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Holonomy groups The holonomy group of a linear connection

Holonomy group of a linear connection

@ Let M be a smooth manifold and V a linear connection.

~> Parallel displacement along y : [0, 1] — M, piecewise smooth,

P, T,

where X(t) is the solution to the ODE V) X(t) = 0 with X(0) = Xo.

(0)M3 Xo I;> X(1) € Ty(1)M

For p € M" we define the (Connected) Holonomy group
Hol (M, %) := {P, 1 7(0) = ¥(1) = p. ~ (]} < GL(T,M) = GL(n, R)

and its Lie algebra hol,(M, V).

conjugated in GL(n,R)
Hol,(M.V) X Holg(M,V)
@ If V= LC of a metric g on M, then Holp(M, g) c O(T,M, g) = O(t, s).
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@ Forp,qeM:



Holonomy groups The holonomy group of a linear connection

Holonomy and curvature

@ Recall that V and ¥, are related via

Vi Xl = 2 [P, (X 1o

@ This implies for the curvature R of V: Let X, Y € T,M and A; the loop
along the parallelogram at p with sides VtX and VtY. Then

R(X. Y)lp = lim — (soﬂt Id7,m).

Hence, R(X,Y)lp € holy(M, V) forall X, Y € T,M.
@ One has to collect curvature all over M to get all of hol,(M, V):

Theorem (Ambrose-Singer ’53)
If M is connected, then bhol,(M, V) is spanned by

[P} o R(X.Y) 0Py € GL(T,M) | ¥(0) = p and X, Y € T,(;)M }




Holonomy groups Classification problem and Berger algebras

Classification: Which groups occur as holonomy groups?

@ Hano/Ozeki '56: Any closed G c GL(n,R)! But V might have torsion.
@ Conditions on the torsion TV of V,e.g. T =0or TY € A°TM
~» algebraic constraints on the holonomy representation. Why?

R, = P, o R(Py().Py()) o Py € N(T;M)® GL(T,M)
Now, if TV = 0, then R and hence R, satisify the Bianchi identity:
Ry (X, Y)Z+ R, (Y, Z)X +R,(Z,X)Y =0.
= bhol,(M, V) is a Berger algebra: For g C gl(n, R) define the g-module:
K(g) = { ReNR" ®g| R(x,y)z+ R(y,z)x + R(z,X)y = 0}

g is a Berger algebra :< g = span{R(x,y) | R € K(g),x,y € R"}. |

TV = 0: Ambrose-Singer = bol,(M, V) is a Berger algebra.

Classification of irreducible Berger algebras
@ g C so(p, q) [Berger '55], g c gl(n,R) [Schwachhdfer/Merkulov "99] .
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Holonomy groups Holonomy and geometric structure

Holonomy and geometry 1: Parallel sections

Let V be a “geometric” vector bundle over M and V a connection on V
“induced” by a connection V on TM

(e.g. tangent bunde, tensor bundles, spinor bundle) . Then:

{ve Vol Hop(M.V)(v)=v} = {gel(V)|Vp=0]
V b =Py (v)
independent of y with y(0) = p

e Hol,(M,V) c SL(n,R) ©weQ"M: Vw =0.
e Hol,(M?%,V) c GL(k,C) & J € End(TM) with J?> = —id: VJ = 0.
e Holp(M,V) cO(p,q) & metric g € [(@?TM): Vg = 0.



Holonomy groups Holonomy and geometric structure

Holonomy and geometry 2: Parallel distributions

{Vc T,M| Holp(M,V)(V) c vV} = {Distribution V ¢ TM| ,(V) c V|
V s Vi=P,V)

Py(V)CV & Vx:[(V)— [(V), inparticular, V is integrable.
This leads to:

Decomposition of a semi-Riemannian manifold (M, g)

If V c ToMis Hol(M, g)-invariant, non-degenerate (V N V* = {0}),
i.e. T,M = V @ V* invariant decomposition, then

locally

(M.g) "= (N.h) x (N*, h™)

with V() ~ T,N(+) as Hol,(M, g)-module.




Holonomy groups Riemannian holonomy

De Rham-Wu decomposition

Complete decomposition of T,M into Hol,(M, g)—modules:
ToM = @f‘zo Vi, with V trivial and V; indecomposable for i > 0

non-degenerate and only de-
generate invariant subspaces
Theorem (de Rham '52, Wu ’64)

Let (M, g) be semi-Riemannian, complete and simply connected.
Then there isa k > 0:

globally
(M.g) " =

(M1,Q1)X...X(Mk,gk)

@ (M, gi) complete and 1-connected,
o (M;, g;) flat or with indecomposable holonomy representation,
@ Hol,(M, g) = Holp,(My, g1) X ... x Holp, (Mk, gk ).

Manifold of special holonomy: Indecomposable holonomy < SO(p, q).



Holonomy groups Riemannian holonomy
Holonomy of Riemannian manifolds (M, g)
Positive definite metric = indecomposable = irreducible
= Holp(M, g) =~ product of irreducible holonomy groups.
Berger’s list ('55)

Let (M, g) be simply-connected, irreducible, non locally symmetric. Then

Holp(M. g) %"

SO(n) [U(3)[SU(3)| Sp(3) [Sp(1) - Sp(5)|Ge|Spin(7)
generic| Kéhler |hyper Kédhler| quat. Kéhler
par. field none J J1 , JQ, J3 <J1 , Jg, J3> (1)3 w4
Ric — #0 0 0 c-g 0 0
dim{Vy = 0}
1 0 0 2 a+1 0 1 1
par. spinor

@ Complete mf’s: Calabi (SU, Sp), LeBrun (gK), Bryant (G2, Spin(7)).
@ Compact mf’s: Yau (SU), Beauville, Mukai (Sp), LeBrun-Salamon
(aK), Joyce (Gg, Spin(7)).



Holonomy groups of Lorentzian manifolds Special Lorentzian holonomy

Special Lorentzian holonomy

Wu-Decomposition for a Lorentz manifold (M, g)
Let (M, g) be a complete, simply-connected Lorentzian manifold.

(M,g) = (M,g)x (Ni,g1)x...x (N, gk)
T Riemannian, irreducible or flat
Lorentzian manifold which is either
Q (R,-dt?), or

@ irreducible, i.e. Holp(M, g) = SOo(1, n)
[Olmos/Di Scala '00], or

Q ‘ indecomposbable, non-irreducible ‘

l.e., an indecomposable Lorentzian manifold has special holonomy

< its holonomy admits a degenerate invariant subspace
— it admits a parallel null line.



Holonomy groups of Lorentzian manifolds Special Lorentzian holonomy

Algebraic preliminaries

We have to consider H c SOg(1, n — 1) indecomposable, non-irreducible,
i.e. AV c R H(V) c V such that

L :=V n V*+ # {0} is a H-invariant, totally null line in R*""

= H C Isoso1,n-1y(L) = (RT xSO(n-2))=R"2
a vt 0 acR,
Change basis of R"™': b c 0 A -v | verm2
0 08 -a )| Aeso(n-2)
The orthogonal part is reductive:
§:=Plopah= 3 & ¢ (Levi — decomposition)
—— ——
centre

= [g, g] semisimple



Holonomy groups of Lorentzian manifolds Special Lorentzian holonomy

Parallel null line and screen bundle

Let (M, g) be a Lorentzian manifold with
H := Hol,(M, g) c Iso(L) = (R* x SO(n - 2)) x R"2.
@ L defines afiltration £ c £+ c TM with parallel null line £ and parallel
null hypersurface £+.

@ If Hc SO(n - 2) = R"2, then T parallel null vector field (Brinkmann
wave).

@ What about G := prgg(s_0)HOI (M, 9) & SO(n —2)?

Proposition (TL *03)

The vector bundle (“screen bundle”) S = £+ /L with covarant derivative
VoLV] == [VuV] satsifies prso(n_pyHOl (M, g) = Holp(S, V¥) .

@ Hence, algebraic structures for G corrspond to geometric structures
on S, e.g. product structure, parallel complex structure etc.

@ Which G’s can occur?



Holonomy groups of Lorentzian manifolds Classification and Applications

Classification 1: b C is04,(1,5-1)(L) indecomposable

Theorem (Berard-Bergery/lkemakhen '96)
Forh with g := pr.n-2)b = 3 ® [a, 9] there are the following cases:

R cph- Typel: bh=(R&g)=<R"2

Typell: b= a<RM2,
e(A) V! 0 Aey
TypelIl:Elgo:s—»R:b:{[ 0 A+B -v ] Beg }
0 0 —-p(A) )| veR™2

R'™2¢bh— TypelV: p:3» R for0 <k <n-2:

0 y(A)Y vt 0

sllo 00 o | RS
0 0 A+B -v v e Rr-2-k
0 0 0 0

Note: Groups of coupled type Ill and IV can be non-closed, first examples
in Berard-Bergery/lkemakhen ‘96
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Holonomy groups of Lorentzian manifolds Classification and Applications

Classification Il: ) C is0.,(1,n-1)(L) indecomposable

Theorem (TL '03)

IfY is a Berger algebra (e.g. a Lorentzian holonomy algebra), then
g := Projs,(n-2)b is a Riemannian holonomy algebra

(and hence known to be a product of algebras from Berger’s list).

Idea of the proof: For g c so(n) define weak curvature endomorphisms:
B(g) := {Q € Hom(R", g) 1(Q(x)y, z) + (Q(y)z,x) + (Q(2)x,y) = 0}.

g is a weak Berger algebra :&= g = span{Q(x) | Qe B(g).x€ R”}

[TL’02] If b C is050(1,n-1)(L) is an indecomposable Berger algebra, then
g 1= Projs(n-2)(b) is a weak Berger algebra. Classify them = result. O

Theorem (Berard-Bergery-lkemakhen ‘96, Boubel 00, TL '03, Galaev '05)

If g := projs,(n-2)b is @ Riemannian holonomy algebra, then there is a
Lorentzian metric h with hol,(h) = b.




Holonomy groups of Lorentzian manifolds Classification and Applications

Parallel spinors on a Lorentzian spin manifold (M, g)
Let (Z, Vz) be the spinor bundle over (M, g).

Assume: d¢ € I'(X) with VZ¢ = 0 a parallel spinor field.

—= 3 causal vector field X, € [(TM) : VX, = 0. Two cases:
9(Xp, X,) <0 ¢ (M,g) = (R,—dt?) ., Riemannian mf
9(Xp. X)) =0 : (M,g) = (M,g) with parallel spinor

T

indecomposable with parallel spinor
Theorem (TL '03)

(M, g) indecomposable Lorentzian spin with parallel spinor. Then
Hol,(M, g) = G = R"2 where G is a product of the following groups:

{1, SU(p), Sp(q). Gz, Spin(7)
dim{Vo =0} : 2k 2 g+1 1 1

This generalizes the result for n < 11 in [Bryant 99].



Holonomy groups of Lorentzian manifolds Classification and Applications

Lorentzian Einstein manifolds

Theorem (Galaev-TL '06)

The holonomy of an indecomposable non-irreducible Lorentzian Einstein
manifold is uncoupled, i.e.

(R x G) < R"2, or

0 —
HOIp(M7 g) - { G ~ RH—Q

with a Riemannian holonomy group G. Furthermore:

o If HoIS(M, g) = G=R"2, then Ric = 0 and G = Holonomy of
Ricci-flat Riemannian manifold, i.e. G = product of SO(n), SU(p),
Sp(q), G2, and Spin(7).




Holonomy groups of Lorentzian manifolds

Coordinates

Two ways of constructing metrics

Theorem (Brinkmann’25, Walker’'49)

For a Lorentzian manifold (M, h) with parallel null line L there are

coordinates (X, Y. ..., Yn-2,2): & spans L, (0% %, o ay‘%) span £+,
and
n-2 n-2
@ h=2dxdz + uidy; dz + fdz? + Z gidyi dy;
i=1 ij=1
= ¢z =0z

family of 1-forms family of Riem. metrics

: 6gi‘_5,'_ 0
with 22 = 5 = 0, f € C®(M).

@ 1 parallel null vector field % =0.

Note: Holp(gz) C prson)Holp(h), but in general # (see Galaev's
examples on next slides)



Holonomy groups of Lorentzian manifolds Two ways of constructing metrics

Manifolds of uncoupled holonomy type

Construction method for the uncoupled types

Let (N"-2, g) be a Riemannian manifold and fe C*(R? x N) “sufficiently
generic”. Then M = R? x N with the metric h := 2dxdz + fdz® + g is
indecomposable, non irreducible with holonomy

of

(R™ x Hol(N,g)) <R™2 or Hol(N,g)=R"2, if - =0

Example: (M, h) pp-wave :< g = flat metric.
[TL’01]: An indecomposable Lorentzian mfd. has Abelian holonomy R"2
— itis a pp-wave.

@ E.g. Symmetric spaces (Cahen-Wallach spaces) < f is a quadratic
polynomial in the y;’s.

@ Plane waves: f is a quadratic polynomial in the y;’s with coefficients
depending on z [Hull-Figueroa O’Farrill-Papadopoulos *02].
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Holonomy groups of Lorentzian manifolds Two ways of constructing metrics

Coupled types — Proof of Theorem [Galaev '05]

For a Riemannian holonomy algebra g, fix Q, ..., Qn, a basis of B(g), and
define polynomials on R"":

N

n—

N
Ui(yt, ... Yn-2,2) = Z Z
A: :

<QA (ex)er e;>)’k)’/Z

Theorem (Galaev '05)

For any indecomposable h € so(1,n — 1), for which g = projs,(n-2)(b) is a
Riemannian holonomy algebra, there exists an analytic f : R" — R such
that the following Lorentzian metric has holonomy §:

n-2 n-2
h = 2dxdz + fdz? + 2 Z uidy; dz+ Z ay?,
i=1 k=1
family of 1-forms on R" flat metric




Holonomy groups of Lorentzian manifolds Open problems

Open Problems

Study Lorentzian manifolds with special holonomy |

@ Find global examples of metrics with prescribed holonomy, which are
globally hyperbolic with complete or compact Cauchy surface
(cylinder constructions in [Bar-Gauduchon-Moroianu '05] and
[Baum-Mdller *06])

@ Describe the geometric structures corresponding to the coupled types
[l and IV.

© Describe indecomposable, non-irreducible Lorentzian homogeneous
spaces and their holonomy.

© Study further spinor field equations for these manifolds (Killing
spinors, generalised Killing spinors).

Thank you!
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