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The notion of holonomy groups is based on

Parallel translation
Let γ : [0, 1] → R2 be a curve,
and X : [0, 1] → R2 a vector
field along this curve, then X(t)
is parallel translated along γ if

X ′ :=
dX
dt
≡ 0.

If we parallel translate a vector to every point in R2 we obtain a
vector field Y on R2 that is constant, i.e

DV Y ≡ 0, for all vectors V ,

DY =
(
∂iY j

)
denotes the Jacobian matrix of Y

and DV Y the derivative of Y in direction of the
vector V .
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On curved surfaces parallel transport is
more tricky: Travelling along a curve on the
sphere, the oscillation plane of the pendu-
lum is parallel transported along the curve.

Let S be a surface (e.g. the sphere), γ : [0, 1]→ S a curve and
X : [0, 1]→ R3 a vector field along γ tangential to S.
X is parallel translated along γ if
(1) X is tangential to S: 〈X , γ〉 ≡ 0
(2) X changes only in directions orthogonal to the surface, i.e. the

projection of X ′ := dX
dt onto the tangent plane Tγ(t)S vanishes:

X ′ − 〈X ′, γ〉γ ≡ 0
This implies: X is parallel transported along γ iff X satisfies the
system of linear ODE’s:

(∗) X ′ + 〈X , γ′〉γ ≡ 0
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The parallel transport is an isomorphism of the tangent spaces,

Pγ : Tγ(0)S → Tγ(1)S , Pγ(X0) = X(1),

where X(t) is the solution to (∗) with initial condition X(0) = X0.
Define the holonomy group of S at a point x ∈ S:

Hol0x := {Pγ | γ a loop with γ(0) = γ(1) = x}, γ contractible}

I Holx is contained in the group of rotations of the tangent plane
at x. Holx and Holy are conjugated to each other in O(2).

I Hol0 is connected and π1(S)� Hol/Hol0.

For the sphere Hol = SO(2): Note: In contrast to the flat
case on slide 1, if Hol , {1},
transporting a vector parallel to
any point on S does not de-
fine a constant vector field Y
with DV Y ≡ 0, because parallel
transport depends on the cho-
sen path.
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All this can be generalised to
I n-dimensional surfaces: Hol ⊂ SO(n) (in an obvious way)
I n-dimensional manifolds that carry a Riemannian metric gij .

I Parallel transport defined using the Levi-Civita connection ∇,

∇γ′X |t ≡ 0, or (ξk )′ + Γk
ij (γ

i)′ξj ≡ 0 if X = ξk ∂

∂xk
.

I Hol(M, g) is a Lie group with Lie algebra hol(M, g).

Classification problem:
What are the possible holonomy groups of Riemannian manifolds?

Why do we want to know this?
I Holonomy groups encode geometric information
I Information about solutions to “geometric” differential

equations can be obtained by algebraic means.
For example: covariantly constant vector fields{

y ∈ Rn with Hol(y) = y
}
'

{
constant vector fields Y
∇V Y ≡ 0 for all V

}
I Get Y from y by parallel transport ( y inv. ⇒ indep. of path).
I The same applies to other geometric vector bundles
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Product manifolds: The manifold is a Cartesian product M =M1×M2

and metric is a sum g = g1 + g2 of metrics on M1 and M2.

The cylinder is a
product of the circle
S1 and R.

The sphere is not a
product.

The torus is a prod-
uct of two circles S1,
BUT the metric is
not a sum.

I Product structure of a Riemannian manifold can be detected
by the holonomy group.
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Decomopsition Theorem [G. De Rham, Math. Helv., ’52]
A Riemannian manifold (complete and simpy connected) is a
product of Riemannian manifolds M = M1 × . . . ×Mk ⇐⇒ its
holonomy group is a product group H1 × . . . × Hk acting block
diagonal

Hol =


H1 0 0

0
. . . 0

0 0 Hk


In this case Hi ⊂ SO(dim Mi) is the holonomy of Mi .
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Holonomy and curvature
I ∇γ̇(0)X |p = d

dt

[
P−1
γ|[0,t]

(X(γ(t))
]
|t=0.

I curvature R of ∇: X ,Y ∈ TpM, extended such that [X ,Y ] = 0
and λt parallelogram of flows of X and Y of length

√
t ⇒

R(X ,Y)|p = lim
t→0

1
t

(
Pλt − IdTpM

)
.

Hence, R(X ,Y)|p ∈ holp(M, g) ∀ X ,Y ∈ TpM.

Theorem (Ambrose & Singer [Trans. AMS ’53])
If M is connected, then holp(M, g) is spanned by{
P−1
γ ◦ R(X ,Y) ◦ Pγ ∈ GL(TpM) | γ(0) = p und X ,Y ∈ Tγ(1)M

}
Bianchi-Identity for R =⇒ holp(M, g) is a Berger algebra, i.e.,

hol = span
{
R(x, y) | R ∈ K(hol), x, y ∈ Rn} ,

with
K(g) :=

{
R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

}
.

7/17



Berger’s list [Berger, Bull. Soc. Math. France, ’55]
The holonomy group of a (simply connected) n-dim’l Riemannian
manifold that is not a locally product is isomorphic to one of

SO(n) group of rotations of Rngenerically curved

U(n/2) unitary matrices of Cn/2 = RnC manifold, i.e. holomorphic coordinates, “Kähler”

SU(n/2) unitary matrices of determinant 1∃ holomorphic volume form, “special Kähler”

Sp(n/4) quaternionic unitary matrices of Hn/4 = Rn∃ quaternionic structure, “hyper-Kähler”,
Kähler + parallel holomorphic symplectic form

Sp(1) · Sp(n/4) unit quaterions times Sp(n/4)“quaternionic-Kähler”

G2 ⊂ SO(7) exceptional Lie group∃ octonionic structure, “G2-manifold”

Spin(7) ⊂ SO(8) universal cover of SO(7) with spin representation“Spin(7)-manifold”

That’s all! (... apart from symmetric spaces ...)
It tells us a lot about the possible geometry of the manifold, e.g. if
Hol ⊂ U(n/2) then the manifold is complex (∃ holomorphic
coordinates), or if the manifold admits constant spinor fields
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Question: ∃? Riemannian metrics for all groups G on Berger’s list?
Symmetric examples:
I sphere, hyperbolic space: Hol = SO(n)

I complex projective space CPn: Hol = U(n)

I quaternionic projective space HPn: Hol = Sp(1) · Sp(n).

Local existence: Construct metric with Hol = G on open set in Rn.
I SO(n): generic Riemannian manifold
I U(n): Kähler metric given by generic Kähler potential on

complex manifold
I SU(n): elliptic equation on the Kähler potential in order to get

holomorphic volume form
I Sp(n): hyper-Kähler metric on T∗CPn [Calabi, Ann. ENS ’79]
I G2 and Spin(7): metrics exist [Bryant, Ann. Math ’87], general

method to describe space of local metrics as solutions to
system of overdetermined PDE’s
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Compact examples:

I SU(n): Yau’s solution of the Calabi conjecture [Com. Pure
Appl. Math 1978]:{

compact Kähler mf’s with
trivial canonical bundle

}
=

{
compact complex mf’s
admitting an SU(n)-metric

}
Problem: non constructive proof, only very few explicit
“Calabi-Yau metrics” known.

I Sp(n): examples by Fujiki, Mukai, and Beauville.
I Sp(1) · Sp(n): symmetric spaces are the only known examples

of compact manifolds with this holonomy
I Construction of compact G2 and Spin(7) manifolds by Joyce

[J. Diff. Geom. & Inv. Math. 1996]
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Relevance for physics

Let M1,n−1 be a space time, i.e. manifold with (−+ · · ·+) metric gij

I General relativity: n = 4 and the metric gij satisfies

Rij −
1
2Rgij = Tij (Einstein eq’s)

I String theory (and the like): n = 10, 11, 12, Einsteins
equations and spinor field equations of the form

∇Xψ = F(X) · ψ (“preserved supersymmetry”)

Simplified versions

Rij = 0 (Ricci flat)

∇ψ = 0 (constant spinor)
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Ansatz: Product structure of the space time

M1,n−1 = R1,3 × Xk ,

Xk compact Riemannian manifold, k=6,7,8, with constant spinor ψ.
This implies Hol(X)ψ = ψ and hence (by Berger’s list)

k = 6 Hol(X) ⊂ SU(3) Calabi-Yau 3-manifold
k = 7 Hol(X) ⊂ G2 G2-manifold
k = 8 Hol(X) ⊂ Spin(7) Spin(7)-manifold

or Hol(X) ⊂ SU(4) Calabi-Yau 4-manifold

More general: M1,n−1 is not a product
Question: What are holonomy groups of n-dim’l space-times (with
constant spinors)?
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Holonomy groups of Lorentzian manifolds (= space-times)
Let H be the holonomy group of a space time of dimension n + 2
that is not locally a product. Then
I either H is the full Lorentz group SO(1, n + 1) [Berger ’55] or

H ⊂ (R+ × SO(n)) n Rn = stabiliser of a null line,
I G := prSO(n)(H) is a Riemannian holonomy group

[TL, J. Differential Geom., ’07]
I H=G n Rn or H = (R × G) n Rn, or (L × S) n Rn−k , where S is

the semisimple part of G and L ⊂ R+ ×Z(G) or L ⊂ Rk ×Z(G)
[Bérard-Bergery & Ikemakhen, Proc. Symp. Pure Math. ’93].

If the space time admits a constant spinor, then

G n Rn−2

where G is a product of SU(k), Sp(l), G2 or Spin(7) [TL ’07].
For all possible groups there exist examples [ ... , Galaev ’06].
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Further applications to spinor field equations

Results from holonomy theory can be applied to more general
spinor field equations, such as the Killing spinor equation:
A spinor field ϕ is a Killing spinor to the Killing number λ ∈ C if

∇Xϕ = λX · ϕ.

Manifolds with Killing spinor are Einstein .

A manifold M has a Killing
spinor with real Killing no.

⇐⇒
The cone over M admits
a constant spinor.

“Bär-correspondence” [Bär, Comm. Math. Phys. ’93]
Let M be a complete Riemannian spin manifold with a real Killing
spinor. Then M is Sn, or a compact Einstein space with one of the
following structures: Sasaki, 3-Sasaki, 6-dim. nearly-Kähler, or
nearly parallel G2.
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The Bär correspondence is based on

Theorem (Gallot [Ann. Sci. Ec. Norm. Sup. ’79])
Let M be a Riemannian manifold that is geodesically complete. If
the cone over M is a Riemannian product, then the cone is flat and
M has constant sectional curvature 1.

Corollary: If Mn−1 has a real Killing spinor, then cone is flat or has
holonomy SU(n/2), Sp(n/4), G2 or Spin(7).
This implies Bär’s correspondence.

Generalisation to manifolds with indefinite metrics
[Alekseevsky, Cortés, Galaev & TL, Crelle’s Journal ’09]:

I Same result, under the additional assumption: M compact.
I Detailed description in cases when one of the assumptions

fails and for Lorentzian and para-Kähler cones.

Work in progress:
Apply these results to Killing spinor equation for indefinite metrics.
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Construction of manifolds with exceptional holonomy

I Long history for Riemannian manifolds: Calabi, Yau, Le Brun,
Bryant, Salomon, Joyce ...

I Only few attempts for indefinite metrics.
I Method that can be generalised to indefinite metrics:

Hitchin flow

Half flat structures
Let M be a 6-manifold. Two stable forms ρ ∈ Λ3M and ω ∈ Λ2M
such that

ω ∧ ρ = 0, dρ = 0, d(ω ∧ ω) = 0,

are called “half-flat structure”.
Note: ω and ρ define a (non-integrable) complex strucure J on M.
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Hitchin flow for half-flat structures

[Hitchin, J. Differential Geom. ’00 (M compact Riemannian),
Cortés, Schäfer, Schulte-Hengesbach & TL, Proc. LMS ’10]
Let M be a 6-manifold with a half-flat structure (ρ, ω). Then there is
a one-parameter family ωt and ρt satisfying the Hitchin flow
equations

∂tρ = dω , ∂t (ω ∧ ω) = d(J∗ρ)

with initial conditions ω0 = ω and ρ0 = ρ. This family defines a
parallel G2-structure on M × [a, b] via ϕ = ω ∧ dt + ρ.

I Construction of explicit examples with Hol = G2 starting from
homogeneous half-flat structures on 6-dimensional solvable
Lie groups.

Thank you!
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