Holonomy groups

Thomas Leistner

..-'. THE UNIVERSITY
) OF ADELAIDE

School of Mathematical Sciences Colloquium
University of Adelaide, May 7, 2010

115



The notion of holonomy groups is based on

Parallel translation

BN T Lety : [0,1] — R? be a curve,
' and X : [0,1] — R? a vector
field along this curve, then X(t)

is parallel translated along y if

dXx
X =—=
dt

If we parallel translate a vector to every point in R? we obtain a
vector field Y on R? that is constant, i.e

DyY =0, forall vectors V,

DY = (ain) denotes the Jacobian matrix of Y
and Dy Y its multiplication with the vector V.
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But: We live on something curved and thus cannot use rulers.

Instead, use a pendulum:
If we travel along a curve
on the sphere, the oscil-

@ @  lation plane of the pendu-
— 7N\ 7 lum is parallel transported
il

along the curve.

This works on every curved surface if we assume that there is a
force orthogonal to the surface that pulls the pendulum down.
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Let S be a surface (e.g. the sphere), y : [0,1] — S a curve and
X : [0,1] — R® a vector field along y tangential to S.

X is parallel translated along v if q
(1) Xistangentialto S: (X,y)=0
(2) because of (1), X cannot be constant but it changes only in

directions orthogonal to the surface, i.e. the projection of
X = % onto the tangent plane T,(;)S vanishes:

X =X, yyy=0
Now (1) implies that

0= H(X.9) =X, 9 +(X.y)
and (2) then becomes
(*) X' +{X,¥y=0

Hence, X is parallel transported along v iff X satisfies the system
(+) of linear ODE’s.
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The parallel transport is a linear isomorphism between the tangent
spaces

Py . T'y(O)S — T,y(1)S
Xo — X(1)

where X(t) is the solution to (*) with initial condition X(0) = Xo.
P, is a linear isometry, because for X, Y parallel along y we get

’ 7\ ’ ’ 1
XY =X, ) +(X,Y) © =X YWY, 7)) = Yy KX y) Do,

and thus (X(t), Y(t)) = (Xo, Yo) for all t, in particular for t = 1.

5/15



Define the holonomy group of S at a point x € S:
Holy := {P, | ¥ a loop with y(0) = y(1) = x} ¢ GL(T«S)

Note that Holy does not depend on x.

As the P,’s are isometries (and assuming that S is oriented), Hol is
a subgroup of the group of rotations of the tangent plane at x,
which is SO(2).

For the sphere we get The same for the torus:
Hol = SO(2):
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In the same way we generalise the derivative of smooth maps
R? — R? to surfaces obtaining a linear connection V by projecting
DyY to the tangent plane:

VvYlx = projr,s (DvYlx).
We say that a vector field Y on S is (covariantly) constant if
VvY =0 V vectors V.

But: If Hol # {Id}, transporting a vector parallel to any pointon S
does not define a constant vector field Y with VyY = 0, because
parallel transport depends on the chosen path.

All this can be generalised to
» n-dimensional surfaces: Hol c SO(n) (in an obvious way)
» n-dimensional manifolds that carry a Riemannian metric

gj = family of scalar products on the tangent spaces.
What are the possible holonomy groups of Riemannian manifolds?
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Why do we want to know this?
Holonomy groups are algebraic objects that encode geometric
information about the Riemannian manifold, e.g.

Product manifolds:
The manifold is a Cartesian product M = My x M» and metric is a
sum g = gy + g» of metrics on My and M. E.g.

The cylinder is a The sphere is not a The torus is a prod-

product of the circle product. uct of two circles S,

S'and R. BUT the metric is
not a sum.

All this is detected by the holonomy group.
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Decomopsition Theorem [G. de Rham, Math. Helv. 1952]

A Riemannian manifold (that is complete and simpy connected) is
a product of Riemannian manifolds M = My X ... x M if and only if
its holonomy group is block diagonal

Hi 0 O
Hol=1 o . o0
0 0 H

In this case H; c SO(dim M;) is the holonomy of M;.
For example:

{ constant vector fields Y }

n H e
{yeR with Hol(y) —Y} VvY =0forall V

Y is obtained from y by parallel transport, which, for y, is
independent of the chosen path.
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Berger’s list [M. Berger, Bull. Soc. Math. France, 1955]

The holonomy group of a (complete, simply connected) n-dim’l
Riemannian manifold that is not a product is isomorphic to one of

SO(n) greoprafaiotationsdf R"
U
U(n/2) uDitaayifoidrices lodIGMBreHR coordinates, “Kahler”
U
SuU(n/2) uihitatyg madipiciesvofudetefonmatepiecial Kahler”

Sp(LrJ7/4) qliatexteomicnimisanycinatritesoef XA er R
Sp(1) - Sp(n/4)  Unitsjeatevioinstihes’Sp(n/4)
G2 € SO(7) excepioinalitigtgretupe, “Go-manifold”
Spin(7) c SO(8) Ufiversal-covefad’SO(7) with spin representation
That's all! (... apart from symmetric spaces ...)

It tells us a lot about the possible geometry of the manifold, e.g. if
Hol c U(n/2) then the manifold is complex (3 holomorphic
coordinates).
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Question: 3?7 Riemannian metrics for all groups G on Berger’s list?
“Obvious” examples:

>

>

>

sphere, hyperbolic space: Hol = SO(n)
complex projective space CP": Hol = U(n)
quaternionic projective space HP": Hol = Sp(1) - Sp(n).

Local existence: Construct metric with Hol = G on small open set.

>

>

SO(n): generic Riemannian manifold
U(n): Kahler metric given by generic Kéhler potential on
complex manifold

SU(n): elliptic equation on the Kéhler potential in order to get
holomorphic volume form

Sp(n): hyper-Kahler metric on T*CP" [Calabi, Ann. ENS ’79]
G» and Spin(7): metrics exist [Bryant, Ann. Math '87], general

method to describe space of local metrics as solutions to
system of overdetermined PDE’s
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Compact examples:

» U(n): compact smooth varieties.

» SU(n): Yau’s solution of the Calabi conjecture [Com. Pure
Appl. Math 1978]:

compact Kahler mf's with | [ compact complex mf’s
trivial canonical bundle ~ | admitting an SU(n)-metric

Problem: non constructive proof, only very few explicit
“Calabi-Yau metrics” known.

» Construction of compact G, and Spin(7) manifolds by Joyce
[J. Diff. Geom. & Inv. Math. 1996]
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Relevance for physics
Let M"~1 be a space time, i.e. manifold with (- + - - - +) metric gj
» General relativity: n = 4 and the metric g; satisfies
Rj—1Rgj = T; (Einsteineqs)

» String theory (and the like): n = 10,11, 12, Einsteins
equations and spinor field equations of the form

Vxy = F(X)-¢ (“preserved supersymmetry”)
Simplified versions (vacua)

R; = 0 (Ricciflat)
Vo = 0

(constant spinor)
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Ansatz: Product structure of the space time

M1,n—1 _ R1,3 x Xk,

Xk compact Riemannian manifold, k=6,7,8, with constant spinor .
This implies Hol(X)y = ¢ and hence (by Berger’s list)

k=6 Hol(X)cSU(3) Calabi-Yau 3-manifold
k=7 HoI(X) c Gy G2-manifold
k =8 Hol(X) c Spin(7) Spin(7)-manifold

or Hol(X)cSU(4)  Calabi-Yau 4-manifold

More general: M is not a product
Question: What are holonomy groups of n-dim’l space times (with
constant spinors)?
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Holonomy groups of space times (Lorentzian manifolds)

The holonomy group of a space time of dim n that is not a product
and carries constant spinors is equal to

GRR"Z (x)

where G is a product of SU(k), Sp(/), G2 or Spin(7) [TL '03].
If it does not admit constant spinors then it is equal to

» ... something similar to (x) ... [Berard-Bergery '96, TL 03], or
» the full Lorentz group SO(1,n — 1) [Berger '55].
For all possible groups there exist examples.

Thank you!
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