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How curved is a curve?

Consider a smooth curve in the plane

x : R 3 t 7→ xt ∈ R
2

with I velocity vector vt = ẋt = dx
dt and

I acceleration vector at = v̇t = d2x
dt2 .

+
_

.

.

Assume that the curve has constant speed, i.e. the length of the

velocity vector is constant ‖vt‖ :=
√

r2
t + s2

t ≡ 1, if vt = (rt , st ).
This means that the acceleration vector has no component in
direction of the curve, only orthogonal to it.
It’s lengths measures how curved the curve is, this is the curvature:

Kt = ±‖at‖

(We take it to be + or minus − depending on whether the curve is
bent to the left or right.)
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How curved is a surface (in 3-dim space)?
At each point p of a surface S we have a plane tangent to S and a
normal vector n. For each tangent vector v of length 1 we consider
the plane Pv that is spanned by the normal vector n and v.

The intersection Pv with the surface S is a
curve which has a certain curvature Kv at
t = 0 with the sign depending on which side
of the tangent plane the curve lies. It mea-
sures how curved the surface S is in direc-
tion of v.
At each p ∈ S we have a map

K : circle in the tangent plane at point p → R

v 7→ Kv

Since the circle is compact, this map attains a

maximum K1 and a minimum K2.

These are the principal curvatures of the surface S at the point p.
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Mean curvature and Gauss curvature of a surface
Given the two functions K1 and K2, we can form their mean and
their product,

H := 1
2 (K1 + K2) and K := K1 · K2

Mean curvature Gauss curvature

Examples

I Parts of a plane are flat, Gauss and mean curvature are zero.
I Cylinders and cones have Gauss curvature zero (since one

principal curvature is zero).

The mean curvature of a cylinder of ra-
dius r is 1/2r and for the cone it de-
creases when moving away from the tip.

I Spheres of radius r have mean curvature 1/r and Gauss
curvature 1/r2, because the great circles have curvature 1/r .
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Minimal surfaces
Minimal surfaces are surfaces of mean curvature zero.
[Sophie Germain, 1831, when studying elasticity]

The catenoid is an example. It is
obtained by rotating the catenary
c(t) = r cosh t

r around the z-axis.

Minimal surfaces minimise area and appear when soap is used:

But: Surfaces with the same mean curvature can be very different,
geometrically (e.g. plane and catenoid).
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Gauss curvature and ‘intrinsic geometry’

Theorem (Theorema egregium, C. F. Gauss, 1828)
If a surface S can be developed onto another surface Ŝ, then their
Gauss curvatures

K = K1 · K2 and K̂ = K̂1 · K̂2

are the same.
Or, K does only depend on the intrinsic geometry of the surface.

What does this mean?
I developing = bending without stretching
I intrinsic geometry: Two points on a surface S have a certain

distance, defined by the length of the shortest curve in S
joining them. If two surfaces can be mapped onto each other
without changing the distances between points then hey have
the same Gauss curvature.
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Examples

I Cylinders and cones can be unrolled into the plane.
I Spheres of radius r have constant Gauss curvature 1/r2.

They cannot be mapped onto the plane without distortion.
I The hyperboloid H =

{
(x, y, z) ∈ R3 | x2 + y2 − z2 = 1

}
has

negative Gauss curvature (depending on the z coordinate).

Note that the hyper-
boloid contains straight
lines. However, it can-
not be developed to the
plane without stretching.

I Minimal surfaces have Gauss curvature ≤ 0.
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Intrinsic geometry

I The intrinsic geometry of a surface is determined by the
distance of two surface points when joined by a shortest curve
in the surface. The length of a curve is given by its length as a
curve in 3-dim space.

I We can consider this distance function regardless of being
induced by the 3-dim ambient space. This is the intrinsic
geometry.

I The Gauss curvature tells us when two surfaces have the
same intrinsic geometry (e.g. plane and cylinder).

I Gauss’ student B. Riemann [“Über die Hypothesen welche
der Geometrie zugrunde liegen”, 1868] generalised Gauss’
idea of intrinsic geometry to arbitrary dimensions without
using an external space{ Riemannian manifold.

How can we measure the intrinsic geometry without referring to an
external space?
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Triangles
Theorem (Theorema elegantissimum, C. F. Gauss, 1828)
Let S be a (simply connected) surface with Gauss curvature K and
let ∆ be a geodesic triangle in S with angles α, β and γ.Then

α + β + γ = π +

∫
∆

K dS.

It also holds K(p) = lim
∆→p

α+β+γ−π
area(∆)

, with p ∈ ∆.

E.g., for the sphere of radius one: α + β + γ − π = area(∆)
[T. Harriot, 1603].
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Consequences
I Only by measuring distances and angles in triangles, without

referring to a ‘surrounding space’ we are able to determine if
we live on a sphere, a plane or something else. But we would
not be able to decide whether we live on a cylinder or on the
plane.

I This is particularly relevant in physics and cosmology as we
have no knowledge of a ‘surrounding space’. But we are able
to determine the geometry of the universe with the help of
light rays. They run on shortest curves and thus determine the
intrinsic geometry. For example, we could measure angles in
cosmic triangles.

I Since the sphere has non zero Gauss curvature, there are no
maps of the earth that show distances appropriately, i.e.
without distortion.
Which distortion is acceptable for which purpose is studied by
map makers.
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Map projections

Depending on the purpose parts of the the sphere can be mapped
onto a part of the plane by
I preserving angle (‘conformal map’)
I preserving area

Both together is not possible:

Proposition
A map between two surfaces preserves the distance of points
if and only if it preserves the angles between curves and the area
of pieces of the surface.
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Conformal to the plane: Stereographic projection

I Fix a point N on the sphere (e.g. the north pole) and a plane
tangent to the sphere at the opposite point (or through the
equator).

I Project each point P , N on the
sphere to the plane by
intersecting the ray ~NP with the
plane at Q

N

P

Q

I This map is conformal (i.e., preserve angles)
I Meridians are mapped to straight lines and lines of the same

latitude are mapped to circles (if projected from a pole).
I Regions closed to the pole are enlarged under this projection.
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Area preserving to a cylinder: Archimedes projection

I Project from a line ` through two antipodes (e.g. the poles) to
a cylinder with axis `.

P Q

In formulae:

sphere \ semi circle → cylinder → plane cos φ cos λ
cos φ sin λ

sin φ

 7→

 cos λ
sin λ
sin φ

 7→

(
λ

sin φ

)

λ = longitude, φ = latidude.

I This map is area preserving.
I Meridians are mapped to

parallel straight lines (not
angle preserving).
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Conformal to a cylinder: Mercator projection

I Project from the centre of the sphere to a cylinder
(‘gnomonic projection’) followed by a logarithmic
function in order to make it conformal.

P

Q

sphere \ s/c → cylinder → plane → plane cos φ cos λ
cos φ sin λ

sin φ

 7→

 cos λ
sin λ
tan φ

 7→

(
λ

tan φ

)
→

(
λ

ln tan(π4 + φ
2 )

)

I The Mercator projection is conformal.
I Curves that have a constant angle

with the meridians (‘loxodromes’) are
mapped onto straight lines.
This makes this projection useful for
maritime navigation.
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