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e [ he original idea of geometric quantisation is to associate a
Hilbert space to a symplectic manifold via a prequantum line
bundle and a polarisation.

e I will show an approach to compute cohomology groups ap-
pearing in geometric quantisation of integrable systems with
nondegenerate singularities.



The setup

e Let (M,w) be a symplectic manifold such that [w] is integral.

e (L,V¥) a, Hermitian, complex line bundle with connection
over M that satisfies curv(V%) = —iw.

e The symplectic manifold (M,w) is called prequantisable and
the pair (L, V%) a prequantum line bundle for (M, w).



Polarisation

e A real polarisation P is an integrable (in the Sussmann sense)
distribution of T'M whose leaves are generically Lagrangian.

e An integrable system F = (f1,..., fn) : M?™ — R™ on a sym-
plectic manifold defines a Lagrangian foliation (possibly with
singularities): P = (Xy,, ..., X1,) coo(MR) -

e P will denote the complexification of P: P = (Xy,,..., Xy ) coo(ar:0)



Geometric quantisation (a la Kostant)

e O(M) = EB EI’“(M;j) is the quantisation of (M,w,L,V, P).
k>0

e 7 is the sheaf of flat sections, i.e.: the space of local sections
o of L such that V5o = 0 for any vector field X of P.

o V = VW is the restriction of the connection V¥ to the
P
polarisation P.



Nondegenerate singularities

e A singular point of the moment map is called nondegener-

ate if the quadratic part of the first integrals form a cartan
subalgebra.

e Theorem: (Eliasson,Miranda and Zung) Near a compact sin-
gular nondegenerate orbit both the foliation and the symplec-
tic form can be simultaneously linearised (in an equivariant
way).



The local model is given by N = DF x TF x D2(n=k) and
n

wo = Y. dx; N dy;.
=1

7 =
Reqgular f; = x; for i =1,..., k;
Elliptic f; =22 +y? for i =k+1,..., ke;

Hyperbolic f; = x;y; for i = ke + 1, ..., ke + kyp;

Focus-focus f; = zy;41 — Tj4+1Y%ir Ji+1 = T;y; + Ti41y;41 for
i=kethy+25—1,5=1,..kr
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Resolution approach

e Let SE(L) be the sheaf of M(A* P*®coc(pr:cy L) and dV is the
exterior derivative obtained by twisting dp with the connec-
tion V.

e T heorem:

V. ol M dV  an dVv
0 —J =S —Sp(L) — -+ —Sp(L) —0

is a fine resolution for J. Therefore its cohomology computes
geometric quantisation; H*(M; 7) = H*(Sp*(L)).

e Regular case: Kostant (Rawnsley).



o (P, [, ]‘ ) is a Lie subalgebra of (F(T'M),[-,-]) and can be
represented on C*°(M) as vector fields acting on smooth
functions.

0 — CR(M) — =) 2B ok & .. 9 anr) 2B o

For Y1,...,Yr41 € P, the coboundary operator IS given by

k+1 | R
dpa (Y1,..., Y1) = > (-1)TY(a(¥1, ...,V ., Yig1))
1 =1
+ Y CDa(Y;, YLV, Y Y Yierr)

i < j
C%O(M) = ker(dp)

Qp (M) = Hom oo (ary (Ao (ppy Pi O (M)
plus vanishing conditions



e Theorem: (Miranda and Solha)

Consider (RQ”, Z dx; A dy;) endowed with a real polarisa-
=1

tion P with S/ngu/ar/t/es of elliptic and hyperbolic type, then
the foliated cohomology group in degree 1 is nontrivial —
Poincaré lemma does not hold.

e Almost toric case: Solha.

e Nondegenerate case (inclusion of hyperbolic singularities):
Miranda and Solha.



Bohr-Sommerfeld condition

e A leaf /¢ of P is a Bohr-Sommerfeld leaf if there is a nonzero

flat section o : ¢ — L. Equivalently, all loops in ¢ have trivial
holonomy.

e T heorem: Under the assumption that the zero fibre is Bohr-
Sommerfeld, the image of Bohr-Sommerfeld fibres by a mo-
ment map is contained in Rk x 7k- k being the number

of linearly independent Hamiltonian Sl_actions generated by
the moment map.

e [ he Liouville tori case was proved by Guillemin and Stern-
berg: their theorem holds for Lagrangian fibrations, with
compact connected fibres, over simply connected basis.
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e Over a Bohr-Sommerfeld fibre each component of the mo-
ment map generating a Sl_action takes an integer value,
depending only on the fibre.

Lemma: Let X be the generator of a symplectic Sl_action

with orbits ~, then its (2w ) holonomy can be computed (up
to flat bundles) by

holgw () = ei2m0(X) .

where 0 is a particular invariant potential 1-form for w in a
neighbourhood of .
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Nonsingular and elliptic cases

e Theorem: (Sniatycki) If the base space N is a manifold and
the natural projection F : M — N is a Lagrangian fibration,
then Q(M) = H*(M; 7) = A°(¢gs; j‘eBs)'

k is the rank of the fundamental group of a fibre and g C M
iIs the union of all Bohr-Sommerfeld fibres.

e Theorem:(Hamilton) For a 2n-dimensional compact locally
toric fibration:

OM)=H"(M; 7)== P C.
peEBSy
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e Sniatycki’s result:

1. trivially holds without metaplectic correction and does not
need compactness assumptions;

2. depends on the existence of global action-angle coordi-
nates and the image of the moment map must be a man-
ifold.

e Hamilton’s result:

1. can be adapted, however does not include metaplectic
correction, and needs compactness of the fibres;

2. does not require a manifold structure on the image of the
moment map.



e For the new proofs:

1. it does not matter if metaplectic correction is included or
not (it holds for Hermitian line bundles with flat connec-
tion along the leaves of the polarisation);

2. it does not need a manifold structure on the image of the
moment map;

3. Sniatycki's and Hamilton's result are unified;

4. something can be said about the almost toric case.



Dimension 2

e Theorem:(Hamilton and Miranda) For a integrable system
on a compact surface, whose moment map has only nonde-
generate singularities

oMy =H'(M; )= P (CachHe P C.
pEH pEBSy



Free rigid body

e The coadjoint orbits of so(3)* are spheres, with the area form,
and a point.

e [ he Euler equations are equivalent to the free rigid body
dynamics.

e If the principal axis of inertia satisfies Iy = I, # I3, the
momentum of inertia operator has 2 distinct eigenvalues. It
has two elliptic singularities.

e A generic body satisfies I[1 < I < I3. It has four elliptic and
two hyperbolic singularities.
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Rawnsley: Circle actions and homotopy operators

1 dV dV n dV
0 —J =S —Sp(L) — - —Sp(L) —0

e Suppose that X € P is a periodic Hamiltonian vector field
and ¢; represents its flow.

2 . 1
o Jx(@®s)= [ (xodfa) @M (500 dt

resembles an homotopy operator:
[holgw ()t —1la®@s=Jx(@Va®s) +dVIx(a®s) .
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e For sections of L,

[holgw (7)™ = 1]s = J x(Vs)

and if the holonomy is nontrivial over a dense set
HO(Sp*(L)) = {0}.

o If a € SK(L) is closed, dVa =0,

[holys (7)1 = 1]a = dVJ x(a) |

and if the holonomy is nontrivial over a dense set Jy(«)
closed = HF(Sp®*(L)) = {0}.
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Proposition: Supposing that (M,w) admits a symplectic S1-
action preserving P, HO(Sp®(L)) = {0} if {holgw(y) # 1} is
dense.

Proposition: Let a € S%(L) be closed, dVa = 0, and k # 0.

— The form a is exact everywhere holgw(v) #= 1. It is also
globally exact if {holgyw(y) #= 1} is dense and Jx(a) = O
where holyw(vy) = 1.

— When {holyw(vy) = 1} is a (not necessarily connected) sub-

manifold, o is exact on M if and only ifJX(a)‘T{hOl (1)=1}
vw )=
Is exact.



Computing the building blocks: regular case

e T he existence of Jyx implies no global flat sections and in-
duces an isomorphism between flat sections over Bohr-Sommerfeld
leaves and the first cohomology group.

W Sp(L) = P M(Lly,) V() =Bpezd x(a)
keZ bk

Proposition: The quantisation of a cylinder polarised by
circles is CbS, where bs is the number of Bohr-Sommerfeld
leaves.
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e Elliptic singularities give no contribution (Poincaré lemma).

1. holgw(y) = 2m0(X) = ¢i27(z*+y%) and holonomy is non-
trivial over a dense set: H9(Sp®(L)) = 0.

2. Since the origin is a fixed point, the operator J x is the null
operator when restricted to the origin (trivial holonomy).

3. Hence for each contractible neighbourhood of the origin
that does not contain any other Bohr-Sommerfeld leaf,
elliptic singularities give no contribution to quantisation
(first proved by Hamilton using different techniques).

Proposition: The quantisation of an open disk polarised
by circles is <Cb8, where bs is the number of nonsingular
Bohr-Sommerfeld leaves.



e Focus-focus:

1. Theorem: (Zung)There exists a neighbourhood of a focus-
focus singular fibre over which a Hamiltonian Sl_action is
defined and its vector field is one of the generators of the
polarisation given by the nondegenerate integrable system.

2. Poincaré lemma: In a small enough neighbourhood W of a
singular point of a focus-focus Bohr-Sommerfeld fibre J x
is the null operator over the points where {holgw(v) = 1}.



Proposition: In the neighbourhood of Eff over which a
Hamiltonian Sl-action is defined there exists a neighbour-
hood V' containing only Eff as a Bohr-Sommerfeld fibre such

that HO(V; j|v) = {0}.

The first, nonlocal, obstacle is that {holyw(vy) = 1} is not
a submanifold, and one needs to prove that Jyx is the null
operator over the points where {holgw(v) = 1}.

Another approach would be to prove only the exactness of
Jx and check out convergence over the singular points of

{holgw(vy) = 1}.



e Hyperbolic:

1. Theorem 1:(Miranda and Solha)

All cohomology groups vanish near a singularity of purely
hyperbolic type in dimension 2 and 4.

For X(g) = ifg + o(X) a solution is given by ¢ = g — G,
where g is obtained as a formal solution via Taylor series,

0 .
X(@) = ifg+a(X)+ T, and G = / | e T o ¢, dt is a
— nzy
solution for flat functions: X(G) =ifG+ T.
For higher degrees, one has to solve a system of equations

of this type together with compatibility conditions (that are
not only necessary, but sufficient).



Kunneth formula

e Let ((—1,1) x St dz Ady, <(%>) and (M,w = df, L,V, P) arbi-
trary.

e L — ((—=1,1) x S1 x M,dx A dy 4+ w) is a prequantum line
bundle.

T heorem:

The map W : H’f(S< op (L)) = H*=1(Sp*(L)) defined by

9
oy

V([a]) = [Jag(&)' ] is an isomorphism.

{holyw(v)=1}

14



e If the first factor, NNV, is an elliptic or focus-focus local model,
J x implies that Q(N x M) = {0} for any M (exact, w = d#@).

e The Hamiltonian Sl-action has nontrivial holonomy over a
dense set, and the set {holyw(vy) = 1} are fixed points: the
operator J x is the null operator when restricted to {holgw(vy) =

11,



