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The notion of holonomy groups is based on

Parallel translation

Lety : [0,1] — R? be a curve,
and X : [0,1] — R? a vector
field along this curve, then X(t)
is parallel translated along y if

dX
X =—-=
dt

If we parallel translate a vector to every point in R? we obtain a
vector field Y on R? that is constant, i.e

A A e b

DvY =0, forallvectors V, ey
SLLSLSLLIAL LSS SS TS

; . . PALAALAASSLS LSS

DY = (aiY/) denotes the Jacobian matrix of Y i s e
A . . . SPLLSLAZAS LSS

and Dy Y the derivative of Y in direction of the SR A
LIRS A FPA L LA TSI

vector V. SIIIPIIIISI SIS
PP ELRT LS AAAS S S

LS. LSS S L AL LS A

SAPPLSIATALS PSS

117



On curved surfaces parallel transport is
more tricky: Travelling along a curve on the
sphere, the oscillation plane of the pendu-
lum is parallel transported along the curve.

Let S be a surface (e.g. the sphere), y : [0,1] — S a curve and
X :[0,1] — R® a vector field along y tangential to S.
X is parallel translated along vy if

(1) Xistangentialto S: (X,y)=0
(2) X changes only in directions orthogonal to the surface, i.e. the
projection of X’ := % onto the tangent plane T,,;)S vanishes:

X —(X",y)yy=0

This implies: X is parallel transported along v iff X satisfies the
system of linear ODE'’s:

(%) X +(X,y)y=0
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The parallel transport is an isomorphism of the tangent spaces,
Py . Ty(O)S 4 Ty(1)s, Py(Xo) = X(1),

where X(t) is the solution to (+) with initial condition X(0) = Xo.
Define the holonomy group of S at a point x € S:

Hol) := {P, | y aloop with y(0) = y(1) = x},y contractible}

» Holy is contained in the group of rotations of the tangent plane
at x. Holy, and Hol, are conjugated to each other in O(2).
» Hol® is connected and m1(S) —-» Hol/Hol.

For the sphere Hol = SO(2): Note: In contrast to the flat
case on slide 1, if Hol # {1},
transporting a vector parallel to
any point on S does not de-
fine a constant vector field Y
with DyY = 0, because parallel
transport depends on the cho-
sen path.
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All this can be generalised to

» n-dimensional surfaces: Hol c SO(n) (in an obvious way)
» n-dimensional manifolds that carry a Riemannian metric gj.
» Parallel transport defined using the Levi-Civita connection V,

’ i/ &f : 0
Vy Xl =0, or (&) +Tf(/)d=0ifX= ng.
» Hol(M, g) is a Lie group with Lie algebra hol(M, g).
Classification problem:

What are the possible holonomy groups of Riemannian manifolds?
Why do we want to know this?

» Holonomy groups encode geometric information

» Information about solutions to “geometric” differential

equations can be obtained by algebraic means.
For example: covariantly constant vector fields

- - constant vector fields Y
{yER with HO’(y)*y} {VVYEOforaIIV

» Get Y from y by parallel transport ( y inv. = indep. of path).
» The same applies to other geometric vector bundles
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Product manifolds: The manifold is a Cartesian product M= M;xM,
and metric is a sum g = gy + g» of metrics on My and M.

The cylinder is a The sphere is not a The torus is a prod-

product of the circle product. uct of two circles S,
S'and R. BUT the metric is
not a sum.

» Product structure of a Riemannian manifold can be detected
by the holonomy group.
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Decomopsition Theorem [G. De Rham, Math. Helv., '52]
A Riemannian manifold (complete and simpy connected) is a

product of Riemannian manifolds M = My X ... X M < its
holonomy group is a product group H; X ... x Hi acting block
diagonal

H 0 0
Hol=| o0 . 0
0 0 H

In this case H; c SO(dim M;) is the holonomy of M;.
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Holonomy and curvature

> VioXlb = |5 (X0 i=o.
» curvature R of V: X, Y € TpM, extended such that [X, Y] =0
and A; parallelogram of flows of X and Y of length vVt =

R(X. Y)lp = lim — (soﬂt Id7,m).

Hence, R(X,Y)lp € bol,(M,g)V X,Y € T,M.
Theorem (Ambrose & Singer [Trans. AMS *53])
If M is connected, then hol,(M, g) is spanned by

(P, 0 R(X. Y) 0Py € GL(T,M) 17(0) = pund X. Y € Ty)M |

Bianchi-ldentity for R — bol,(M, g) is a Berger algebra, i.e.,
hol = span{R(x,y) | R € K(bol),x,y € R"},

with
K(g) = { ReANR" ®g|R(x,y)z+ R(y,z)x + R(z,x)y = 0}'
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Berger’s list [Berger, Bull. Soc. Math. France, ’55]

The holonomy group of a (simply connected) n-dim’l Riemannian
manifold that is not a locally product is isomorphic to one of

SO(n) grenprafaibtationsdf R"
U(n/2) ubitaayifodrices lodlGHérsR coordinates, “Kahler”
SU(n/2) uhitaty mativices/ofudetefonimattpiecial Kahler”

Sp(n/4) qligtextdonicrimisanycinatsitesoaf BHAler R"
Ké&hler + parallel holomorphic symplectic form
Sp(1) - Sp(n/4)  Unitsjeatévioinstihks’Sp(n/4)
G2 € SO(7) excepioinalitiggretupe, “Go-manifold”
Spin(7) c SO(8) uBiversal-coveifdd’SO(7) with spin representation
That's all! (... apart from symmetric spaces ...)

It tells us a lot about the possible geometry of the manifold, e.g. if
Hol c U(n/2) then the manifold is complex (3 holomorphic

coordinates), or if the manifold admits constant spinor fields
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Question: 3?7 Riemannian metrics for all groups G on Berger’s list?
Symmetric examples:

>

>

>

sphere, hyperbolic space: Hol = SO(n)
complex projective space CP": Hol = U(n)
quaternionic projective space HP": Hol = Sp(1) - Sp(n).

Local existence: Construct metric with Hol = G on open set in R".

>

>

SO(n): generic Riemannian manifold
U(n): Kahler metric given by generic Kéhler potential on
complex manifold

SU(n): elliptic equation on the Kéhler potential in order to get
holomorphic volume form

Sp(n): hyper-Kahler metric on T*CP" [Calabi, Ann. ENS '79]
G2 and Spin(7): metrics exist [Bryant, Ann. Math '87], general

method to describe space of local metrics as solutions to
system of overdetermined PDE’s
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Compact examples:

» SU(n): Yau’s solution of the Calabi conjecture [Com. Pure
Appl. Math 1978]:

compact Kahler mf's with | [ compact complex mf’s
trivial canonical bundle ~ | admitting an SU(n)-metric

Problem: non constructive proof, only very few explicit
“Calabi-Yau metrics” known.

» Sp(n): examples by Fujiki, Mukai, and Beauville.

» Sp(1) - Sp(n): symmetric spaces are the only known examples
of compact manifolds with this holonomy

» Construction of compact G, and Spin(7) manifolds by Joyce
[J. Diff. Geom. & Inv. Math. 1996]
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Relevance for physics
Let M"~1 be a space time, i.e. manifold with (- + - - - +) metric gj
» General relativity: n = 4 and the metric g; satisfies
Rj—1Rgj = T; (Einsteineqs)

» String theory (and the like): n = 10,11, 12, Einsteins
equations and spinor field equations of the form

Vxy = F(X)-¢ (“preserved supersymmetry”)
Simplified versions

R; = 0 (Ricciflat)
Vo = 0

(constant spinor)
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Ansatz: Product structure of the space time

M1,n—1 _ R1,3 x Xk,

Xk compact Riemannian manifold, k=6,7,8, with constant spinor .

This implies Hol(X)y = ¢ and hence (by Berger’s list)

k=6 Hol(X)cSU(3) Calabi-Yau 3-manifold
k=7 HoI(X) cGo G2-manifold
k =8 Hol(X) c Spin(7) Spin(7)-manifold

or Hol(X)cSU(4)  Calabi-Yau 4-manifold

More general: M is not a product
Question: What are holonomy groups of n-dim’l space-times (with
constant spinors)?
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Holonomy groups of Lorentzian manifolds (= space-times)

Let H be the holonomy group of a space time of dimension n + 2
that is not locally a product. Then

» either H is the full Lorentz group SO(1,n + 1) [Berger '55] or
Hc (R* x SO(n)) < R" = stabiliser of a null line,

» G := prso(n)(H) is a Riemannian holonomy group
[TL, J. Differential Geom., '07]

» H=G<R"or H= (R x G) xR", or (L x S) x Rk, where S is
the semisimple part of G and L ¢ R* x Z(G) or L c R x Z(G)
[Bérard-Bergery & lkemakhen, Proc. Symp. Pure Math. '93].

If the space time admits a constant spinor, then
G < RH—Z

where G is a product of SU(k), Sp(/), G2 or Spin(7) [TL '07].
For all possible groups there exist examples [ ... , Galaev "06].
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Further applications to spinor field equations

Results from holonomy theory can be applied to more general
spinor field equations, such as the Killing spinor equation:
A spinor field ¢ is a Killing spinor to the Killing number A € C if

Vx(,o = /1X'<,0.

Manifolds with Killing spinor are Einstein .

A manifold M has a Killing - The cone over M admits
spinor with real Killing no. a constant spinor.

“Bar-correspondence” [Bar, Comm. Math. Phys. '93]

Let M be a complete Riemannian spin manifold with a real Killing
spinor. Then M is S", or a compact Einstein space with one of the
following structures: Sasaki, 3-Sasaki, 6-dim. nearly-Ké&hler, or
nearly parallel Go.
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The Bér correspondence is based on

Theorem (Gallot [Ann. Sci. Ec. Norm. Sup. '79])

Let M be a Riemannian manifold that is geodesically complete. If
the cone over M is a Riemannian product, then the cone is flat and
M has constant sectional curvature 1.

Corollary: If M"~" has a real Killing spinor, then cone is flat or has
holonomy SU(n/2), Sp(n/4), G2 or Spin(7).

This implies Bar’s correspondence.

Generalisation to manifolds with indefinite metrics
[Alekseevsky, Cortés, Galaev & TL, Crelle’s Journal '09]:

» Same result, under the additional assumption: M compact.

» Detailed description in cases when one of the assumptions
fails and for Lorentzian and para-Ké&hler cones.

Work in progress:
Apply these results to Killing spinor equation for indefinite metrics.
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Construction of manifolds with exceptional holonomy

» Long history for Riemannian manifolds: Calabi, Yau, Le Brun,
Bryant, Salomon, Joyce ...
» Only few attempts for indefinite metrics.

» Method that can be generalised to indefinite metrics:
Hitchin flow

Half flat structures
Let M be a 6-manifold. Two stable forms p € A3M and w € A’M
such that

wAp=0, do=0, dlwArw)=0,

are called “half-flat structure”.
Note: w and p define a (non-integrable) complex strucure J on M.
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Hitchin flow for half-flat structures

[Hitchin, J. Differential Geom. 00 (M compact Riemannian),
Cortés, Schafer, Schulte-Hengesbach & TL, Proc. LMS ’'10]
Let M be a 6-manifold with a half-flat structure (p, w). Then there is
a one-parameter family w; and p; satisfying the Hitchin flow
equations

dp = dw, d(wAw) = d(Jp)

with initial conditions wy = w and pg = p. This family defines a
parallel G,-structure on M x [a, b] via ¢ = w A dt + p.

» Construction of explicit examples with Hol = G starting from
homogeneous half-flat structures on 6-dimensional solvable
Lie groups.

Thank you!
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