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The notion of holonomy groups is based on

Parallel translation
Let γ : [0, 1] → R2 be a curve,
and X : [0, 1] → R2 a vector
field along this curve, then X(t)
is parallel translated along γ if

X ′ :=
dX
dt
≡ 0.

If we parallel translate a vector to every point in R2 we obtain a
vector field Y on R2 that is constant, i.e

DV Y ≡ 0, for all vectors V ,

DY =
(
∂iY j

)
denotes the Jacobian matrix of Y

and DV Y its multiplication with the vector V .
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But: We live on something curved and thus cannot use rulers.

Instead, use a pendulum:
If we travel along a curve
on the sphere, the oscil-
lation plane of the pendu-
lum is parallel transported
along the curve.

This works on every curved surface if we assume that there is a
force orthogonal to the surface that pulls the pendulum down.
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Let S be a surface (e.g. the sphere), γ : [0, 1]→ S a curve and
X : [0, 1]→ R3 a vector field along γ tangential to S.
X is parallel translated along γ if

(1) X is tangential to S: 〈X , γ〉 ≡ 0

(2) because of (1), X cannot be constant but it changes only in
directions orthogonal to the surface, i.e. the projection of
X ′ := dX

dt onto the tangent plane Tγ(t)S vanishes:

X ′ − 〈X ′, γ〉γ ≡ 0

Now (1) implies that

0 ≡ d
dt 〈X , γ〉 = 〈X

′, γ〉+ 〈X , γ′〉

and (2) then becomes

(∗) X ′ + 〈X , γ′〉γ ≡ 0

Hence, X is parallel transported along γ iff X satisfies the system
(∗) of linear ODE’s.
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The parallel transport is a linear isomorphism between the tangent
spaces

Pγ : Tγ(0)S → Tγ(1)S

X0 → X(1)

where X(t) is the solution to (∗) with initial condition X(0) = X0.

Pγ is a linear isometry, because for X ,Y parallel along γ we get

d
dt 〈X ,Y〉 = 〈X

′,Y〉+ 〈X ,Y ′〉
(∗)
= −〈X , γ′〉〈Y , γ〉 − 〈Y , γ′〉〈X , γ〉

(1)
= 0,

and thus 〈X(t),Y(t)〉 ≡ 〈X0,Y0〉 for all t , in particular for t = 1.
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Define the holonomy group of S at a point x ∈ S:

Holx := {Pγ | γ a loop with γ(0) = γ(1) = x} ⊂ GL(TxS)

Note that Holx does not depend on x.
As the Pγ’s are isometries (and assuming that S is oriented), Hol is
a subgroup of the group of rotations of the tangent plane at x,
which is SO(2).

For the sphere we get
Hol = SO(2):

The same for the torus:
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In the same way we generalise the derivative of smooth maps
R2 → R2 to surfaces obtaining a linear connection ∇ by projecting
DV Y to the tangent plane:

∇V Y |x := projTx S (DV Y |x) .

We say that a vector field Y on S is (covariantly) constant if

∇V Y ≡ 0 ∀ vectors V .

But: If Hol , {Id}, transporting a vector parallel to any point on S
does not define a constant vector field Y with ∇V Y ≡ 0, because
parallel transport depends on the chosen path.

All this can be generalised to
I n-dimensional surfaces: Hol ⊂ SO(n) (in an obvious way)
I n-dimensional manifolds that carry a Riemannian metric

gij = family of scalar products on the tangent spaces.

What are the possible holonomy groups of Riemannian manifolds?
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Why do we want to know this?
Holonomy groups are algebraic objects that encode geometric
information about the Riemannian manifold, e.g.

Product manifolds:
The manifold is a Cartesian product M = M1 ×M2 and metric is a
sum g = g1 + g2 of metrics on M1 and M2. E.g.

The cylinder is a
product of the circle
S1 and R.

The sphere is not a
product.

The torus is a prod-
uct of two circles S1,
BUT the metric is
not a sum.

All this is detected by the holonomy group.
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Decomopsition Theorem [G. de Rham, Math. Helv. 1952]
A Riemannian manifold (that is complete and simpy connected) is
a product of Riemannian manifolds M = M1 × . . . ×Mk if and only if
its holonomy group is block diagonal

Hol =


H1 0 0

0
. . . 0

0 0 Hk


In this case Hi ⊂ SO(dim Mi) is the holonomy of Mi .

For example:{
y ∈ Rn with Hol(y) = y

}
'

{
constant vector fields Y
∇V Y ≡ 0 for all V

}
Y is obtained from y by parallel transport, which, for y, is
independent of the chosen path.
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Berger’s list [M. Berger, Bull. Soc. Math. France, 1955]
The holonomy group of a (complete, simply connected) n-dim’l
Riemannian manifold that is not a product is isomorphic to one of

SO(n) group of rotations of Rngenerically curved
∪

U(n/2) unitary matrices of Cn/2 = RnC manifold, i.e. holomorphic coordinates, “Kähler”
∪

SU(n/2) unitary matrices of determinant 1∃ holomorphic volume form, “special Kähler”
∪

Sp(n/4) quaternionic unitary matrices of Hn/4 = Rn∃ quaternionic structure, “hyper-Kähler”

Sp(1) · Sp(n/4) unit quaterions times Sp(n/4)“quaternionic-Kähler”

G2 ⊂ SO(7) exceptional Lie group∃ octonionic structure, “G2-manifold”

Spin(7) ⊂ SO(8) universal cover of SO(7) with spin representation“Spin(7)-manifold”

That’s all! (... apart from symmetric spaces ...)

It tells us a lot about the possible geometry of the manifold, e.g. if
Hol ⊂ U(n/2) then the manifold is complex (∃ holomorphic
coordinates).
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Question: ∃? Riemannian metrics for all groups G on Berger’s list?
“Obvious” examples:
I sphere, hyperbolic space: Hol = SO(n)

I complex projective space CPn: Hol = U(n)

I quaternionic projective space HPn: Hol = Sp(1) · Sp(n).

Local existence: Construct metric with Hol = G on small open set.
I SO(n): generic Riemannian manifold
I U(n): Kähler metric given by generic Kähler potential on

complex manifold
I SU(n): elliptic equation on the Kähler potential in order to get

holomorphic volume form
I Sp(n): hyper-Kähler metric on T∗CPn [Calabi, Ann. ENS ’79]
I G2 and Spin(7): metrics exist [Bryant, Ann. Math ’87], general

method to describe space of local metrics as solutions to
system of overdetermined PDE’s
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Compact examples:

I U(n): compact smooth varieties.
I SU(n): Yau’s solution of the Calabi conjecture [Com. Pure

Appl. Math 1978]:{
compact Kähler mf’s with
trivial canonical bundle

}
=

{
compact complex mf’s
admitting an SU(n)-metric

}
Problem: non constructive proof, only very few explicit
“Calabi-Yau metrics” known.

I Construction of compact G2 and Spin(7) manifolds by Joyce
[J. Diff. Geom. & Inv. Math. 1996]
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Relevance for physics

Let M1,n−1 be a space time, i.e. manifold with (−+ · · ·+) metric gij

I General relativity: n = 4 and the metric gij satisfies

Rij −
1
2Rgij = Tij (Einstein eq’s)

I String theory (and the like): n = 10, 11, 12, Einsteins
equations and spinor field equations of the form

∇Xψ = F(X) · ψ (“preserved supersymmetry”)

Simplified versions (vacua)

Rij = 0 (Ricci flat)

∇ψ = 0 (constant spinor)
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Ansatz: Product structure of the space time

M1,n−1 = R1,3 × Xk ,

Xk compact Riemannian manifold, k=6,7,8, with constant spinor ψ.
This implies Hol(X)ψ = ψ and hence (by Berger’s list)

k = 6 Hol(X) ⊂ SU(3) Calabi-Yau 3-manifold
k = 7 Hol(X) ⊂ G2 G2-manifold
k = 8 Hol(X) ⊂ Spin(7) Spin(7)-manifold

or Hol(X) ⊂ SU(4) Calabi-Yau 4-manifold

More general: M1,n−1 is not a product
Question: What are holonomy groups of n-dim’l space times (with
constant spinors)?
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Holonomy groups of space times (Lorentzian manifolds)
The holonomy group of a space time of dim n that is not a product
and carries constant spinors is equal to

G n Rn−2 (∗)

where G is a product of SU(k), Sp(l), G2 or Spin(7) [TL ’03].
If it does not admit constant spinors then it is equal to
I ... something similar to (∗) ... [Berard-Bergery ’96, TL ’03], or
I the full Lorentz group SO(1, n − 1) [Berger ’55].

For all possible groups there exist examples.

Thank you!
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