The Comparison of two constructions of the Refined Analytic Torsion on Manifolds with Boundary

Rung-Tzung Huang j. w. w Yoonweon Lee(Inha University, Korea)

> Department of Mathematics National Central University, Taiwan

IGA/AMSI workshop on geometric quantization The University of Adelaide 7/27-31, 2015

Outline

Analytic torsion

Refined analytic torsion

Comparison theorem for refined analytic torsions

- (M, g^M) a closed Riemannian manifold, $\dim(M) = m$.
- (E, ∇, h^E) a flat complex vector bundle over M, i.e. $\nabla^2 = 0$.
- In general $dh^E(u,v) = h^E(\nabla u,v) + h^E(u,\nabla'v), \forall u,v \in C^{\infty}(M,E).$
- ∇' is called the dual connection on E
- If ∇ Hermitian (i.e. h^E flat), then $\nabla' = \nabla$.

- (E, ∇) is flat $\iff \exists \ \rho : \pi_1(M) \to GL(n, \mathbb{C}) \text{ s.t. } E = \widetilde{M} \times_{\rho} \mathbb{C}^n$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^E is flat $\iff \exists \ \rho : \pi_1(M) \to U(n)$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$.

- (M, g^M) a closed Riemannian manifold, $\dim(M) = m$.
- (E, ∇, h^E) a flat complex vector bundle over M, i.e. $\nabla^2 = 0$.
- In general $dh^E(u, v) = h^E(\nabla u, v) + h^E(u, \nabla' v), \forall u, v \in C^{\infty}(M, E).$
- ∇' is called the dual connection on E
- If ∇ Hermitian (i.e. h^E flat), then $\nabla' = \nabla$.

- (E, ∇) is flat $\iff \exists \ \rho : \pi_1(M) \to GL(n, \mathbb{C}) \text{ s.t. } E = \widetilde{M} \times_{\rho} \mathbb{C}^n$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^E is flat $\iff \exists \ \rho : \pi_1(M) \to U(n)$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$.

- (M, g^M) a closed Riemannian manifold, $\dim(M) = m$.
- (E, ∇, h^E) a flat complex vector bundle over M, i.e. $\nabla^2 = 0$.
- In general $dh^E(u,v) = h^E(\nabla u,v) + h^E(u,\nabla'v), \forall u,v \in C^{\infty}(M,E).$
- \bullet ∇' is called the dual connection on E
- If ∇ Hermitian (i.e. h^E flat), then $\nabla' = \nabla$.

- (E, ∇) is flat $\iff \exists \ \rho : \pi_1(M) \to GL(n, \mathbb{C})$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^E is flat $\iff \exists \ \rho : \pi_1(M) \to U(n)$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$.

- (M, g^M) a closed Riemannian manifold, $\dim(M) = m$.
- (E, ∇, h^E) a flat complex vector bundle over M, i.e. $\nabla^2 = 0$.
- In general $dh^E(u,v) = h^E(\nabla u,v) + h^E(u,\nabla'v), \forall u,v \in C^{\infty}(M,E).$
- \bullet ∇' is called the dual connection on E
- If ∇ Hermitian (i.e. h^E flat), then $\nabla' = \nabla$.

- (E, ∇) is flat $\iff \exists \ \rho : \pi_1(M) \to GL(n, \mathbb{C})$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^E is flat $\iff \exists \ \rho : \pi_1(M) \to U(n)$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$.

- (M, g^M) a closed Riemannian manifold, $\dim(M) = m$.
- (E, ∇, h^E) a flat complex vector bundle over M, i.e. $\nabla^2 = 0$.
- In general $dh^E(u,v) = h^E(\nabla u,v) + h^E(u,\nabla'v), \forall u,v \in C^{\infty}(M,E).$
- ∇' is called the dual connection on E
- If ∇ Hermitian (i.e. h^E flat), then $\nabla' = \nabla$.

- (E, ∇) is flat $\iff \exists \ \rho : \pi_1(M) \to GL(n, \mathbb{C}) \text{ s.t. } E = \widetilde{M} \times_{\rho} \mathbb{C}^n$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^E is flat $\iff \exists \ \rho : \pi_1(M) \to U(n)$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$.

- (M, g^M) a closed Riemannian manifold, $\dim(M) = m$.
- (E, ∇, h^E) a flat complex vector bundle over M, i.e. $\nabla^2 = 0$.
- In general $dh^E(u,v) = h^E(\nabla u,v) + h^E(u,\nabla'v), \forall u,v \in C^{\infty}(M,E).$
- ∇' is called the dual connection on E
- If ∇ Hermitian (i.e. h^E flat), then $\nabla' = \nabla$.

- (E, ∇) is flat $\iff \exists \ \rho : \pi_1(M) \to GL(n, \mathbb{C})$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^E is flat $\iff \exists \ \rho : \pi_1(M) \to U(n)$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$.

- (M, g^M) a closed Riemannian manifold, $\dim(M) = m$.
- (E, ∇, h^E) a flat complex vector bundle over M, i.e. $\nabla^2 = 0$.
- In general $dh^E(u,v) = h^E(\nabla u,v) + h^E(u,\nabla'v), \forall u,v \in C^{\infty}(M,E).$
- \bullet ∇' is called the dual connection on E
- If ∇ Hermitian (i.e. h^E flat), then $\nabla' = \nabla$.

- (E, ∇) is flat $\iff \exists \ \rho : \pi_1(M) \to GL(n, \mathbb{C}) \text{ s.t. } E = \widetilde{M} \times_{\rho} \mathbb{C}^n$, where \widetilde{M} is the universal covering of M.
- (E, ∇) is flat and h^E is flat $\iff \exists \ \rho : \pi_1(M) \to U(n)$ s.t. $E = \widetilde{M} \times_{\rho} \mathbb{C}^n$.

• de Rham complex:

$$0 \to \Omega^0(M, E) \xrightarrow{\nabla} \Omega^1(M, E) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega^m(M, E) \to 0$$

• de Rham theorem:

$$H^p(M, E) \cong H^p_{dR}(M, E) = rac{\operatorname{Ker}(\nabla|_{\Omega^p(M, E)})}{\operatorname{Im}(\nabla|_{\Omega^{p-1}(M, E)})}$$

• Hodge Laplacian:

$$\Delta_p = \nabla \nabla^* + \nabla^* \nabla : \Omega^p(M, E) \to \Omega^p(M, E),$$

where ∇^* is the adjoint of ∇ w.r.t. $<\cdot,\cdot>$ on $\Omega^{\bullet}(M,E)$ induced from g^M and h^E .

• de Rham complex:

$$0 \to \Omega^0(M, E) \stackrel{\nabla}{\to} \Omega^1(M, E) \stackrel{\nabla}{\to} \cdots \stackrel{\nabla}{\to} \Omega^m(M, E) \to 0$$

de Rham theorem:

$$H^{p}(M,E) \cong H^{p}_{dR}(M,E) = \frac{\operatorname{Ker}(\nabla|_{\Omega^{p}(M,E)})}{\operatorname{Im}(\nabla|_{\Omega^{p-1}(M,E)})}$$

• Hodge Laplacian:

$$\Delta_p = \nabla \nabla^* + \nabla^* \nabla : \Omega^p(M, E) \to \Omega^p(M, E),$$

where ∇^* is the adjoint of ∇ w.r.t. $<\cdot,\cdot>$ on $\Omega^{\bullet}(M,E)$ induced from g^M and h^E .

• de Rham complex:

$$0 \to \Omega^0(M, E) \stackrel{\nabla}{\to} \Omega^1(M, E) \stackrel{\nabla}{\to} \cdots \stackrel{\nabla}{\to} \Omega^m(M, E) \to 0$$

de Rham theorem:

$$H^p(M,E) \cong H^p_{dR}(M,E) = rac{\operatorname{Ker}(\nabla|_{\Omega^p(M,E)})}{\operatorname{Im}(\nabla|_{\Omega^{p-1}(M,E)})}$$

Hodge Laplacian:

$$\Delta_p = \nabla \nabla^* + \nabla^* \nabla : \Omega^p(M, E) \to \Omega^p(M, E),$$

where ∇^* is the adjoint of ∇ w.r.t. $<\cdot,\cdot>$ on $\Omega^{\bullet}(M,E)$ induced from g^M and h^E .

• de Rham complex:

$$0 \to \Omega^0(M, E) \stackrel{\nabla}{\to} \Omega^1(M, E) \stackrel{\nabla}{\to} \cdots \stackrel{\nabla}{\to} \Omega^m(M, E) \to 0$$

de Rham theorem:

$$H^p(M,E) \cong H^p_{dR}(M,E) = rac{\operatorname{Ker}(\nabla|_{\Omega^p(M,E)})}{\operatorname{Im}(\nabla|_{\Omega^{p-1}(M,E)})}$$

Hodge Laplacian:

$$\Delta_p = \nabla \nabla^* + \nabla^* \nabla : \Omega^p(M, E) \to \Omega^p(M, E),$$

where ∇^* is the adjoint of ∇ w.r.t. $<\cdot,\cdot>$ on $\Omega^{\bullet}(M,E)$ induced from g^M and h^E .

• For $s \in \mathbb{C}$, Re s > m/2, the ζ -function

$$\zeta_{\Delta_p}(s) := \operatorname{Tr}(\Delta_p)^{-s} = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \operatorname{Tr}[\exp(-t\Delta_p) - \dim \operatorname{Ker} \Delta_p] dt$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C} . In particular, it is regular at s=0.

Define ζ-regularized determinant

$$\operatorname{Det} \Delta_p := \exp(-\zeta'_{\Delta_p}(0)).$$

$$\operatorname{Det} \Delta_p = "\prod_{\lambda_k > 0} \lambda_k"$$

• For $s \in \mathbb{C}$, Re s > m/2, the ζ -function

$$\zeta_{\Delta_p}(s) \,:=\, \mathrm{Tr}(\Delta_p)^{-s} = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \, \mathrm{Tr}[\exp(-t\Delta_p) - \dim \operatorname{Ker} \Delta_p] dt$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C} . In particular, it is regular at s=0.

Define ζ-regularized determinant

$$\operatorname{Det} \Delta_p := \exp(-\zeta'_{\Delta_p}(0)).$$

$$\operatorname{Det} \Delta_p = "\prod_{\lambda_k > 0} \lambda_k"$$

• For $s \in \mathbb{C}$, Re s > m/2, the ζ -function

$$\zeta_{\Delta_p}(s) \,:=\, \mathrm{Tr}(\Delta_p)^{-s} = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \, \mathrm{Tr}[\exp(-t\Delta_p) - \dim \operatorname{Ker} \Delta_p] dt$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C} . In particular, it is regular at s=0.

Define ζ-regularized determinant

$$\operatorname{Det} \Delta_p := \exp(-\zeta'_{\Delta_p}(0)).$$

$$\operatorname{Det} \Delta_p = "\prod_{\lambda_k > 0} \lambda_k"$$

• For $s \in \mathbb{C}$, Re s > m/2, the ζ -function

$$\zeta_{\Delta_p}(s) \,:=\, \mathrm{Tr}(\Delta_p)^{-s} = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \, \mathrm{Tr}[\exp(-t\Delta_p) - \dim \operatorname{Ker} \Delta_p] dt$$

converges. Moreover, it has a meromorphic continuation to \mathbb{C} . In particular, it is regular at s=0.

Define ζ-regularized determinant

$$\operatorname{Det} \Delta_p := \exp(-\zeta'_{\Delta_p}(0)).$$

$$\operatorname{Det} \Delta_p = "\prod_{\lambda_k > 0} \lambda_k"$$

- V: n-dim. vector space, $\det V := \wedge^n V$ complex line.
- volume element: $[v] = v_1 \wedge \cdots \wedge v_n \in \det V$, where $\{v_i\}$ orthornormal basis for V.
- determinant line of cohomology groups:

$$\det H^{\bullet}(M,E) = \otimes_p \left(\det H^p(M,E)\right)^{(-1)^p},$$

$$\rho(\nabla, g^M) = [h_0] \otimes [h_1]^{-1} \otimes \cdots \otimes [h_m]^{\pm} \in \det H^{\bullet}(M, E).$$

- V: n-dim. vector space, $\det V := \wedge^n V$ complex line.
- volume element: $[v] = v_1 \wedge \cdots \wedge v_n \in \det V$, where $\{v_i\}$ orthornormal basis for V.
- determinant line of cohomology groups:

$$\det H^{\bullet}(M,E) = \otimes_p \left(\det H^p(M,E)\right)^{(-1)^p},$$

$$\rho(\nabla, g^M) = [h_0] \otimes [h_1]^{-1} \otimes \cdots \otimes [h_m]^{\pm} \in \det H^{\bullet}(M, E).$$

- V: n-dim. vector space, $\det V := \wedge^n V$ complex line.
- volume element: $[v] = v_1 \wedge \cdots \wedge v_n \in \det V$, where $\{v_i\}$ orthornormal basis for V.
- determinant line of cohomology groups:

$$\det H^{\bullet}(M,E) = \otimes_p \left(\det H^p(M,E) \right)^{(-1)^p},$$

$$\rho(\nabla, g^M) = [h_0] \otimes [h_1]^{-1} \otimes \cdots \otimes [h_m]^{\pm} \in \det H^{\bullet}(M, E).$$

- V: n-dim. vector space, $\det V := \wedge^n V$ complex line.
- volume element: $[v] = v_1 \wedge \cdots \wedge v_n \in \det V$, where $\{v_i\}$ orthornormal basis for V.
- determinant line of cohomology groups:

$$\det H^{\bullet}(M,E) = \otimes_{p} \left(\det H^{p}(M,E) \right)^{(-1)^{p}},$$

$$\rho(\nabla, g^M) = [h_0] \otimes [h_1]^{-1} \otimes \cdots \otimes [h_m]^{\pm} \in \det H^{\bullet}(M, E).$$

Ray-Singer analytic torsion

Scalar Ray-Singer torsion

$$T(M, g^M, h^E) := \exp\left(\frac{1}{2}\sum_{p=0}^m (-1)^{p+1}\cdot p\cdot \operatorname{Det}\Delta_p\right).$$

Ray-Singer torsion

$$\rho^{\mathrm{RS}}(\nabla) \,:=\, \rho(\nabla, g^{M}) \cdot T(M, g^{M}, h^{E}) \in \det H^{\bullet}(M, E).$$

 $\bullet \ \, \mathsf{Ray\text{-}Singer} \ \mathsf{metric} \ \| \cdot \|_{\det H^{\bullet}(M,E)}^{\mathsf{RS}} \ \, \mathsf{on} \ \, \mathsf{det} \, H^{\bullet}(M,E) \\$

$$\|\cdot\|_{\det H^{\bullet}(M,E)}^{RS} := |\cdot|_{\det H^{\bullet}(M,E)}^{L^{2}} \cdot T(M,g^{M},h^{E})^{-1}$$

Ray-Singer analytic torsion

Scalar Ray-Singer torsion

$$T(M, g^M, h^E) := \exp\left(\frac{1}{2}\sum_{p=0}^m (-1)^{p+1}\cdot p\cdot \operatorname{Det}\Delta_p\right).$$

Ray-Singer torsion

$$\rho^{\mathrm{RS}}(\nabla) \,:=\, \rho(\nabla, g^{\mathit{M}}) \cdot T(\mathit{M}, g^{\mathit{M}}, \mathit{h}^{\mathit{E}}) \in \det H^{\bullet}(\mathit{M}, \mathit{E}).$$

 $\bullet \ \, \mathsf{Ray\text{-}Singer} \ \mathsf{metric} \ \| \cdot \|_{\det H^{\bullet}(M,E)}^{\mathsf{RS}} \ \, \mathsf{on} \ \, \mathsf{det} \, H^{\bullet}(M,E) \\$

$$\|\cdot\|_{\det H^{\bullet}(M,E)}^{RS} := |\cdot|_{\det H^{\bullet}(M,E)}^{L^{2}} \cdot T(M,g^{M},h^{E})^{-1}$$

Ray-Singer analytic torsion

Scalar Ray-Singer torsion

$$T(M, g^M, h^E) := \exp\left(\frac{1}{2}\sum_{p=0}^m (-1)^{p+1}\cdot p\cdot \operatorname{Det}\Delta_p\right).$$

Ray-Singer torsion

$$\rho^{\mathrm{RS}}(\nabla) \,:=\, \rho(\nabla, g^{\mathit{M}}) \cdot T(\mathit{M}, g^{\mathit{M}}, \mathit{h}^{\mathit{E}}) \in \det H^{\bullet}(\mathit{M}, \mathit{E}).$$

ullet Ray-Singer metric $\|\cdot\|_{\det H^{ullet}(M,E)}^{\mathrm{RS}}$ on $\det H^{ullet}(M,E)$

$$\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}} := |\cdot|_{\det H^{\bullet}(M,E)}^{L^{2}} \cdot T(M,g^{M},h^{E})^{-1}$$

- If $\dim M$ odd, $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M, h^E a topological invariant.
- If dim M even, M orientable, h^E flat, then $T(M, g^M, h^E) = 1$.
- If $\dim M$ even, h^E unimodular ($\det \rho(\gamma) = 1$ for all $\gamma \in \pi_1(M)$), then $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M , a topological invariant.
- Ray-Singer conjecture: The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^E flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim *M* odd, *E* unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

- If $\dim M$ odd, $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M, h^E a topological invariant.
- If dim M even, M orientable, h^E flat, then $T(M, g^M, h^E) = 1$.
- If $\dim M$ even, h^E unimodular ($\det \rho(\gamma) = 1$ for all $\gamma \in \pi_1(M)$), then $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M , a topological invariant.
- Ray-Singer conjecture: The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^E flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim M odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

- If dim M odd, $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M, h^E a topological invariant.
- If dim M even, M orientable, h^E flat, then $T(M, g^M, h^E) = 1$.
- If $\dim M$ even, h^E unimodular ($\det \rho(\gamma) = 1$ for all $\gamma \in \pi_1(M)$), then $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M , a topological invariant.
- Ray-Singer conjecture: The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^E flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim M odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

- If dim M odd, $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M, h^E a topological invariant.
- If dim M even, M orientable, h^E flat, then $T(M, g^M, h^E) = 1$.
- If $\dim M$ even, h^E unimodular ($\det \rho(\gamma) = 1$ for all $\gamma \in \pi_1(M)$), then $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M , a topological invariant.
- Ray-Singer conjecture: The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^E flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim M odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

- If dim M odd, $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M, h^E a topological invariant.
- If dim M even, M orientable, h^E flat, then $T(M, g^M, h^E) = 1$.
- If $\dim M$ even, h^E unimodular ($\det \rho(\gamma) = 1$ for all $\gamma \in \pi_1(M)$), then $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M , a topological invariant.
- Ray-Singer conjecture: The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^E flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim M odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

- If dim M odd, $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M, h^E a topological invariant.
- If dim M even, M orientable, h^E flat, then $T(M, g^M, h^E) = 1$.
- If $\dim M$ even, h^E unimodular ($\det \rho(\gamma) = 1$ for all $\gamma \in \pi_1(M)$), then $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M , a topological invariant.
- Ray-Singer conjecture: The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^E flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim M odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

- If dim M odd, $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M, h^E a topological invariant.
- If dim M even, M orientable, h^E flat, then $T(M, g^M, h^E) = 1$.
- If $\dim M$ even, h^E unimodular ($\det \rho(\gamma) = 1$ for all $\gamma \in \pi_1(M)$), then $\|\cdot\|_{\det H^{\bullet}(M,E)}^{\mathrm{RS}}$ does not depend on g^M , a topological invariant.
- Ray-Singer conjecture: The Ray-Singer torsion coincides with the Reidemeister torsion.
- h^E flat, Cheeger(1978), Müller(1978), RS conj. holds
- dim M odd, E unimodular, Müller(1991) RS conj. holds
- General case, Bismut-Zhang(1991) RS conj. holds

- Impose relative and absolute boundary conditions for Δ .
- h^E flat, g^M product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^E flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

- Impose relative and absolute boundary conditions for Δ .
- h^E flat, g^M product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^E flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

- Impose relative and absolute boundary conditions for Δ .
- h^E flat, g^M product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^E flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

- Impose relative and absolute boundary conditions for Δ .
- h^E flat, g^M product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^E flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

- Impose relative and absolute boundary conditions for Δ .
- h^E flat, g^M product structure near ∂M : Lott-Rothenberg(1978), Lück(1993), Vishik(1995), Hassell(1998)
- h^E flat, but without assuming product structure near ∂M : Dai-Fang(2000)
- Most general case: Brüning-Ma(2006)
- Gluing formula for analytic torsion: Brüning-Ma(2013)

- (M^m, g^M) a closed oriented Riemannian manifold, m = 2r 1.
- (E, ∇, h^E) a complex flat vector bundle over M.
- Define the Chirality operator by

$$\Gamma := i^r(-1)^{\frac{k(k+1)}{2}} * : \Omega^k(M, E) \to \Omega^{m-k}(M, E),$$

where * is the Hodge star operator. Then $\Gamma^2 = \operatorname{Id}$,

- In general $\nabla^* = \Gamma \nabla' \Gamma$. If ∇ Hermitian, then $\nabla^* = \Gamma \nabla \Gamma$.
- The odd signature operator

$$\mathcal{B} := \Gamma \nabla + \nabla \Gamma : \Omega^{\bullet}(M, E) \to \Omega^{\bullet}(M, E)$$

not necessarily self-adjoint

- (M^m, g^M) a closed oriented Riemannian manifold, m = 2r 1.
- (E, ∇, h^E) a complex flat vector bundle over M.
- Define the Chirality operator by

$$\Gamma := i^r(-1)^{\frac{k(k+1)}{2}} * : \Omega^k(M, E) \to \Omega^{m-k}(M, E),$$

where * is the Hodge star operator. Then $\Gamma^2 = \operatorname{Id}$,

- In general $\nabla^* = \Gamma \nabla' \Gamma$. If ∇ Hermitian, then $\nabla^* = \Gamma \nabla \Gamma$.
- The odd signature operator

$$\mathcal{B} := \Gamma \nabla + \nabla \Gamma : \Omega^{\bullet}(M, E) \to \Omega^{\bullet}(M, E)$$

not necessarily self-adjoint

- (M^m, g^M) a closed oriented Riemannian manifold, m = 2r 1.
- (E, ∇, h^E) a complex flat vector bundle over M.
- Define the Chirality operator by

$$\Gamma:=i^r(-1)^{\frac{k(k+1)}{2}}*:\Omega^k(M,E)\to\Omega^{m-k}(M,E),$$

where * is the Hodge star operator. Then $\Gamma^2 = \operatorname{Id}$,

- In general $\nabla^* = \Gamma \nabla' \Gamma$. If ∇ Hermitian, then $\nabla^* = \Gamma \nabla \Gamma$.
- The odd signature operator

$$\mathcal{B} := \Gamma \nabla + \nabla \Gamma : \Omega^{\bullet}(M, E) \to \Omega^{\bullet}(M, E)$$

not necessarily self-adjoint

- (M^m, g^M) a closed oriented Riemannian manifold, m = 2r 1.
- (E, ∇, h^E) a complex flat vector bundle over M.
- Define the Chirality operator by

$$\Gamma := i^r(-1)^{\frac{k(k+1)}{2}} * : \Omega^k(M, E) \to \Omega^{m-k}(M, E),$$

where * is the Hodge star operator. Then $\Gamma^2 = \operatorname{Id}$,

- In general $\nabla^* = \Gamma \nabla' \Gamma$. If ∇ Hermitian, then $\nabla^* = \Gamma \nabla \Gamma$.
- The odd signature operator

$$\mathcal{B} := \Gamma \nabla + \nabla \Gamma : \Omega^{\bullet}(M, E) \to \Omega^{\bullet}(M, E)$$

not necessarily self-adjoint

- (M^m, g^M) a closed oriented Riemannian manifold, m = 2r 1.
- (E, ∇, h^E) a complex flat vector bundle over M.
- Define the Chirality operator by

$$\Gamma := i^r(-1)^{\frac{k(k+1)}{2}} * : \Omega^k(M, E) \to \Omega^{m-k}(M, E),$$

where * is the Hodge star operator. Then $\Gamma^2 = \operatorname{Id}$,

- In general $\nabla^* = \Gamma \nabla' \Gamma$. If ∇ Hermitian, then $\nabla^* = \Gamma \nabla \Gamma$.
- The odd signature operator

$$\mathcal{B} := \Gamma \nabla + \nabla \Gamma : \Omega^{\bullet}(M, E) \to \Omega^{\bullet}(M, E)$$

not necessarily self-adjoint.

- (M^m, g^M) a closed oriented Riemannian manifold, m = 2r 1.
- (E, ∇, h^E) a complex flat vector bundle over M.
- Define the Chirality operator by

$$\Gamma:=i^r(-1)^{\frac{k(k+1)}{2}}*:\Omega^k(M,E)\to\Omega^{m-k}(M,E),$$

where * is the Hodge star operator. Then $\Gamma^2 = \operatorname{Id}$,

- In general $\nabla^* = \Gamma \nabla' \Gamma$. If ∇ Hermitian, then $\nabla^* = \Gamma \nabla \Gamma$.
- The odd signature operator

$$\mathcal{B} := \Gamma \nabla + \nabla \Gamma : \Omega^{\bullet}(M, E) \to \Omega^{\bullet}(M, E)$$

not necessarily self-adjoint.

Graded determinant of $\mathcal{B}_{\text{even}}$

• Denote by $\Omega^p_+(M,E) = \operatorname{Ker}(\nabla\Gamma) \cap \Omega^p(M,E)$,

$$\Omega^p_-(M,E) = \operatorname{Ker}(\Gamma \nabla) \cap \Omega^p(M,E).$$

Definition(Braverman-Kapper)

The graded determinant of \mathcal{B}_{even} is defined as

$$\mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) := \frac{\mathrm{Det}(\mathcal{B}|_{\Omega^{\mathrm{even}}_+(M,E)})}{\mathrm{Det}(-\mathcal{B}|_{\Omega^{\mathrm{even}}_-(M,E)})}$$

Graded determinant of $\mathcal{B}_{\text{even}}$

• Denote by $\Omega^p_+(M, E) = \operatorname{Ker}(\nabla \Gamma) \cap \Omega^p(M, E)$,

$$\Omega^p_-(M, E) = \operatorname{Ker}(\Gamma \nabla) \cap \Omega^p(M, E).$$

Definition(Braverman-Kapper)

The graded determinant of \mathcal{B}_{even} is defined as

$$\mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) := \frac{\mathrm{Det}(\mathcal{B}|_{\Omega^{\mathrm{even}}_+(M,E)})}{\mathrm{Det}(-\mathcal{B}|_{\Omega^{\mathrm{even}}_-(M,E)})}.$$

• The η -function of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(s, \mathcal{B}_{\text{even}}) = \sum_{\operatorname{Re} \lambda > 0} \lambda^{-s} - \sum_{\operatorname{Re} \lambda < 0} (-\lambda)^{-s}.$$

- $\eta(s, \mathcal{B}_{\text{even}})$ holomorphic for Re s large and admits a meromorphic extension to \mathbb{C} . In particular, s = 0 is a regular point.
- The η -invariant of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(\mathcal{B}_{\text{even}}) = \frac{\eta(0, \mathcal{B}_{\text{even}}) + m_{+}(\mathcal{B}_{\text{even}}) - m_{-}(\mathcal{B}_{\text{even}})}{2},$$

where m_{\pm} are # of eigenvalues on \pm -parts of imaginary axis.

• Denote by $\eta_{\mathrm{trivial}}(g^M)$ the η -invariant for $M \times \mathbb{C}$

• The η -function of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(s, \mathcal{B}_{\text{even}}) = \sum_{\operatorname{Re} \lambda > 0} \lambda^{-s} - \sum_{\operatorname{Re} \lambda < 0} (-\lambda)^{-s}.$$

- $\eta(s, \mathcal{B}_{\text{even}})$ holomorphic for Re s large and admits a meromorphic extension to \mathbb{C} . In particular, s = 0 is a regular point.
- The η -invariant of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(\mathcal{B}_{\text{even}}) = \frac{\eta(0, \mathcal{B}_{\text{even}}) + m_{+}(\mathcal{B}_{\text{even}}) - m_{-}(\mathcal{B}_{\text{even}})}{2}$$

where m_{\pm} are # of eigenvalues on \pm -parts of imaginary axis.

• Denote by $\eta_{\mathrm{trivial}}(g^M)$ the η -invariant for $M \times \mathbb{C}$

• The η -function of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(s, \mathcal{B}_{\text{even}}) = \sum_{\text{Re }\lambda > 0} \lambda^{-s} - \sum_{\text{Re }\lambda < 0} (-\lambda)^{-s}.$$

- $\eta(s, \mathcal{B}_{\text{even}})$ holomorphic for Re s large and admits a meromorphic extension to \mathbb{C} . In particular, s = 0 is a regular point.
- The η -invariant of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(\mathcal{B}_{\text{even}}) = \frac{\eta(0, \mathcal{B}_{\text{even}}) + m_{+}(\mathcal{B}_{\text{even}}) - m_{-}(\mathcal{B}_{\text{even}})}{2},$$

where m_{\pm} are # of eigenvalues on \pm -parts of imaginary axis.

• Denote by $\eta_{\mathrm{trivial}}(g^M)$ the η -invariant for $M \times \mathbb{C}$

• The η -function of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(s, \mathcal{B}_{\text{even}}) = \sum_{\text{Re }\lambda > 0} \lambda^{-s} - \sum_{\text{Re }\lambda < 0} (-\lambda)^{-s}.$$

- $\eta(s, \mathcal{B}_{\text{even}})$ holomorphic for Re s large and admits a meromorphic extension to \mathbb{C} . In particular, s = 0 is a regular point.
- The η -invariant of $\mathcal{B}_{\text{even}}$ is defined as

$$\eta(\mathcal{B}_{\text{even}}) = \frac{\eta(0, \mathcal{B}_{\text{even}}) + m_{+}(\mathcal{B}_{\text{even}}) - m_{-}(\mathcal{B}_{\text{even}})}{2},$$

where m_{\pm} are # of eigenvalues on \pm -parts of imaginary axis.

• Denote by $\eta_{\text{trivial}}(g^M)$ the η -invariant for $M \times \mathbb{C}$

Relation with η -invariant

Proposition

If

$$\xi = \frac{1}{2} \sum_{p=0}^{m} (-1)^{p+1} \cdot p \cdot \log \operatorname{Det} \mathcal{B}^{2}|_{\Omega^{p}(M,E)}$$

then

$$\mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) = e^{\xi - i\pi(\eta(\mathcal{B}_{\mathrm{even}}) + \cdots)}.$$

• In particular, if ∇ is acyclic (i.e. $H^{\bullet}(M, E) = 0$) and Hermitian, then

$$\log \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) = \log \rho^{\mathrm{RS}}(\nabla) - i\pi \eta(\mathcal{B}_{\mathrm{even}}).$$

Relation with η -invariant

Proposition

If

$$\xi = \frac{1}{2} \sum_{p=0}^{m} (-1)^{p+1} \cdot p \cdot \log \operatorname{Det} \mathcal{B}^{2}|_{\Omega^{p}(M,E)}$$

then

$$\mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) = e^{\xi - i\pi(\eta(\mathcal{B}_{\mathrm{even}}) + \cdots)}.$$

• In particular, if ∇ is acyclic (i.e. $H^{\bullet}(M, E) = 0$) and Hermitian, then

$$\log \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) = \log \rho^{\mathrm{RS}}(\nabla) - i\pi \eta(\mathcal{B}_{\mathrm{even}}).$$

Refined analytic torsion

Volume element:

$$\rho_{\Gamma}(\nabla, g^{M}) = (-1)^{R} \cdot [h_{0}] \otimes [h_{1}]^{-1} \otimes \cdots \otimes [h_{r-1}]^{(-1)^{r-1}} \\
\otimes [\Gamma h_{r-1}]^{(-1)^{r}} \otimes [\Gamma h_{r-2}]^{(-1)^{r-1}} \otimes \cdots \otimes [\Gamma h_{0}]^{(-1)}$$

and R an algebraic formula on Betti numbers $\beta_p(M, E)$

Definition & Theorem (Braverman-Kappeler 2007)

The refined analytic torsion defined by

$$\rho_{\mathrm{an}}(\nabla) := \rho_{\Gamma}(\nabla, g^{M}) \cdot \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) \cdot e^{i\pi \cdot \mathrm{rk} E \cdot \eta_{\mathrm{trivial}}(g^{M})}$$

independent of the choice of g^M and a topological invariant.

Refined analytic torsion

Volume element:

$$\rho_{\Gamma}(\nabla, g^{M}) = (-1)^{R} \cdot [h_{0}] \otimes [h_{1}]^{-1} \otimes \cdots \otimes [h_{r-1}]^{(-1)^{r-1}} \\
\otimes [\Gamma h_{r-1}]^{(-1)^{r}} \otimes [\Gamma h_{r-2}]^{(-1)^{r-1}} \otimes \cdots \otimes [\Gamma h_{0}]^{(-1)}$$

and R an algebraic formula on Betti numbers $\beta_p(M, E)$

Definition & Theorem (Braverman-Kappeler 2007)

The refined analytic torsion defined by

$$\rho_{\mathrm{an}}(\nabla) := \rho_{\Gamma}(\nabla, g^{M}) \cdot \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even}}) \cdot e^{i\pi \cdot \mathrm{rk} E \cdot \eta_{\mathrm{trivial}}(g^{M})},$$

independent of the choice of g^M and a topological invariant.

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $|\rho_{an}(\nabla)| = \rho^{RS}(\nabla)$ and $Ph(\rho_{an}(\nabla)) = -\pi \rho(\nabla)$, where $\rho(\nabla) = \eta(\mathcal{B}_{even}) \operatorname{rank} E \cdot \eta_{trivial}(g^M)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $|\rho_{\rm an}(\nabla)| = \rho^{\rm RS}(\nabla)$ and ${\sf Ph}(\rho_{\rm an}(\nabla)) = -\pi \rho(\nabla)$, where $\rho(\nabla) = \eta(\mathcal{B}_{\rm even}) {\rm rank}\, E \cdot \eta_{\rm trivial}(g^M)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $|\rho_{\rm an}(\nabla)| = \rho^{\rm RS}(\nabla)$ and ${\sf Ph}(\rho_{\rm an}(\nabla)) = -\pi \rho(\nabla)$, where $\rho(\nabla) = \eta(\mathcal{B}_{\rm even}) {\rm rank}\, E \cdot \eta_{\rm trivial}(g^M)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

- (Braverman-Kappeler 2007): The refined analytic torsion is closely related to the Farber-Turaev torsion, a refinement of the Reidemeister torsion.
- If E acyclic and ∇ Hermitian, then $|\rho_{\rm an}(\nabla)| = \rho^{\rm RS}(\nabla)$ and ${\sf Ph}(\rho_{\rm an}(\nabla)) = -\pi \rho(\nabla)$, where $\rho(\nabla) = \eta(\mathcal{B}_{\rm even}) {\rm rank}\, E \cdot \eta_{\rm trivial}(g^M)$.
- Refined analytic torsion is an analytic function on the space of representation variety.
- Braverman-Vertman (2013): An alternative derivation of the Bismut-Zhang's formula on the connected components of the complex representation space which contain a unitary point.

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$$\Omega^{ullet}_{\mathrm{rel}}(M,E) \oplus \Omega^{ullet}_{\mathrm{abs}}(M,E), \quad \widetilde{\Gamma} = \begin{pmatrix} 0 & \Gamma \\ \Gamma & 0 \end{pmatrix}, \quad \widetilde{\mathcal{B}}_{\mathrm{even}} := \begin{pmatrix} 0 & \mathcal{B}_{\mathrm{even}} \\ \mathcal{B}_{\mathrm{even}} & 0 \end{pmatrix}$$

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$$\Omega^{\bullet}_{\mathrm{rel}}(M, E) \oplus \Omega^{\bullet}_{\mathrm{abs}}(M, E), \quad \widetilde{\Gamma} = \begin{pmatrix} 0 & \Gamma \\ \Gamma & 0 \end{pmatrix}, \quad \widetilde{\mathcal{B}}_{\mathrm{even}} := \begin{pmatrix} 0 & \mathcal{B}_{\mathrm{even}} \\ \mathcal{B}_{\mathrm{even}} & 0 \end{pmatrix}$$

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$$\Omega^{\bullet}_{\mathrm{rel}}(M, E) \oplus \Omega^{\bullet}_{\mathrm{abs}}(M, E), \quad \widetilde{\Gamma} = \begin{pmatrix} 0 & \Gamma \\ \Gamma & 0 \end{pmatrix}, \quad \widetilde{\mathcal{B}}_{\mathrm{even}} := \begin{pmatrix} 0 & \mathcal{B}_{\mathrm{even}} \\ \mathcal{B}_{\mathrm{even}} & 0 \end{pmatrix}$$

- When $\partial M \neq \phi$, Vertman(2009) and Huang-Lee(2010) in two different independent constructions.
- Braverman-Vertman (2015): A gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point.
- The essential ingredient in the definition of the refined analytic torsion is the twisted de Rham complex with a chirality operator and the odd signature operator associated to the complex.
- Roughly speaking, Vertman considers

$$\Omega^{ullet}_{\mathrm{rel}}(M,E)\oplus\Omega^{ullet}_{\mathrm{abs}}(M,E),\quad \widetilde{\Gamma}=\begin{pmatrix} 0 & \Gamma \ \Gamma & 0 \end{pmatrix},\quad \widetilde{\mathcal{B}}_{\mathrm{even}}:=\begin{pmatrix} 0 & \mathcal{B}_{\mathrm{even}} \ \mathcal{B}_{\mathrm{even}} & 0 \end{pmatrix}$$

Vertman's approach

Lemma

 $\operatorname{Spec}(\widetilde{\mathcal{B}}_{\operatorname{even},\operatorname{rel/abs}})$ is symmetric w.r.t. 0. Hence $\eta\left(\widetilde{\mathcal{B}}_{\operatorname{even},\operatorname{rel/abs}}\right)=0$.

Proof.

$$\begin{pmatrix} 0 & \mathcal{B}_{\text{even}} \\ \mathcal{B}_{\text{even}} & 0 \end{pmatrix} \begin{pmatrix} \phi_{\text{rel}} \\ \psi_{\text{abs}} \end{pmatrix} = \begin{pmatrix} \mathcal{B}_{\text{even}} \psi_{\text{abs}} \\ \mathcal{B}_{\text{even}} \phi_{\text{rel}} \end{pmatrix} = \lambda \begin{pmatrix} \phi_{\text{rel}} \\ \psi_{\text{abs}} \end{pmatrix}.$$

$$\begin{pmatrix} 0 & \mathcal{B}_{\text{even}} \\ \mathcal{B}_{\text{even}} & 0 \end{pmatrix} \begin{pmatrix} \phi_{\text{rel}} \\ -\psi_{\text{abs}} \end{pmatrix} = \begin{pmatrix} -\mathcal{B}_{\text{even}} \psi_{\text{abs}} \\ \mathcal{B}_{\text{even}} \phi_{\text{rel}} \end{pmatrix} = -\lambda \begin{pmatrix} \phi_{\text{rel}} \\ -\psi_{\text{abs}} \end{pmatrix}.$$

Proposition

If ∇ is acyclic and Hermitian, then

$$\log \mathrm{Det}_{\mathrm{gr}} \widetilde{\mathcal{B}}_{\mathrm{even},\mathrm{rel/abs}} = \left(\log \rho_{\mathrm{rel}}^{\mathrm{RS}}(\nabla) + \log \rho_{\mathrm{abs}}^{\mathrm{RS}}(\nabla)\right)$$

Vertman's approach

Lemma

 $\operatorname{Spec}(\widetilde{\mathcal{B}}_{\operatorname{even,rel/abs}})$ is symmetric w.r.t. 0. Hence $\eta\left(\widetilde{\mathcal{B}}_{\operatorname{even,rel/abs}}\right)=0$.

Proof.

$$\begin{pmatrix} 0 & \mathcal{B}_{\text{even}} \\ \mathcal{B}_{\text{even}} & 0 \end{pmatrix} \begin{pmatrix} \phi_{\text{rel}} \\ \psi_{\text{abs}} \end{pmatrix} = \begin{pmatrix} \mathcal{B}_{\text{even}} \psi_{\text{abs}} \\ \mathcal{B}_{\text{even}} \phi_{\text{rel}} \end{pmatrix} = \lambda \begin{pmatrix} \phi_{\text{rel}} \\ \psi_{\text{abs}} \end{pmatrix}.$$

$$\begin{pmatrix} 0 & \mathcal{B}_{\text{even}} \\ \mathcal{B}_{\text{even}} & 0 \end{pmatrix} \begin{pmatrix} \phi_{\text{rel}} \\ -\psi_{\text{abs}} \end{pmatrix} = \begin{pmatrix} -\mathcal{B}_{\text{even}} \psi_{\text{abs}} \\ \mathcal{B}_{\text{even}} \phi_{\text{rel}} \end{pmatrix} = -\lambda \begin{pmatrix} \phi_{\text{rel}} \\ -\psi_{\text{abs}} \end{pmatrix}.$$

Proposition

If abla is acyclic and Hermitian, then

$$\log \operatorname{Det}_{\operatorname{gr}} \widetilde{\mathcal{B}}_{\operatorname{even},\operatorname{rel}/\operatorname{abs}} = \left(\log \rho_{\operatorname{rel}}^{\operatorname{RS}}(\nabla) + \log \rho_{\operatorname{abs}}^{\operatorname{RS}}(\nabla)\right)$$

Vertman's approach

Lemma

 $\operatorname{Spec}(\widetilde{\mathcal{B}}_{\operatorname{even,rel/abs}})$ is symmetric w.r.t. 0. Hence $\eta\left(\widetilde{\mathcal{B}}_{\operatorname{even,rel/abs}}\right)=0$.

Proof.

$$\begin{pmatrix} 0 & \mathcal{B}_{even} \\ \mathcal{B}_{even} & 0 \end{pmatrix} \begin{pmatrix} \phi_{rel} \\ \psi_{abs} \end{pmatrix} = \begin{pmatrix} \mathcal{B}_{even} \psi_{abs} \\ \mathcal{B}_{even} \phi_{rel} \end{pmatrix} = \lambda \begin{pmatrix} \phi_{rel} \\ \psi_{abs} \end{pmatrix}.$$

$$\begin{pmatrix} 0 & \mathcal{B}_{even} \\ \mathcal{B}_{even} & 0 \end{pmatrix} \begin{pmatrix} \phi_{rel} \\ -\psi_{abs} \end{pmatrix} = \begin{pmatrix} -\mathcal{B}_{even} \psi_{abs} \\ \mathcal{B}_{even} \phi_{rel} \end{pmatrix} = -\lambda \begin{pmatrix} \phi_{rel} \\ -\psi_{abs} \end{pmatrix}.$$

Proposition

If ∇ is acyclic and Hermitian, then

$$\log \mathrm{Det}_{\mathrm{gr}} \, \widetilde{\mathcal{B}}_{\mathrm{even}, \mathrm{rel}/\mathrm{abs}} = \left(\log \rho_{\mathrm{rel}}^{\mathrm{RS}}(\nabla) + \log \rho_{\mathrm{abs}}^{\mathrm{RS}}(\nabla)\right)$$

- Now assume $\partial M = Y \neq \phi$ and g^M is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇ .
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B}\phi = 0$, near Y,

$$\phi = \nabla^Y \phi_1 + \phi_2 + du \wedge ((\nabla^Y)^* \psi_1 + \psi_2),$$

where $\phi_2, \psi_2 \in \operatorname{Ker} \Delta_Y$.

We define

$$\mathcal{K} = \{ \phi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}, \quad \Gamma^Y \mathcal{K} = \{ \psi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}.$$

Then

$$\mathcal{K} \cong \operatorname{Im}(\iota^* : H^{\bullet}(M, E) \to H^{\bullet}(Y, E|_Y)), \quad \text{where } \iota : Y \hookrightarrow M$$

$$H^{\bullet}(Y, E|_{Y}) \cong \operatorname{Ker} \Delta_{Y} = \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}$$

- Now assume $\partial M = Y \neq \phi$ and g^M is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇ .
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B}\phi = 0$, near Y,

$$\phi = \nabla^Y \phi_1 + \phi_2 + du \wedge ((\nabla^Y)^* \psi_1 + \psi_2),$$

where $\phi_2, \psi_2 \in \operatorname{Ker} \Delta_Y$.

We define

$$\mathcal{K} = \{\phi_2 \,|\, \nabla \phi = \Gamma \nabla \Gamma \phi = 0\}, \quad \Gamma^Y \mathcal{K} = \{\psi_2 \,|\, \nabla \phi = \Gamma \nabla \Gamma \phi = 0\}.$$

Then

$$\mathcal{K} \cong \operatorname{Im}(\iota^* : H^{\bullet}(M, E) \to H^{\bullet}(Y, E|_Y)), \quad \text{where } \iota : Y \hookrightarrow M$$

$$H^{\bullet}(Y, E|_{Y}) \cong \operatorname{Ker} \Delta_{Y} = \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}$$

- Now assume $\partial M = Y \neq \phi$ and g^M is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇ .
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B}\phi = 0$, near Y,

$$\phi = \nabla^Y \phi_1 + \phi_2 + du \wedge ((\nabla^Y)^* \psi_1 + \psi_2),$$

where $\phi_2, \psi_2 \in \operatorname{Ker} \Delta_Y$.

We define

$$\mathcal{K} = \{ \phi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}, \quad \Gamma^Y \mathcal{K} = \{ \psi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}.$$

Then

$$\mathcal{K} \cong \operatorname{Im}(\iota^* : H^{\bullet}(M, E) \to H^{\bullet}(Y, E|_Y)), \quad \text{where } \iota : Y \hookrightarrow M$$

$$H^{\bullet}(Y, E|_{Y}) \cong \operatorname{Ker} \Delta_{Y} = \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}$$

- Now assume $\partial M = Y \neq \phi$ and g^M is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇ .
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B}\phi = 0$, near Y,

$$\phi = \nabla^Y \phi_1 + \phi_2 + du \wedge ((\nabla^Y)^* \psi_1 + \psi_2),$$

where $\phi_2, \psi_2 \in \operatorname{Ker} \Delta_Y$.

We define

$$\mathcal{K} = \{ \phi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}, \quad \Gamma^Y \mathcal{K} = \{ \psi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}.$$

Then

$$\mathcal{K} \cong \operatorname{Im}(\iota^* : H^{\bullet}(M, E) \to H^{\bullet}(Y, E|_Y)), \quad \text{where } \iota : Y \hookrightarrow M$$

$$H^{\bullet}(Y, E|_{Y}) \cong \operatorname{Ker} \Delta_{Y} = \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}$$

- Now assume $\partial M = Y \neq \phi$ and g^M is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇ .
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B}\phi = 0$, near Y,

$$\phi = \nabla^Y \phi_1 + \phi_2 + du \wedge ((\nabla^Y)^* \psi_1 + \psi_2),$$

where $\phi_2, \psi_2 \in \operatorname{Ker} \Delta_Y$.

We define

$$\mathcal{K} = \{ \phi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}, \quad \Gamma^Y \mathcal{K} = \{ \psi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}.$$

Then

$$\mathcal{K} \cong \operatorname{Im}(\iota^* : H^{\bullet}(M, E) \to H^{\bullet}(Y, E|_Y)), \quad \text{where } \iota : Y \hookrightarrow M$$

$$H^{\bullet}(Y, E|_{Y}) \cong \operatorname{Ker} \Delta_{Y} = \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}$$

- Now assume $\partial M = Y \neq \phi$ and g^M is a product metric near Y.
- Trivialize E along the normal direction near Y by using ∇ .
- Assume ∇ is Hermitian.
- For $\phi \in \Omega^{\bullet}(M, E)$ and $\mathcal{B}\phi = 0$, near Y,

$$\phi = \nabla^Y \phi_1 + \phi_2 + du \wedge ((\nabla^Y)^* \psi_1 + \psi_2),$$

where $\phi_2, \psi_2 \in \operatorname{Ker} \Delta_Y$.

We define

$$\mathcal{K} = \{ \phi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}, \quad \Gamma^{Y} \mathcal{K} = \{ \psi_2 \, | \, \nabla \phi = \Gamma \nabla \Gamma \phi = 0 \}.$$

Then

$$\mathcal{K} \cong \operatorname{Im}(\iota^* : H^{\bullet}(M, E) \to H^{\bullet}(Y, E|_Y)), \quad \text{where } \iota : Y \hookrightarrow M$$

$$H^{\bullet}(Y, E|_{Y}) \cong \operatorname{Ker} \Delta_{Y} = \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}.$$

• Hodge decomposition:

$$\Omega^{\bullet}(Y, E|_{Y}) = \operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}(\nabla^{Y})^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}.$$

• Define the orthognal projections \mathcal{P}_- , \mathcal{P}_+ by

$$\operatorname{Im} \mathcal{P}_{-} = \left(\begin{array}{c} \operatorname{Im} \nabla^{Y} \oplus \mathcal{K} \\ \operatorname{Im} \nabla^{Y} \oplus \mathcal{K} \end{array} \right), \qquad \operatorname{Im} \mathcal{P}_{+} = \left(\begin{array}{c} \operatorname{Im} (\nabla^{Y})^{*} \oplus \Gamma^{Y} \mathcal{K} \\ \operatorname{Im} (\nabla^{Y})^{*} \oplus \Gamma^{Y} \mathcal{K} \end{array} \right)$$

• Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$ by \mathcal{B} with domain

$$Dom(\mathcal{B}_{\mathcal{P}_{-}}) = \{ \psi \in \Omega^{\bullet}(M, E) | \mathcal{P}_{-}(\psi|_{Y}) = 0 \},$$

and similarly, for $\mathcal{B}_{\mathcal{P}_+}$

$$\Gamma^{Y} \mathcal{P}_{-} \Gamma^{Y} = \mathcal{P}_{+}, \quad \Gamma \mathcal{B}_{\mathcal{P}_{-}} \Gamma = \mathcal{B}_{\mathcal{P}_{+}}.$$

• Hodge decomposition:

$$\Omega^{\bullet}(Y, E|_{Y}) = \operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}(\nabla^{Y})^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}.$$

• Define the orthognal projections \mathcal{P}_- , \mathcal{P}_+ by

$$Im\,\mathcal{P}_- = \left(\begin{array}{c} Im\,\nabla^Y \oplus \mathcal{K} \\ Im\,\nabla^Y \oplus \mathcal{K} \end{array} \right), \qquad Im\,\mathcal{P}_+ = \left(\begin{array}{c} Im(\nabla^Y)^* \oplus \Gamma^Y \mathcal{K} \\ Im(\nabla^Y)^* \oplus \Gamma^Y \mathcal{K} \end{array} \right)$$

• Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$ by \mathcal{B} with domain

$$Dom(\mathcal{B}_{\mathcal{P}_{-}}) = \{ \psi \in \Omega^{\bullet}(M, E) | \mathcal{P}_{-}(\psi|_{Y}) = 0 \},$$

and similarly, for $\mathcal{B}_{\mathcal{P}_+}$

$$\Gamma^{Y} \mathcal{P}_{-} \Gamma^{Y} = \mathcal{P}_{+}, \quad \Gamma \mathcal{B}_{\mathcal{P}_{-}} \Gamma = \mathcal{B}_{\mathcal{P}_{+}}.$$

• Hodge decomposition:

$$\Omega^{\bullet}(Y, E|_{Y}) = \operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}(\nabla^{Y})^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}.$$

• Define the orthognal projections \mathcal{P}_- , \mathcal{P}_+ by

$$Im\,\mathcal{P}_- = \left(\begin{array}{c} Im\,\nabla^Y \oplus \mathcal{K} \\ Im\,\nabla^Y \oplus \mathcal{K} \end{array} \right), \qquad Im\,\mathcal{P}_+ = \left(\begin{array}{c} Im(\nabla^Y)^* \oplus \Gamma^Y \mathcal{K} \\ Im(\nabla^Y)^* \oplus \Gamma^Y \mathcal{K} \end{array} \right)$$

• Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$ by \mathcal{B} with domain

$$Dom(\mathcal{B}_{\mathcal{P}_{-}}) = \{ \psi \in \Omega^{\bullet}(M, E) | \mathcal{P}_{-}(\psi|_{Y}) = 0 \},$$

and similarly, for $\mathcal{B}_{\mathcal{P}_+}$.

$$\Gamma^{Y} \mathcal{P}_{-} \Gamma^{Y} = \mathcal{P}_{+}, \quad \Gamma \mathcal{B}_{\mathcal{P}_{-}} \Gamma = \mathcal{B}_{\mathcal{P}_{+}}.$$

• Hodge decomposition:

$$\Omega^{\bullet}(Y, E|_{Y}) = \operatorname{Im} \nabla^{Y} \oplus \operatorname{Im}(\nabla^{Y})^{*} \oplus \mathcal{K} \oplus \Gamma^{Y} \mathcal{K}.$$

• Define the orthognal projections \mathcal{P}_- , \mathcal{P}_+ by

$$Im\,\mathcal{P}_- = \left(\begin{array}{c} Im\,\nabla^Y \oplus \mathcal{K} \\ Im\,\nabla^Y \oplus \mathcal{K} \end{array}\right), \qquad Im\,\mathcal{P}_+ = \left(\begin{array}{c} Im(\nabla^Y)^* \oplus \Gamma^Y \mathcal{K} \\ Im(\nabla^Y)^* \oplus \Gamma^Y \mathcal{K} \end{array}\right)$$

• Define the realization $\mathcal{B}_{\mathcal{P}_{-}}$ by \mathcal{B} with domain

$$Dom(\mathcal{B}_{\mathcal{P}_{-}}) = \{ \psi \in \Omega^{\bullet}(M, E) | \mathcal{P}_{-}(\psi|_{Y}) = 0 \},$$

and similarly, for $\mathcal{B}_{\mathcal{P}_+}$.

$$\Gamma^{Y} \mathcal{P}_{-} \Gamma^{Y} = \mathcal{P}_{+}, \quad \Gamma \mathcal{B}_{\mathcal{P}_{-}} \Gamma = \mathcal{B}_{\mathcal{P}_{+}}.$$

A cochain complex with a chirality operator Γ

 $\bullet \ \, {\sf Cochain \ complexes} \, \left(\Omega^{\bullet}_{\widetilde{\mathcal{P}}_{0/1}}(M,E),\nabla,\Gamma\right):$

$$0 \to \Omega^0_{\mathcal{P}_{\mp}}(M, E) \stackrel{\nabla}{\to} \Omega^1_{\mathcal{P}_{\pm}}(M, E) \stackrel{\nabla}{\to} \cdots \stackrel{\nabla}{\to} \Omega^m_{\mathcal{P}_{\pm}}(M, E) \to 0,$$

where

$$\Omega^q_{\mathcal{P}_{\pm}}(M,E) := \left\{ \psi \in \Omega^q(M,E) \middle| \mathcal{P}_{\pm} \left(\left(\mathcal{B}^l \psi \right) \middle|_{Y} \right) = 0, \quad l = 0, 1, 2, \cdots \right\}$$

Proposition

- $\bullet \ H^q_{\mathcal{P}_-}(M,E) := H^q(\Omega^{\bullet}_{\mathcal{P}_-}(M,E),\nabla) \cong \operatorname{Ker} \mathcal{B}^2_{q,\mathcal{P}_-} = \operatorname{Ker} \mathcal{B}^2_{q,\operatorname{rel}} \cong H^q(M,Y,E),$
- $\bullet \ H^q_{\mathcal{P}_+}(M,E) := H^q(\Omega^{\bullet}_{\mathcal{P}_+}(M,E),\nabla) \cong \operatorname{Ker} \mathcal{B}^2_{q,\mathcal{P}_+} \ = \ \operatorname{Ker} \mathcal{B}^2_{q,\operatorname{abs}} \cong \ H^q(M,E).$

A cochain complex with a chirality operator Γ

 $\bullet \ \ \mathsf{Cochain} \ \mathsf{complexes} \ \left(\Omega^{\bullet}_{\widetilde{\mathcal{P}}_{0/1}}(M,E), \nabla, \Gamma\right):$

$$0 \to \Omega^0_{\mathcal{P}_{\mp}}(M, E) \stackrel{\nabla}{\to} \Omega^1_{\mathcal{P}_{\pm}}(M, E) \stackrel{\nabla}{\to} \cdots \stackrel{\nabla}{\to} \Omega^m_{\mathcal{P}_{\pm}}(M, E) \to 0,$$

where

$$\Omega^q_{\mathcal{P}_{\pm}}(M,E) \,:=\, \{\psi \in \Omega^q(M,E) | \mathcal{P}_{\pm}\left(\left(\mathcal{B}^l\psi\right)|_{Y}\right) \,=\, 0, \quad l=0,1,2,\cdots\}$$

Proposition

- $\bullet \ H^q_{\mathcal{P}_-}(M,E) := H^q(\Omega^{\bullet}_{\mathcal{P}_-}(M,E),\nabla) \cong \operatorname{Ker} \mathcal{B}^2_{q,\mathcal{P}_-} = \operatorname{Ker} \mathcal{B}^2_{q,\operatorname{rel}} \cong H^q(M,Y,E),$
- $\bullet \ H^q_{\mathcal{P}_+}(M,E) := H^q(\Omega^{\bullet}_{\mathcal{P}_+}(M,E),\nabla) \cong \operatorname{Ker} \mathcal{B}^2_{q,\mathcal{P}_+} \ = \ \operatorname{Ker} \mathcal{B}^2_{q,\operatorname{abs}} \cong \ H^q(M,E).$

A cochain complex with a chirality operator Γ

ullet Cochain complexes $\left(\Omega^{ullet}_{\widetilde{\mathcal{P}}_{0/1}}(M,E),
abla, \Gamma
ight)$:

$$0 \to \Omega^0_{\mathcal{P}_{\mp}}(M, E) \stackrel{\nabla}{\to} \Omega^1_{\mathcal{P}_{\pm}}(M, E) \stackrel{\nabla}{\to} \cdots \stackrel{\nabla}{\to} \Omega^m_{\mathcal{P}_{\pm}}(M, E) \to 0,$$

where

$$\Omega^q_{\mathcal{P}_{\pm}}(M,E) \,:=\, \{\psi \in \Omega^q(M,E) | \mathcal{P}_{\pm}\left(\left(\mathcal{B}^l\psi\right)|_{Y}\right) \,=\, 0, \quad l=0,1,2,\cdots\}$$

Proposition

- $\bullet \ H^q_{\mathcal{P}_-}(M,E) := H^q(\Omega^{\bullet}_{\mathcal{P}_-}(M,E),\nabla) \cong \operatorname{Ker} \mathcal{B}^2_{q,\mathcal{P}_-} = \operatorname{Ker} \mathcal{B}^2_{q,\operatorname{rel}} \cong H^q(M,Y,E),$
- $\bullet \ H^q_{\mathcal{P}_+}(M,E) := H^q(\Omega^{\bullet}_{\mathcal{P}_+}(M,E),\nabla) \cong \operatorname{Ker} \mathcal{B}^2_{q,\mathcal{P}_+} \ = \ \operatorname{Ker} \mathcal{B}^2_{q,\operatorname{abs}} \cong \ H^q(M,E).$

Refined analytic torsion on manifolds with boundary

Definition & Theorem (— Y. Lee)

Under above assumptions. The refined analytic torsion defined by

$$\rho_{\mathrm{an},\mathcal{P}_{-}}(\nabla) := \rho_{\Gamma,\widetilde{\mathcal{P}}_{0}}(\nabla,g^{M}) \cdot \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even},\mathcal{P}_{-}}) \cdot e^{i\pi \cdot \mathrm{rk}\,E \cdot \eta_{\mathrm{trivial},\mathcal{P}_{-}}(g^{M})},$$

is independent of the choice of g^M in the interior of M.

ullet If abla is acyclic and Hermitian, then

$$\begin{split} &\log \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even},\mathcal{P}_{-}}) + \log \mathrm{Det}_{\mathrm{gr}}(-\mathcal{B}_{\mathrm{even},\mathcal{P}_{+}}) \\ &= \left(\log \rho_{\mathrm{rel}}^{\mathrm{RS}}(\nabla) + \log \rho_{\mathrm{abs}}^{\mathrm{RS}}(\nabla)\right) - i\pi \left(\eta \left(\mathcal{B}_{\mathrm{even},\mathcal{P}_{-}}\right) - \eta \left(\mathcal{B}_{\mathrm{even},\mathcal{P}_{+}}\right)\right) \end{split}$$

Refined analytic torsion on manifolds with boundary

Definition & Theorem (— Y. Lee)

Under above assumptions. The refined analytic torsion defined by

$$\rho_{\mathrm{an},\mathcal{P}_{-}}(\nabla) := \rho_{\Gamma,\widetilde{\mathcal{P}}_{0}}(\nabla,g^{M}) \cdot \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even},\mathcal{P}_{-}}) \cdot e^{i\pi \cdot \mathrm{rk} \, E \cdot \eta_{\mathrm{trivial},\mathcal{P}_{-}}(g^{M})},$$

is independent of the choice of g^M in the interior of M.

If ∇ is acyclic and Hermitian, then

$$\begin{split} &\log \mathrm{Det}_{\mathrm{gr}}(\mathcal{B}_{\mathrm{even},\mathcal{P}_{-}}) + \log \mathrm{Det}_{\mathrm{gr}}(-\mathcal{B}_{\mathrm{even},\mathcal{P}_{+}}) \\ &= \left(\log \rho_{\mathrm{rel}}^{\mathrm{RS}}(\nabla) + \log \rho_{\mathrm{abs}}^{\mathrm{RS}}(\nabla)\right) - i\pi \left(\eta \left(\mathcal{B}_{\mathrm{even},\mathcal{P}_{-}}\right) - \eta \left(\mathcal{B}_{\mathrm{even},\mathcal{P}_{+}}\right)\right) \end{split}$$

Comparison theorem for refined analytic torsions

- $\widehat{\rho}_{an,\mathcal{P}_+}(\nabla)$ refined analytic torsion defined by $-\Gamma$ instead of Γ .
- The fusion isomorphism

$$\mu: \det H^{\bullet}_{\widetilde{\mathcal{P}}_{0}}(M, E) \otimes \det H^{\bullet}_{\widetilde{\mathcal{P}}_{1}}(M, E) \rightarrow \det (H^{\bullet}_{\mathrm{rel}}(M, E) \oplus H^{\bullet}_{\mathrm{abs}}(M, E))$$

Theorem(— Y. Lee)

Under above assumptions. Then:

$$\mu\left(\rho_{\mathrm{an},\mathcal{P}_{-}}(\nabla)\otimes\widehat{\rho}_{\mathrm{an},\mathcal{P}_{+}}(\nabla)\right) = \pm\rho_{\mathrm{an},\mathrm{rel/abs}}(\nabla)\cdot e^{\frac{i\pi}{2}\operatorname{rk}E\cdot\chi(M,\mathcal{C})}$$

Comparison theorem for refined analytic torsions

- $\widehat{\rho}_{an,\mathcal{P}_+}(\nabla)$ refined analytic torsion defined by $-\Gamma$ instead of Γ .
- The fusion isomorphism

$$\mu: \det H^{\bullet}_{\widetilde{\mathcal{P}}_{0}}(M,E) \otimes \det H^{\bullet}_{\widetilde{\mathcal{P}}_{1}}(M,E) \rightarrow \det (H^{\bullet}_{\mathrm{rel}}(M,E) \oplus H^{\bullet}_{\mathrm{abs}}(M,E))$$

Theorem(— Y. Lee)

Under above assumptions. Then:

$$\mu\left(\rho_{\mathrm{an},\mathcal{P}_{-}}(\nabla)\otimes\widehat{\rho}_{\mathrm{an},\mathcal{P}_{+}}(\nabla)\right) = \pm\rho_{\mathrm{an,rel/abs}}(\nabla)\cdot e^{\frac{i\pi}{2}\operatorname{rk}E\cdot\chi(M,\mathcal{C})}$$

Comparison theorem for refined analytic torsions

- $\widehat{\rho}_{an,\mathcal{P}_+}(\nabla)$ refined analytic torsion defined by $-\Gamma$ instead of Γ .
- The fusion isomorphism

$$\mu: \det H^{\bullet}_{\widetilde{\mathcal{P}}_{0}}(M,E) \otimes \det H^{\bullet}_{\widetilde{\mathcal{P}}_{1}}(M,E) \rightarrow \det (H^{\bullet}_{\mathrm{rel}}(M,E) \oplus H^{\bullet}_{\mathrm{abs}}(M,E))$$

Theorem(— Y. Lee)

Under above assumptions. Then:

$$\mu\left(\rho_{\mathrm{an},\mathcal{P}_{-}}(\nabla)\otimes\widehat{\rho}_{\mathrm{an},\mathcal{P}_{+}}(\nabla)\right) = \pm \rho_{\mathrm{an},\mathrm{rel/abs}}\left(\nabla\right)\cdot e^{\frac{i\pi}{2}\operatorname{rk}E\cdot\chi(M,\mathcal{C})}.$$

Thank you!