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Holonomy groups The holonomy group of a linear connection

Holonomy group of a linear connection

Let M be a smooth manifold and ∇ a linear connection.

{ Parallel displacement along γ : [0, 1]→ M, piecewise smooth,

Pγ : Tγ(0)M 3 X0
∼
7−→ X(1) ∈ Tγ(1)M

where X(t) is the solution to the ODE ∇γ̇(t)X(t) ≡ 0 with X(0) = X0.

For p ∈ Mn we define the (Connected) Holonomy group

Hol 0
p (M,∇) :=

{
Pγ | γ(0) = γ(1) = p, γ ∼ {p}

}
⊂ GL(TpM) ' GL(n,R)

and its Lie algebra holp(M,∇).

For p, q ∈ M:
conjugated in GL(n,R)

↓
Holp(M,∇) ∼ Holq(M,∇)

If ∇ = LC of a metric g on M, then Holp(M, g) ⊂ O(TpM, g) = O(t , s).
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Holonomy groups The holonomy group of a linear connection

Holonomy and curvature

Recall that ∇ and Pγ are related via

∇γ̇(0)X |p =
d
dt

[
P−1
γ|[0,t]

(X(γ(t))
]
|t=0.

This implies for the curvature R of ∇: Let X ,Y ∈ TpM and λt the loop
along the parallelogram at p with sides

√
tX and

√
tY . Then

R(X ,Y)|p = lim
t→0

1
t

(
Pλt − IdTpM

)
.

Hence, R(X ,Y)|p ∈ holp(M,∇) for all X ,Y ∈ TpM.
One has to collect curvature all over M to get all of holp(M,∇):

Theorem (Ambrose-Singer ’53)

If M is connected, then holp(M,∇) is spanned by{
P−1
γ ◦ R(X ,Y) ◦ Pγ ∈ GL(TpM) | γ(0) = p and X ,Y ∈ Tγ(1)M

}
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Holonomy groups Classification problem and Berger algebras

Classification: Which groups occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ GL(n,R)! But ∇ might have torsion.
Conditions on the torsion T∇ of ∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM
{ algebraic constraints on the holonomy representation. Why?

Rγ := P−1
γ ◦ R

(
Pγ(.),Pγ(.)

)
◦ Pγ ∈ Λ2(T∗pM) ⊗ GL(TpM)

Now, if T∇ = 0, then R and hence Rγ satisify the Bianchi identity:

Rγ(X ,Y)Z + Rγ(Y ,Z)X + Rγ(Z ,X)Y = 0.

=⇒ holp(M,∇) is a Berger algebra: For g ⊂ gl(n,R) define the g-module:

K(g) :=
{

R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0
}

g is a Berger algebra :⇐⇒ g = span
{
R(x, y) | R ∈ K(g), x, y ∈ Rn}.

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of irreducible Berger algebras
g ⊂ so(p, q) [Berger ’55], g ⊂ gl(n,R) [Schwachhöfer/Merkulov ’99] .
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Holonomy groups Holonomy and geometric structure

Holonomy and geometry 1: Parallel sections

Let V be a “geometric” vector bundle over M and ∇ a connection on V
“induced” by a connection ∇ on TM
(e.g. tangent bunde, tensor bundles, spinor bundle) . Then:

{
v ∈ Vp | Holp(M,∇)(v) = v

}
'

{
ϕ ∈ Γ(V) | ∇ϕ = 0

}
v 7→ ϕ := Pγ(v)

independent of γ with γ(0) = p

• Holp(M,∇) ⊂ SL(n,R) ⇔ ω ∈ ΩnM : ∇ω = 0.

• Holp(M2k ,∇) ⊂ GL(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q) ⇔ metric g ∈ Γ(�2TM): ∇g = 0.
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Holonomy groups Holonomy and geometric structure

Holonomy and geometry 2: Parallel distributions

{
V ⊂ TpM | Holp(M,∇)(V) ⊂ V

}
'

{
DistributionV ⊂ TM | Pγ(V) ⊂ V

}
V 7→ V := Pγ(V)

Pγ(V) ⊂ V ⇐⇒ ∇X : Γ(V)→ Γ(V), in particular,V is integrable.

This leads to:

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM is Hol(M, g)-invariant, non-degenerate (V ∩ V⊥ = {0}),
i.e. TpM = V ⊕ V⊥ invariant decomposition, then

(M, g)
locally
' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.
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Holonomy groups Riemannian holonomy

De Rham–Wu decomposition

Complete decomposition of TpM into Holp(M, g)–modules:
TpM = ⊕k

i=0Vk , with V0 trivial and Vi indecomposable︸                ︷︷                ︸
non-degenerate and only de-
generate invariant subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)

Let (M, g) be semi-Riemannian, complete and simply connected.
Then there is a k > 0:

(M, g)
globally
' (M1, g1) × . . . × (Mk , gk )

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Manifold of special holonomy: Indecomposable holonomy $ SO(p, q).

6/18



Holonomy groups Riemannian holonomy

Holonomy of Riemannian manifolds (M, g)

Positive definite metric =⇒ indecomposable = irreducible
=⇒ Holp(M, g) ' product of irreducible holonomy groups.

Berger’s list (’55)

Let (M, g) be simply-connected, irreducible, non locally symmetric. Then

Holp(M, g)
O(n)
∼

SO(n) U( n
2 ) SU( n

2 ) Sp( n
4 ) Sp(1) · Sp( n

4 ) G2 Spin(7)
generic Kähler hyper Kähler quat. Kähler

par. field none J J1, J2, J3 〈J1, J2, J3〉 ω3 ω4

Ric — , 0 0 0 c · g 0 0
dim{∇ϕ = 0}

↑
par. spinor

0 0 2 n
4 + 1 0 1 1

Complete mf’s: Calabi (SU, Sp), LeBrun (qK), Bryant (G2, Spin(7)).
Compact mf’s: Yau (SU), Beauville, Mukai (Sp), LeBrun-Salamon
(qK), Joyce (G2, Spin(7)).
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Holonomy groups of Lorentzian manifolds Special Lorentzian holonomy

Special Lorentzian holonomy

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, simply-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸                          ︷︷                          ︸
Riemannian, irreducible or flat↑

Lorentzian manifold which is either
1 (R,−dt2), or
2 irreducible, i.e. Holp(M, g) = SO0(1, n)

[Olmos/Di Scala ’00], or
3 indecomposbable, non-irreducible

I.e., an indecomposable Lorentzian manifold has special holonomy
⇐⇒ its holonomy admits a degenerate invariant subspace
⇐⇒ it admits a parallel null line.
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Holonomy groups of Lorentzian manifolds Special Lorentzian holonomy

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n − 1) indecomposable, non-irreducible,
i.e. ∃ V ⊂ R1,n−1 : H(V) ⊂ V such that

L :=V ∩ V⊥ , {0} is a H-invariant, totally null line in R1,n−1

⇒ H ⊂ IsoSO0(1,n−1)(L) = (R+ × SO(n − 2)) n Rn−2

Change basis of R1,n−1: h ⊂


 a v t 0

0 A −v
0 0t −a


∣∣∣∣∣∣∣∣∣

a ∈ R,
v ∈ Rn−2,

A ∈ so(n − 2)


The orthogonal part is reductive:

g := prso(n−2)h = z︸︷︷︸
centre

⊕ g
′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)
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Holonomy groups of Lorentzian manifolds Special Lorentzian holonomy

Parallel null line and screen bundle

Let (M, g) be a Lorentzian manifold with
H := Holp(M, g) ⊂ Iso(L) = (R+ × SO(n − 2)) × Rn−2.

L defines a filtration L ⊂ L⊥ ⊂ TM with parallel null line L and parallel
null hypersurface L⊥.

If H ⊂ SO(n − 2) n Rn−2, then ∃ parallel null vector field (Brinkmann
wave).

What about G := prSO(n−2)Holp(M, g) $ SO(n − 2)?

Proposition (TL ’03)

The vector bundle (“screen bundle”) S = L⊥/L with covarant derivative
∇SU[V ] := [∇UV ] satsifies prSO(n−2)Holp(M, g) = Holp(S,∇S) .

Hence, algebraic structures for G corrspond to geometric structures
on S, e.g. product structure, parallel complex structure etc.

Which G’s can occur?
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Holonomy groups of Lorentzian manifolds Classification and Applications

Classification 1: h ⊂ isoso(1,n−1)(L) indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h with g := prso(n−2)h = z ⊕ [g, g] there are the following cases:

Rn−2 ⊂ h – Type I: h = (R ⊕ g) n Rn−2.
Type II: h = g n Rn−2.

Type III: ∃ ϕ : z� R: h =


 ϕ(A) v t 0

0 A + B −v
0 0 −ϕ(A)


∣∣∣∣∣∣∣∣

A ∈ z
B ∈ g′

v ∈ Rn−2


Rn−2 1 h – Type IV: ∃ ϕ : z� Rk , for 0 < k < n − 2:

h =




0 ψ(A)t v t 0
0 0 0 −ψ(A)
0 0 A + B −v
0 0 0 0


∣∣∣∣∣∣∣∣∣∣∣

A ∈ z
B ∈ g′

v ∈ Rn−2−k


Note: Groups of coupled type III and IV can be non-closed, first examples
in Berard-Bergery/Ikemakhen ’96
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Holonomy groups of Lorentzian manifolds Classification and Applications

Classification II: h ⊂ isoso(1,n−1)(L) indecomposable

Theorem (TL ’03)

If h is a Berger algebra (e.g. a Lorentzian holonomy algebra), then
g := projso(n−2)h is a Riemannian holonomy algebra
(and hence known to be a product of algebras from Berger’s list).

Idea of the proof: For g ⊂ so(n) define weak curvature endomorphisms:

B(g) :=
{
Q ∈ Hom(Rn, g) | 〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0

}
.

g is a weak Berger algebra :⇐⇒ g = span
{
Q(x) | Q ∈ B(g), x ∈ Rn

}
[TL ’02] If h ⊂ isoso(1,n−1)(L) is an indecomposable Berger algebra, then
g := projso(n−2)(h) is a weak Berger algebra. Classify them =⇒ result. �

Theorem (Berard-Bergery-Ikemakhen ’96, Boubel ’00, TL ’03, Galaev ’05)

If g := projso(n−2)h is a Riemannian holonomy algebra, then there is a
Lorentzian metric h with holp(h) = h.
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Holonomy groups of Lorentzian manifolds Classification and Applications

Parallel spinors on a Lorentzian spin manifold (M, g)

Let
(
Σ,∇Σ

)
be the spinor bundle over (M, g).

Assume: ∃ϕ ∈ Γ(Σ) with ∇Σϕ = 0 a parallel spinor field.
=⇒ ∃ causal vector field Xϕ ∈ Γ(TM) : ∇Xϕ = 0. Two cases:

g(Xϕ,Xϕ) < 0 : (M, g) = (R,−dt2)

g(Xϕ,Xϕ) = 0 : (M, g) = (M, g)
×

Riemannian mf.
with parallel spinor

↑
indecomposable with parallel spinor

Theorem (TL ’03)

(M, g) indecomposable Lorentzian spin with parallel spinor. Then
Holp(M, g) = G n Rn−2 where G is a product of the following groups:

{1}, SU(p), Sp(q), G2, Spin(7)

dim{∇ϕ = 0} : 2[k/2] 2 q + 1 1 1

This generalizes the result for n ≤ 11 in [Bryant ’99].
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Holonomy groups of Lorentzian manifolds Classification and Applications

Lorentzian Einstein manifolds

Theorem (Galaev-TL ’06)

The holonomy of an indecomposable non-irreducible Lorentzian Einstein
manifold is uncoupled, i.e.

Hol0p(M, g) =

{
(R+ × G) n Rn−2, or
G n Rn−2

with a Riemannian holonomy group G. Furthermore:

If Hol0p(M, g) = G n Rn−2, then Ric = 0 and G = Holonomy of
Ricci-flat Riemannian manifold, i.e. G = product of SO(n), SU(p),
Sp(q), G2, and Spin(7).
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Holonomy groups of Lorentzian manifolds Two ways of constructing metrics

Coordinates

Theorem (Brinkmann’25, Walker’49)

For a Lorentzian manifold (M, h) with parallel null line L there are
coordinates (x, y1, . . . , yn−2, z): ∂

∂x spans L ,
(
∂
∂x ,

∂
∂y1
, . . . , ∂

∂yn−2

)
span L⊥,

and

h = 2 dxdz +
n−2∑
i=1

uidyi︸    ︷︷    ︸
= φz

family of 1-forms

dz + fdz2 +
n−2∑
i,j=1

gijdyi dyj︸          ︷︷          ︸
= gz

family of Riem. metrics

,

with ∂gij
∂x = ∂ui

∂x = 0, f ∈ C∞(M).

∃ parallel null vector field ⇐⇒ ∂f
∂x = 0.

Note: Holp(gz) ⊂ prSO(n)Holp(h), but in general , (see Galaev’s
examples on next slides)
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Holonomy groups of Lorentzian manifolds Two ways of constructing metrics

Manifolds of uncoupled holonomy type

Construction method for the uncoupled types

Let (Nn−2, g) be a Riemannian manifold and f∈ C∞(R2 × N) “sufficiently
generic”. Then M = R2 × N with the metric h := 2dxdz + fdz2 + g is
indecomposable, non irreducible with holonomy

(R+ × Hol(N, g)) n Rn−2 or Hol(N, g) n Rn−2, if
∂f
∂x

= 0

Example: (M, h) pp-wave :⇐⇒ g ≡ flat metric.
[TL ’01]: An indecomposable Lorentzian mfd. has Abelian holonomy Rn−2

⇐⇒ it is a pp-wave.

E.g. Symmetric spaces (Cahen-Wallach spaces)⇐⇒ f is a quadratic
polynomial in the yi ’s.
Plane waves: f is a quadratic polynomial in the yi ’s with coefficients
depending on z [Hull-Figueroa O’Farrill-Papadopoulos ’02].
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Holonomy groups of Lorentzian manifolds Two ways of constructing metrics

Coupled types — Proof of Theorem [Galaev ’05]

For a Riemannian holonomy algebra g, fix Q1, . . . ,QN, a basis of B(g), and
define polynomials on Rn−1:

ui(y1, . . . , yn−2, z) :=
N∑

A=1

n−2∑
k ,l=1

1
(A − 1)!

〈
QA (ek )el , ei

〉
yk ylzA .

Theorem (Galaev ’05)

For any indecomposable h ⊂ so(1, n − 1)L , for which g = projso(n−2)(h) is a
Riemannian holonomy algebra, there exists an analytic f : Rn → R such
that the following Lorentzian metric has holonomy h:

h = 2dxdz + fdz2 + 2
n−2∑
i=1

uidyi︸    ︷︷    ︸
family of 1-forms on Rn

dz +
n−2∑
k=1

dy2
k︸  ︷︷  ︸

flat metric

,
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Holonomy groups of Lorentzian manifolds Open problems

Open Problems

Study Lorentzian manifolds with special holonomy !
1 Find global examples of metrics with prescribed holonomy, which are

globally hyperbolic with complete or compact Cauchy surface
(cylinder constructions in [Bär-Gauduchon-Moroianu ’05] and
[Baum-Müller ’06])

2 Describe the geometric structures corresponding to the coupled types
III and IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous
spaces and their holonomy.

4 Study further spinor field equations for these manifolds (Killing
spinors, generalised Killing spinors).

Thank you!
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