Holonomy groups

Thomas Leistner

School of Mathematical Sciences Colloquium University of Adelaide, May 7, 2010

The notion of holonomy groups is based on

Parallel translation

Let $\gamma : [0, 1] \to \mathbb{R}^2$ be a curve, and $X : [0, 1] \to \mathbb{R}^2$ a vector field along this curve, then X(t)is parallel translated along γ if

$$X' := \frac{\mathrm{d}X}{\mathrm{d}t} \equiv 0.$$

If we parallel translate a vector to every point in \mathbb{R}^2 we obtain a vector field Y on \mathbb{R}^2 that is constant, i.e

 $D_V Y \equiv 0$, for all vectors V,

 $DY = (\partial_i Y^j)$ denotes the Jacobian matrix of *Y* and $D_V Y$ its multiplication with the vector *V*.

But: We live on something curved and thus cannot use rulers.

Instead, use a pendulum: If we travel along a curve on the sphere, the oscillation plane of the pendulum is parallel transported along the curve.

This works on every curved surface if we assume that there is a force *orthogonal to the surface* that pulls the pendulum down.

Let *S* be a surface (e.g. the sphere), $\gamma : [0, 1] \rightarrow S$ a curve and $X : [0, 1] \rightarrow \mathbb{R}^3$ a vector field along γ tangential to *S*. *X* is parallel translated along γ if

- (1) X is tangential to S: $\langle X, \gamma \rangle \equiv 0$
- (2) because of (1), *X* cannot be constant but it changes only in directions orthogonal to the surface, i.e. the projection of $X' := \frac{dX}{dt}$ onto the tangent plane $T_{\gamma(t)}S$ vanishes:

 $X'-\langle X',\gamma\rangle\gamma\equiv 0$

Now (1) implies that

$$0 \equiv \frac{\mathrm{d}}{\mathrm{d}t} \langle X, \gamma \rangle = \langle X', \gamma \rangle + \langle X, \gamma' \rangle$$

and (2) then becomes

(*)
$$X' + \langle X, \gamma' \rangle \gamma \equiv 0$$

Hence, X is parallel transported along γ iff X satisfies the system (*) of linear ODE's.

The parallel transport is a linear isomorphism between the tangent spaces

$$\begin{array}{rccc} P_{\gamma} & : & T_{\gamma(0)}S & \rightarrow & T_{\gamma(1)}S \\ & & X_0 & \rightarrow & X(1) \end{array}$$

where X(t) is the solution to (*) with initial condition $X(0) = X_0$.

 P_{γ} is a linear isometry, because for X, Y parallel along γ we get

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle X,Y\rangle = \langle X',Y\rangle + \langle X,Y'\rangle \stackrel{(*)}{=} -\langle X,\gamma'\rangle\langle Y,\gamma\rangle - \langle Y,\gamma'\rangle\langle X,\gamma\rangle \stackrel{(1)}{=} 0,$$

and thus $\langle X(t), Y(t) \rangle \equiv \langle X_0, Y_0 \rangle$ for all *t*, in particular for t = 1.

Define the holonomy group of *S* at a point $x \in S$:

 $Hol_x := \{P_{\gamma} \mid \gamma \text{ a loop with } \gamma(0) = \gamma(1) = x\} \subset GL(T_xS)$

Note that Hol_x does not depend on x.

As the P_{γ} 's are isometries (and assuming that *S* is oriented), *Hol* is a subgroup of the group of rotations of the tangent plane at *x*, which is SO(2).

For the sphere we get Hol = SO(2):

The same for the torus:

In the same way we generalise the derivative of smooth maps $\mathbb{R}^2 \to \mathbb{R}^2$ to surfaces obtaining a linear connection ∇ by projecting $D_V Y$ to the tangent plane:

$$\nabla_V \mathbf{Y}|_{\mathbf{X}} := \operatorname{proj}_{\mathcal{T}_{\mathbf{X}} \mathcal{S}} \left(D_V \mathbf{Y}|_{\mathbf{X}} \right).$$

We say that a vector field Y on S is (covariantly) constant if

$$\nabla_V Y \equiv 0$$
 \forall vectors V .

But: If $Hol \neq \{Id\}$, transporting a vector parallel to any point on *S* does not define a constant vector field *Y* with $\nabla_V Y \equiv 0$, because parallel transport depends on the chosen path.

All this can be generalised to

- ▶ *n*-dimensional surfaces: $Hol \subset SO(n)$ (in an obvious way)
- n-dimensional manifolds that carry a Riemannian metric

 g_{ij} = family of scalar products on the tangent spaces.

What are the possible holonomy groups of Riemannian manifolds?

Why do we want to know this?

Holonomy groups are algebraic objects that encode geometric information about the Riemannian manifold, e.g.

Product manifolds:

The manifold is a Cartesian product $M = M_1 \times M_2$ and metric is a sum $g = g_1 + g_2$ of metrics on M_1 and M_2 . E.g.

The cylinder is a product of the circle S^1 and \mathbb{R} .

The sphere is not a product.

The torus is a product of two circles S^1 , BUT the metric is not a sum.

All this is detected by the holonomy group.

Decomopsition Theorem [G. de Rham, Math. Helv. 1952]

A Riemannian manifold (that is complete and simpy connected) is a product of Riemannian manifolds $M = M_1 \times \ldots \times M_k$ if and only if its holonomy group is block diagonal

$$Hol = \left(\begin{array}{ccc} H_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & H_k \end{array} \right)$$

In this case $H_i \subset SO(\dim M_i)$ is the holonomy of M_i . For example:

$$\begin{cases} y \in \mathbb{R}^n \text{ with } Hol(y) = y \end{cases} \simeq \begin{cases} \text{constant vector fields } Y \\ \nabla_V Y \equiv 0 \text{ for all } V \end{cases}$$

Y is obtained from y by parallel transport, which, for y, is independent of the chosen path.

Berger's list [M. Berger, Bull. Soc. Math. France, 1955]

The holonomy group of a (complete, simply connected) *n*-dim'l Riemannian manifold that is not a product is isomorphic to one of

SO(n)grouprofalotations of \mathbb{R}^n U(n/2)unitaavinadrices looloft/orphRncoordinates, "Kähler" SU(n/2)unitalymatologs/of detefoninant plecial Kähler" Sp(n/4)quaterrie onioninistruy chatričes pefr # 2 hler" Rⁿ $\operatorname{Sp}(1) \cdot \operatorname{Sp}(n/4)$ unit alleaterioiosktähles Sp(n/4) $G_2 \subset SO(7)$ exceptionalic istrarctupe, "G2-manifold" $Spin(7) \subset SO(8)$ undiversal-prover did SO(7) with spin representation That's all! (... apart from symmetric spaces ...)

It tells us a lot about the possible geometry of the manifold, e.g. if $Hol \subset U(n/2)$ then the manifold is complex (\exists holomorphic coordinates).

Question: \exists ? Riemannian metrics for all groups *G* on Berger's list? "Obvious" examples:

- sphere, hyperbolic space: Hol = SO(n)
- complex projective space \mathbb{CP}^n : Hol = U(n)
- quaternionic projective space \mathbb{HP}^n : $Hol = Sp(1) \cdot Sp(n)$.

Local existence: Construct metric with Hol = G on small open set.

- ► SO(*n*): generic Riemannian manifold
- U(n): K\u00e4hler metric given by generic K\u00e4hler potential on complex manifold
- SU(n): elliptic equation on the Kähler potential in order to get holomorphic volume form
- ▶ Sp(*n*): hyper-Kähler metric on $T^* \mathbb{CP}^n$ [Calabi, Ann. ENS '79]
- G₂ and Spin(7): metrics exist [Bryant, Ann. Math '87], general method to describe space of local metrics as solutions to system of overdetermined PDE's

Compact examples:

- U(n): compact smooth varieties.
- SU(n): Yau's solution of the Calabi conjecture [Com. Pure Appl. Math 1978]:

 $\left\{\begin{array}{c} \text{compact K\"ahler mf's with} \\ \text{trivial canonical bundle} \end{array}\right\} = \left\{\begin{array}{c} \text{compact complex mf's} \\ \text{admitting an SU}(n)\text{-metric} \end{array}\right\}$

Problem: non constructive proof, only very few explicit "Calabi-Yau metrics" known.

Construction of compact G₂ and Spin(7) manifolds by Joyce
 [J. Diff. Geom. & Inv. Math. 1996]

Relevance for physics

Let $M^{1,n-1}$ be a space time, i.e. manifold with $(-+\cdots+)$ metric g_{ij}

► General relativity: *n* = 4 and the metric *g_{ij}* satisfies

$$R_{ij} - \frac{1}{2}Rg_{ij} = T_{ij}$$
 (Einstein eq's)

String theory (and the like): n = 10, 11, 12, Einsteins equations and spinor field equations of the form

 $\nabla_X \psi = F(X) \cdot \psi$ ("preserved supersymmetry")

Simplified versions (vacua)

$$R_{ij} = 0$$
 (Ricci flat)
 $\nabla \psi = 0$ (constant spinor)

Ansatz: Product structure of the space time

$$M^{1,n-1} = \mathbb{R}^{1,3} \times X^k,$$

 X^k compact Riemannian manifold, k=6,7,8, with constant spinor ψ . This implies $Hol(X)\psi = \psi$ and hence (by Berger's list)

 $\begin{array}{ll} k = 6 & Hol(X) \subset \mathrm{SU}(3) & \text{Calabi-Yau 3-manifold} \\ k = 7 & Hol(X) \subset \mathrm{G}_2 & \mathrm{G}_2\text{-manifold} \\ k = 8 & Hol(X) \subset \mathrm{Spin}(7) & \mathrm{Spin}(7)\text{-manifold} \\ \mathrm{or} & Hol(X) \subset \mathrm{SU}(4) & \text{Calabi-Yau 4-manifold} \end{array}$

More general: $M^{1,n-1}$ is not a product Question: What are holonomy groups of *n*-dim'l space times (with constant spinors)?

Holonomy groups of space times (Lorentzian manifolds)

The holonomy group of a space time of dim n that is not a product and carries constant spinors is equal to

 $G \ltimes \mathbb{R}^{n-2}$ (*)

where *G* is a product of SU(k), Sp(l), G_2 or Spin(7) [TL '03]. If it does not admit constant spinors then it is equal to

- ... something similar to (*) ... [Berard-Bergery '96, TL '03], or
- the full Lorentz group SO(1, n 1) [Berger '55].

For all possible groups there exist examples.

Thank you!