \sum_{i} (\rho_i \times \rho_i) \langle u, v \rangle_i$$

- L is only defined locally on some neighbourhood of the diagonal of S^2 . It has a multiplicative unitary connection ∇^L , compatible with the multiplication Hermitian structure.
- The appropriate Dirac operator is the projective Dirac operator $\partial_{S^2,\text{proj}}^{L,\pm} \in \text{Diff}^1(S^2; S^\pm \otimes L, S^\mp \otimes L)$, introduced by Mathai, Melrose and Singer [5,6]. It is an elliptic projective differential operator given by

$$otag _{S^2,\mathsf{proj}}^L := \mathit{cI} \cdot
abla_{\mathsf{left}}^{\mathcal{S} \otimes L}(\kappa_{\mathsf{Id}})$$

whose kernel is supported within the nbhd where *L* exists.

Subtleties

The group $K^0(X, \mathbb{R}/\mathbb{Z})$

Objective

- $\emptyset_{S^2, \text{proj}}^L$ does not have a spectrum $\rightarrow \bar{\eta}$?
- \blacksquare S^2 is even dimensional \rightarrow projective Dai-Zhang eta-invariant?

Appendix

Subtleties

Objective

- $\emptyset_{S^2, proj}^L$ does not have a spectrum $-> \bar{\eta}$?
- \blacksquare S^2 is even dimensional \rightarrow projective Dai-Zhang eta-invariant?

Definition

$$\eta_{\mathsf{DZ}}(\partial_{S^2,\mathsf{proj}}^{\mathsf{L}}) := \eta_{\mathsf{APS}}(\partial_{S^2 \times S^1,\mathsf{proj}}^{\mathsf{L}}).$$

To calculate the RHS, consider the sharp product

$$\mathscr{J}_{S^2\times S^1,\mathsf{proj}}^L = \mathscr{J}_{S^2,\mathsf{proj}}^L \# \mathscr{J}_{S^1} = \begin{pmatrix} \mathscr{J}_{S^1} \otimes 1 & 1 \otimes \mathscr{J}_{S^2,\mathsf{proj}}^{L,-} \\ 1 \otimes \mathscr{J}_{S^2,\mathsf{proj}}^{L,+} & -\mathscr{J}_{S^1} \otimes 1 \end{pmatrix}.$$

The operator $\phi_{S^2 \times S^1, proj}^L$ is elliptic and self-adjoint, it is still projective and does not have a spectrum. So, we define

Definition

$$\eta_{\mathsf{APS}}(\hat{\emptyset}^\mathsf{L}_{S^2 \times S^1,\mathsf{proj}}) := \mathsf{Ind}(\hat{\emptyset}^\mathsf{L}_{S^2,\mathsf{proj}}) \cdot \eta_{\mathsf{APS}}(\hat{\emptyset}_{S^1}).$$

- $\operatorname{Ind}(\partial_{S^2,\operatorname{proj}}^{L,+}) = \operatorname{Tr}(\partial_{S^2,\operatorname{proj}}^{L,+}Q 1) \operatorname{Tr}(Q\partial_{S^2,\operatorname{proj}}^{L,+} 1)$ is well-defined.
- \blacksquare $\eta_{APS}(\emptyset_{S^1})$ is the usual APS eta-invariant.

- $\operatorname{Ind}(\partial_{S^2 \text{ proj}}^{L,+}) = \operatorname{Tr}(\partial_{S^2 \text{ proj}}^{L,+} Q 1) \operatorname{Tr}(Q\partial_{S^2 \text{ proj}}^{L,+} 1)$ is well-defined.
- \blacksquare $\eta_{APS}(\emptyset_{S^1})$ is the usual APS eta-invariant.

Since $\eta_{APS}(\emptyset_{S^1}) = 0$, so is $\eta_{APS}(\emptyset_{S^2 \times S^1, \text{proj}}^L)$. On the other hand, due to projectiveness, kernel of $\partial_{S^2 \times S^1 \text{ proj}}^L$ is not well-defined.

Assumption

Objective

$$h(\emptyset_{S^2 \times S^1, \text{proj}}^L) = \dim \ker(\emptyset_{S^1}) = 1.$$

Its reduced eta-invariant is

$$\bar{\eta}_{APS}(\hat{\boldsymbol{\varnothing}}_{S^2\times S^1,proj}^L) = \frac{\eta(\hat{\boldsymbol{\varnothing}}_{S^2\times S^1,proj}^L) + h(\hat{\boldsymbol{\varnothing}}_{S^2\times S^1,proj}^L)}{2} \ \text{mod} \ \mathbb{Z} = \frac{1}{2} \ \text{mod} \ \mathbb{Z}.$$

- $\operatorname{Ind}(\partial_{S^2 \text{ proj}}^{L,+}) = \operatorname{Tr}(\partial_{S^2 \text{ proj}}^{L,+} Q 1) \operatorname{Tr}(Q\partial_{S^2 \text{ proj}}^{L,+} 1)$ is well-defined.
- \blacksquare $\eta_{APS}(\phi_{S^1})$ is the usual APS eta-invariant.

Since $\eta_{APS}(\phi_{S^1}) = 0$, so is $\eta_{APS}(\phi_{S^2 \times S^1, proj}^L)$. On the other hand, due to projectiveness, kernel of $\partial_{S^2 \times S^1 \text{ proj}}^L$ is not well-defined.

Assumption

Objective

$$h(\emptyset_{S^2 \times S^1, \text{proj}}^L) = \dim \ker(\emptyset_{S^1}) = 1.$$

Its reduced eta-invariant is

$$\bar{\eta}_{APS}(\emptyset^L_{S^2\times S^1,proj}) = \frac{\eta(\emptyset^L_{S^2\times S^1,proj}) + h(\emptyset^L_{S^2\times S^1,proj})}{2} \ \text{mod} \ \mathbb{Z} = \frac{1}{2} \ \text{mod} \ \mathbb{Z}.$$

Then, the analytic PD pairing in H^2 is

$$ar{\eta}_{\mathsf{DZ}}(\hat{\mathscr{Y}}^{\mathsf{L}}_{\mathsf{S}^2,\mathsf{proj}}) - \int_{\mathsf{S}^2} rac{\mathsf{B}}{2\pi} \; \mathsf{mod} \; \mathbb{Z} \, .$$

where $B/2\pi$ is the first Chern class of *L*.

Quick Recap

Objective

- We propose a geometric model of the group $K^0(X, \mathbb{R}/\mathbb{Z})$ which can be incorporated into the construction of the Dai-Zhang etainvariant.
- By pairing it with the usual even Baum-Douglas K-homology, we formulate an analytic pairing

$$\left| \bar{\eta}_{DZ} \big(\mathscr{J}_{E \otimes \tau_h, M \times [0,1]}^{\psi,h} \big) - \int_{M} f^* \mu \wedge ch(E) \wedge Td(M) \bmod \mathbb{Z} \right|$$

which is well-defined and non-degenerate.

Quick Recap

Objective

- We propose a geometric model of the group $K^0(X, \mathbb{R}/\mathbb{Z})$ which can be incorporated into the construction of the Dai-Zhang etainvariant.
- By pairing it with the usual even Baum-Douglas K-homology, we formulate an analytic pairing

$$\left| \bar{\eta}_{DZ} \big(\mathscr{J}_{E \otimes \tau_h, M \times [0,1]}^{\psi,h} \big) - \int_{M} f^* \mu \wedge ch(E) \wedge Td(M) \bmod \mathbb{Z} \right|$$

which is well-defined and non-degenerate.

- This is a direct (even) analog to Lott's K^1 -pairing [6], thus closes the gap. As a result, it is reasonable to believe that this analytic K^0 pairing formula describes the Aharonov-Bohm effect of D-branes in Type-IIB String theory.
- We study one special case of the analytic Pontryagin duality pairing in $H^2(X, \mathbb{R}/\mathbb{Z})$ in which projective Dirac operators come into the picture.

Thank you for listening!

References

References

Objective

- M.F. Atiyah, V.K. Patodi, and I.M. Singer; Spectral asymmetry and Riemannian Geometry. I. Math. Proc. Cambridge Philos. Soc. Vol. 77. 1. Cambridge University Press (1975) 43-69.
- P. Baum and R. Douglas: Index theory, bordism and K-homology, Contemp. Math 10 (1982) 1-31.
- 3 X.Z. Dai and W.P. Zhang; An index theorem for Toeplitz operators on odd dimensional manifolds with boundary. Journal of Func. Anal., Vol 238, Issue 1 (2006).
- 4 X.Z. Dai and W.P. Zhang; Eta invariant and holonomy: The even dimensional case. Adv. in Maths., Vol 279, (2015) 291-306.
- J. Lim; Analytic Pontryagin duality. J. Geom. Phys. 145 (2019).
- J. Lott: R/Z Index Theory. Comm. Anal. Geom. Vol 2. (1994) 279-311.
- J. Maldacena, N. Seiberg, and G. Moore: D-brane charges in five-brane backgrounds, J. High Energy Phys. 10.005 (2001).
- IN V. Mathai, R.B. Melrose, and I.M.Singer; The index of projective families of elliptic operators. Geometry & Topology, Vol 9, (2005) 341-373.
- 9 V. Mathai, R.B. Melrose, and I.M.Singer: Fractional analytic index, Journal of Diff. Geom., Vol. 74, (2006) 265-292.
- R.B. Melrose; Star products and local line bundles. Annales de l'institut Fourier, Vol 54, (2004) 1581-1600
- II A.Y. Savin and B.Y. Sternin; The eta-invariant and Pontryagin duality in K-theory. Mathematical Notes 71.1-2 (2002) 245-261.

Analytic Pontryagin duality in H^1

Analytic Pairing $H_1(X) \times H^1(X, \mathbb{R}/\mathbb{Z})$

Classical pairing

Objective

$$H_1(X) \times H^1(X, \mathbb{R}/\mathbb{Z}) \to \mathbb{R}/\mathbb{Z}$$

 $([S^1 \xrightarrow{\gamma} X], A) \mapsto \int_{S^1} \gamma^* A \mod \mathbb{Z}.$

Analytic description

Let ∂_{S^1} be the usual Dirac operator on the circle S^1

$$\partial_{S^1} = -i \frac{d}{d\theta}$$

whose kernel has dimension one. Let

$$L = \tilde{X} \times_{\rho} U(1)$$

be a flat line bundle over X, with connection ∇_A^L , where $\rho: \pi_1(X) \to U(1)$ is a unitary representation.

(Continued.)

Objective

Passing through $\gamma: S^1 \to X$ defines $(\tilde{L}, \nabla^{\tilde{L}})$ over S^1

$$\tilde{L} = \mathbb{R} \times_{\rho'} U(1), \quad \rho' = \gamma_* \circ \rho,$$

with a generating section $v_{\rho'}(\theta) = \exp(2\pi i \ a \ \theta)$, for $a \in (0, 1)$.

The twisted-by- \tilde{L} Dirac operator $\partial_{S^1}^L$ has eigenvalues $\lambda_n = n + a$. Its Atiyah-Patodi-Singer (APS) eta-invariant is 1 - 2a. Then, the analytic pairing in H^1 is given by

$$\left| \bar{\eta}(\partial_{\mathcal{S}^1}^{\tilde{L}}) - \int_{\mathcal{S}^1} \gamma^* A \bmod \mathbb{Z}. \right|$$

Remark

This is a special case of the analytic pairing in K^1 :

$$(S^1, \tau, \gamma) \in K_1(X), (L, \nabla^L, \omega) \in K^1(X, \mathbb{R}/\mathbb{Z})$$

with $d\omega = c_1(\nabla^L) = 0$.

Objective

The counterpart : Analytic K^1 -pairing

Theorem

Objective

Let M be an odd dimensional closed Spin^c manifold, let E be a complex vector bundle over M. Let X be a smooth compact manifold with $f: M \to X$ a smooth map. Let $\partial_M^{f^*V \otimes E}$ be the twisted Dirac operator, locally given by

$$\phi_{M}^{f^*V\otimes E} = \sum_{i} c(e_i) \circ \nabla_{e_i}^{\mathcal{S}\otimes f^*V\otimes E}$$

for an o/n basis $\{e_i\}$. Then, the analytic pairing

$$K_1(X) \times K^1(X, \mathbb{R}/\mathbb{Z}) \to \mathbb{R}/\mathbb{Z}$$

given by (Lott [4])

$$ar{\eta}_{APS}(\partial_{M}^{f^{*}V\otimes E}) - \int_{M} f^{*}\omega \wedge ch(E) \wedge \mathsf{Td}(M) \ \mathsf{mod} \ \mathbb{Z}$$

is well-defined and non-degenerate.

Proof Sketch.

Objective

Idea: MV sequence in K^1 + the Five Lemma. Consider the part

$$\longrightarrow K_c^1(U\cap V,\mathbb{R}/\mathbb{Z}) \longrightarrow K_c^1(U,\mathbb{R}/\mathbb{Z}) \oplus K_c^1(V,\mathbb{R}/\mathbb{Z}) \longrightarrow K^1(U\cup V,\mathbb{R}/\mathbb{Z}) \longrightarrow \downarrow \qquad \qquad \downarrow$$

$$\rightarrow \operatorname{Hom}(K_1(U\cap V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_1(U),\mathbb{R}/\mathbb{Z}) \oplus \operatorname{Hom}(K_1(V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_1(U\cup V),\mathbb{R}/\mathbb{Z}) \rightarrow \operatorname{Hom}(K_1(U\cup V),\mathbb{R}/\mathbb{Z})$$

- Consider the case of $U \cong \mathbb{R}^n$ for odd $n \in \mathbb{Z}_+$. The relevant K-homology is $K_1(\mathbb{R}^n) \cong K_1(S^n)$, generated by (S^n, τ, Id) .
- We verify that the map $K^1(S^n, \mathbb{R}/\mathbb{Z}) \to \text{Hom}(K_1(S^n), \mathbb{R}/\mathbb{Z})$ implemented by

$$ar{\eta}(
oting_{S^n}) - \int_{S^n} \omega \wedge \mathit{ch}(au) \wedge \mathsf{Td}(S^n) \ \mathsf{mod} \ \mathbb{Z}$$

is an isomorphism.

- The topological term is dominated by $rk(\tau) \int_{S^n} \omega \mod \mathbb{Z}$.
- The reduced APS eta-invariant is given in the table below.

n	$\eta(\partial_{S^n})$	dim $\ker(\partial_{S^n})$	$ar{\eta}(ot\!\!/_{\mathcal{S}^n})$
1	0	1	$\frac{1}{2}$
≥ 3	0	0	Ō