Pseudo-Riemannian cones and their holonomy

Thomas Leistner

(University of Hamburg)

Talk at the Leibniz University Hannover December 11, 2008

Outline

- Pseudo-Riemannian cones
- Definition
- Gallot's Theorem
- Geometric structures
- 2 How to generalise Gallot's theorem, and why?
 - Killing spinors
 - Holonomy groups
- 3 Examples

Results

- Decomposable cones
- Para-Kähler cones
- Lorentzian cones
- Application

What is a metric cone?

Base: (M, g) a (pseudo-)Riemannian manifold.

Cone: Cartesian product:

$$\hat{M} = \mathbb{R}_+ \times M \ni (r, x)$$

with the (pseudo-)Riemannian cone metric

$$\hat{g} = \pm dr^2 + r^2 g,$$

denoted by $C^{\pm}(M)$.

Example

 $C^+(S^n_{round}) = \mathbb{R}^{n+1}$ and $C^-(H^n_{hyp}) = \mathbb{R}^{1,n}$, i.e. flat (Minkowski-) space.

Gallot's Theorem

The converse is also true:

If $C^{\pm}(M)$ is flat, then (M, g) has constant sectional curvature ± 1 .

Proof: Curvature of the cone is given by $\partial_r \, \lrcorner \, \hat{R} = 0$, and

$$\hat{R}(X, Y)Z = R(X, Y)Z \mp \left[g(Y, Z)X - g(X, Z)Y\right] \quad \forall X, Y, Z \in TM$$

Theorem (S. Gallot, 1979)

Let (M, g) be a Riemannian manifold that is geodesically complete. If $C^+(M)$ is a Riemannian product, then it is flat and (M, g) has constant sectional curvature 1. Moreover, if M is 1-connected, then $M = S^n$.

Cones and geometric structures

Base (M,g)		Cone $C^{\pm}(M)$
constant curvature ±1	⇔	flat
Einstein, Ric = $\pm (n - 1)g$	⇔	Ricci-flat, $\hat{Ric} = 0$
$\frac{Riemannian}{Lorentzian} Sasaki$ Killing vector field ξ of lengths ±1 s. th. $\Phi := \nabla \xi$ satisfies: • $\Phi^2 = -\text{Id} \pm g(\xi, .)\xi,$ • $\pm (\nabla_X \Phi)(Y) = g(X, Y)\xi - g(Y, \xi)X.$ et		$C^{\pm}(M)$ is Kähler Complex structure J s. th. $\hat{\nabla}J = 0$ and $J^{*}\hat{g} = \hat{g}$.
	¢	$\xi \mapsto J$ defined by • $J\partial_r = \xi$ and $J\xi = -\partial_r$,
	etc.	• $\mathbf{J} _{\xi^{\perp}\cap\partial_{r}^{\perp}}=-\Phi _{\xi^{\perp}\cap\partial_{r}^{\perp}}$

Killing spinors

Definition

A spinor field φ on a pseudo-Riemannian spin manifold is a Killing spinor to the Killing number $\lambda \in \mathbb{C}$ if $\nabla_X \varphi = \lambda X \cdot \varphi$.

A manifold with Killing spinor is Einstein with $Ric = 4\lambda^2(n-1)g$.

(M,g) has a Killing spinor to the Killing no. $\lambda = \sqrt{\pm 1/2}$ \Leftrightarrow $C^{\pm}(M)$ admits a parallel spinor φ , i.e. $\hat{\nabla}_X \varphi = 0$.

Theorem (C. Bär '93, "Bär-correspondence")

Let M be a complete Riemannian spin manifold with a real Killing spinor. Then M is S^n , or a compact Einstein space with one of the following structures: Sasaki, 3-Sasaki, 6-dim. nearly-Kähler, or nearly parallel G_2 .

Manifolds with real Killing spinors

Proof.

M has real Killing spinor $\implies C^+(M)$ has a parallel spinor.

Gallot's Thm. $\implies C^+(M)$ is flat (and $M = S^n$), or not a product , i.e. the cone has an irreducible holonomy group.

Berger's classification of irreducible holonomy groups \implies

$Hol(C^+(M))$	$C^+(M)$	М
SU(n/2)	Calabi-Yau	Einstein-Sasaki
Sp(n/4)	hyper-Kähler	3-Sasaki
G ₂	parallel stable 3-form	6-dim nearly-Kähler
Spin(7)	parallel stable 4-form	nearly parallel G ₂

Holonomy groups of pseudo-Riemannian manifolds

 $Hol_{p}(M,g) :=$ group of parallel transports along loops starting in $p \in M$.

 $Hol_p \sim Hol_q$, $Hol_p(M, g)$ is a Lie group in $O(T_pM) \simeq O(r, s)$, represented on $T_pM \simeq \mathbb{R}^n$

- decomposable ↔ ∃ a non-degenerate invariant subspace V. In this case ℝⁿ = V ⊕ V[⊥] invariant decomposition. Or
- indecomposable ↔ no non-degenerate invariant subspace, but possibly a degenerate one. No decomposition, as L ∩ L[⊥] ≠ {0}.
 In fact,

$$\mathbb{R}^n = V_1 \oplus \ldots \oplus V_k$$

with V_i trivial or indecomposable representations of Hol.

Example

•
$$(M,g)$$
 flat \Rightarrow Hol $(M,g) = \Pi_1(M)$.

•
$$Hol(S^n) = Hol(H^n) = SO(n).$$

Holonomy principle and decomposition

$$\mathsf{Hol}\,(\mathsf{M}_1\times\mathsf{M}_2,g_1\oplus g_2)\ =\ \mathsf{Hol}(\mathsf{M}_1,g_1)\times\mathsf{Hol}(\mathsf{M}_2,g_2)\ \mathsf{on}\ \mathsf{T}_{p_1}\mathsf{M}_1\oplus\mathsf{T}_{p_2}\mathsf{M}_2$$

Holonomy principle

$$\begin{cases} \text{hol} - \text{inv. subspaces in } T_p M \\ V \mapsto \mathcal{V} := \mathcal{P}_{\gamma}(V) \end{cases}$$

Theorem (de Rham '52, Wu '64)

Let (M, g) be pseudo-Riemannian, complete and 1-connected. Then there is a k > 0: $(M, g) \stackrel{globally}{\simeq} (M_1, g_1) \times \ldots \times (M_k, g_k)$ with

- (M_i, g_i) complete and 1-connected,
- (M_i, g_i) flat or with indecomposable holonomy representation,
- $Hol_{\rho}(M,g) \simeq Hol_{\rho_1}(M_1,g_1) \times \ldots \times Hol_{\rho_k}(M_k,g_k).$

Holonomy groups

Cones and holonomy

For Riemannian manifolds: irreducible = indecomposable.

Gallot's Theorem (rephrased)

If the holonomy group of the cone $C^+(M)$ over a complete Riemannian manifold M admits an invariant subspace, then the cone is flat, etc ...

[Alekseevsky, Cortés, Galaev, L: arXiv:0707.3063, to appear in *Crelle's Journal*]: For (M, g) with indefinite metric we give generalisations of this in the following situations:

- $Hol(C^+(M))$ is decomposable, i.e. has a non-degenerate invariant subspace, i.e. the cone is a product.
- Output: Provide the second second
- $C^+(M)$ is Lorentzian with a hol-invariant subspace.

Example: Gallot's Thm is false without completeness

Consider Riemannian manifolds (M_1, g_1) and (M_2, g_2) , build another Riemannian manifold "doubly warped product")

$$\left(M:=\left(0,\frac{\pi}{2}\right)\times M_1\times M_2,g=ds^2+\cos^2(s)g_1+\sin^2(s)g_2\right).$$

This metric is not complete, its cone is isometric to a product of cones

$$C^{+}(M_{1}) \times C^{+}(M_{2}) \stackrel{isometric}{\simeq} C^{+}(M_{1} \times M_{2})$$
$$\left((r_{1}, x), (r_{2}, y)\right) \mapsto \left(r := \sqrt{r_{1}^{2} + r_{2}^{2}}, s := \arctan \frac{r_{2}}{r_{1}}, x, y\right)$$

Hence, the cone is decomposable but not flat (provided that the M_i 's do not have constant curvature 1).

(

Example: Gallot's Thm is false for indefinite metrics

Consider a complete Riemannian manifold (N, h), not of constant sectional curvature 1. Form a Lorentzian manifold

$$(M = \mathbb{R} imes N, g = -ds^2 + \cosh^2(s)h,)$$

which is still complete. Consider the cone $C^+(M)$ and the vector field

$$V := \cosh^2(s)\partial_r - \frac{1}{r}\sinh(s)\cosh(s)\partial_s$$

of length $\cosh^2(s) > 0$. Then $\mathbb{R} \cdot V \oplus TN \subset T\hat{M}$ defines a non-degenerate holonomy-invariant subspace, i.e. the cone is a product but not flat.

$$\hat{\nabla}_{\partial_r} V = 0, \quad \hat{\nabla}_{\partial_s} V = \tanh(s) V, \quad \hat{\nabla}_X V = \frac{1}{r} X$$
$$\hat{\nabla}_{\partial_r} Y = \frac{1}{r} Y, \quad \hat{\nabla}_{\partial_s} Y = \tanh(s) Y \quad \hat{\nabla}_X Y = \nabla^h_X Y - rh(X, Y) V$$

Local description of decomposable cones

Theorem 1

Let (M, g) be a pseudo-Riemannian manifold of signature (r, s), not necessarily complete, with decomposable cone $C^+(M)$. Then

- $Hol^0(M,g) = SO_0(r,s)$ (as for the sphere).
- ② ∃ an open end dense subset $M^0 \subset M$ that is locally isometric to $U = (a, b) \times N_1 \times N_2$ with either

$$(a,b) \subset \left(0,rac{\pi}{2}
ight)$$
 and $g|_U = ds^2 + \cos^2(s)g_1 + \sin^2(s)g_2$ or
 $(a,b) \subset \mathbb{R}_+$ and $g|_U = -ds^2 + \cosh^2(s)g_1 + \sinh^2(s)g_2$

where (N_1, g_1) and (N_2, g_2) are pseudo-Riemannian manifolds of appropriate signatures.

Sketch of proof

 $C^+(M)$ decomposable $\Rightarrow \exists \alpha \in C^{\infty}(\hat{M})$ and $S \in \Gamma(TM)$:

$$\begin{array}{rcl} T\hat{M} &=& V^1 \quad \oplus^{\perp} \quad V^2 \\ \partial_r &=& X_1 \quad \oplus \quad X_2 \quad = \quad \left[\alpha\partial_r + S\right] \oplus \left[(1-\alpha)\partial_r - S\right] \\ \end{array}$$

Then $\langle S, S \rangle = \alpha (1 - \alpha), \langle X_1, X_1 \rangle = \alpha, \langle X_2, X_2 \rangle = (1 - \alpha)$

Over $M^0 := \{ \alpha \neq 0, 1 \}$, $T\hat{M}$ decomposes into involutive non-degenerate distributions,

$$T\hat{M} = \mathbb{R} \cdot \partial_r \oplus^{\perp} \mathbb{R} \cdot S \oplus^{\perp} X_1^{\perp} \oplus^{\perp} X_2^{\perp}.$$

 $\nabla r \partial_r = \text{Id} \implies \{\partial_r \notin V^{\pm}\} \text{ dense } \implies M^0 \text{ dense in } M.$ Finally, α is a function only of the flow parameter of S, say $\alpha = \alpha(s)$ and

$$\begin{array}{rcl} \text{for } 0 < \alpha < 1 & : & \alpha' = -2\sqrt{\alpha - \alpha^2} & \Rightarrow & \alpha(s) = \cos^2(s + c) \\ \text{for } 1 < \alpha & : & \alpha' = 2\sqrt{\alpha^2 - \alpha} & \Rightarrow & \alpha(s) = \cosh^2(s + c) \end{array}$$

Decomposable cones over a complete base

Theorem 2

Let (M, g) be a complete pseudo-Riemannian manifold with decomposable cone. Then \exists a dense $M^0 \subset M$ such that every connected component of M^0 is isometric to either

- a manifold with constant sectional curvature 1 (i.e. the cone is flat), or
- 2 $N = \mathbb{R}_+ \times N_1 \times N_2$ with metric

$$h=-ds^2+\cosh^2(s)g_1+\sinh^2(s)g_2,$$

where (N_i, g_i) are pseudo-Riemannian manifolds and (N_2, g_2) has constant curvature -1 or dim ≤ 2 . Here the cone is a product of cones.

Idea of proof: Use previous theorem and study geodesics. Completeness excludes the cos / sin-case.

Thomas Leistner (UH)

Decomposable cones over a complete and compact base

Theorem 3

Let (M, g) be a complete and compact pseudo-Riemannian manifold with decomposable cone. Then the cone is flat, and hence, (M, g) has constant sectional curvature 1.

Idea of proof: *M* compact and complete $\Rightarrow \alpha \in [0, 1]$, i.e. *S* space-like. Use original proof of Gallot.

Corollary

The cone over a simply-connected, compact manifold with complete indefinite metric is indecomposable.

(Indefinite space forms are never compact.)

Para-Kähler cones

Assume now that that the cone admits an invariant degenerate distribution and an invariant complement, i.e $T\hat{M} = V^+ \oplus^* V^-$ with V^+ , V^- invariant and totally null.

This corresponds to a para-Kähler structure J on $(\hat{M}, \hat{g}) :=$ like Kähler, $\hat{\nabla}J = 0$, but with $J^2 = \text{Id}$ and $J^*\hat{g} = -\hat{g}$. \hat{g} has neutral signature (n, n) and $V^{\pm} = \text{Eig}_{\pm 1}(J)$.

Theorem 4

Let (M, g) be a pseudo-Riemannian manifold of signature (n, n - 1). $C^+(M)$ admits a para-Kähler structure $\iff (M, g)$ admits a para-Sasaki structure.

Definition

A para-Sasaki structure on a pseudo-Riemannian manifold of signature (n, n - 1) is a time-like, geodesic Killing vector field ξ such that $\Phi = \nabla \xi$ satisfies $\Phi^2 = \text{Id} + g(.,\xi)\xi$ and $(\nabla_X \Phi)Y = -g(X,Y)\xi + g(\xi,Y)X$.

Lorentzian cones

For Lorentzian cones, only one situation remains: indecomposable, but with invariant degenerate subspace. Here, the cone admits a bundle of parallel null lines in $T\hat{M}$. For cones, this implies that, locally, the cone has a parallel null vector field.

Theorem 5

Let $C^+(M)$ be a Lorentzian cone over a manifold M with either

- a negative definite metric g, or
- a Lorentzian metric of signature (+...+-),

and assume that $C^+(M)$ admits a parallel null vector field. Then there is a dense $M^0 \subset M$ that is locally isometric to

$$-ds^2 + e^{-2s}h$$

for a definite metric h.

Application: Lorentzian manifolds with real Killing spinors

Corollary (Bohle '99, Baum '99)

Let (M, g) be a geodesically complete Lorentzian manifold with real Killing spinor to the Killing number 1/2. Then (M, g) is either

- of constant sectional curvature 1, or
- isometric to (ℝ × N, −ds² + cosh²(s)h) with a Riemannian manifold (N, h) with real Killing spinors,

or $M \setminus (hyper surface)$ is isometric to a union of warped products of the form $(\mathbb{R} \times N, -ds^2 + e^{2s}h)$ with a Riemannian (N, h) with parallel spinor.

Proof with our results: *M* has real Killing spinor $\Rightarrow \hat{M}$ has parallel spinor φ and hence a parallel vector field V_{φ} with $\langle V_{\varphi}, V_{\varphi} \rangle \leq 0$. $\langle V_{\varphi}, V_{\varphi} \rangle < 0$: apply Theorem 2. $\langle V_{\varphi}, V_{\varphi} \rangle = 0$: apply Theorem 5 and see that $Hol(M, g) = Hol(N, h) \ltimes \mathbb{R}^n$ which implies that (N, h) has a parallel spinor.

Thank you very much!