Holonomy groups

Thomas Leistner

Mathematics Colloquium School of Mathematics and Physics The University of Queensland

May 28, 2012

The notion of holonomy groups is based on

Parallel translation

Let $\gamma : [0, 1] \to \mathbb{R}^2$ be a curve, and $X : [0, 1] \to \mathbb{R}^2$ a vector field along this curve, then X(t)is parallel translated along γ if

$$X' := \frac{\mathrm{d}X}{\mathrm{d}t} \equiv 0.$$

If we parallel translate a vector to every point in \mathbb{R}^2 we obtain a vector field Y on \mathbb{R}^2 that is constant, i.e

 $D_V Y \equiv 0$, for all vectors V,

 $DY = (\partial_i Y^i)$ denotes the Jacobian matrix of Y and $D_V Y$ the derivative of Y in direction of the vector V.

On curved surfaces parallel transport is more tricky: Travelling along a curve on the sphere, the oscillation plane of the pendulum is parallel transported along the curve.

Let *S* be a surface (e.g. the sphere), $\gamma : [0, 1] \to S$ a curve and $X : [0, 1] \to \mathbb{R}^3$ a vector field along γ tangential to *S*. *X* is parallel translated along γ if

- (1) X is tangential to S: $\langle X, \gamma \rangle \equiv 0$
- (2) X changes only in directions orthogonal to the surface, i.e. the projection of $X' := \frac{dX}{dt}$ onto the tangent plane $T_{\gamma(t)}S$ vanishes:

 $X'-\langle X',\gamma\rangle\gamma\equiv 0$

This implies: X is parallel transported along γ iff X satisfies the system of linear ODE's:

(*) $X' + \langle X, \gamma' \rangle \gamma \equiv 0$

The parallel transport is an isomorphism of the tangent spaces,

$$P_{\gamma}: T_{\gamma(0)}S \rightarrow T_{\gamma(1)}S, \ P_{\gamma}(X_0) = X(1),$$

where X(t) is the solution to (*) with initial condition $X(0) = X_0$. Define the holonomy group of *S* at a point $x \in S$:

 $Hol_x^0 := \{P_{\gamma} \mid \gamma \text{ a loop with } \gamma(0) = \gamma(1) = x\}, \gamma \text{ contractible}\}$

- Hol_x is contained in the group of rotations of the tangent plane at x. Hol_x and Hol_y are conjugated to each other in O(2).
- Hol^0 is connected and $\pi_1(S) \rightarrow Hol/Hol^0$.

For the sphere Hol = SO(2):

Note: In contrast to the flat case on slide 1, if $Hol \neq \{1\}$, transporting a vector parallel to any point on *S* does not define a constant vector field *Y* with $D_V Y \equiv 0$, because parallel transport depends on the chosen path.

All this can be generalised to

- ▶ *n*-dimensional surfaces: $Hol \subset SO(n)$ (in an obvious way)
- n-dimensional manifolds that carry a Riemannian metric g_{ij}.
 - Parallel transport defined using the Levi-Civita connection $\overline{\nabla}$,

$$abla_{\gamma'} X|_t \equiv 0$$
, or $(\xi^k)' + \Gamma^k_{ij} (\gamma^i)' \xi^j \equiv 0$ if $X = \xi^k \frac{\partial}{\partial x^k}$.

• Hol(M, g) is a Lie group with Lie algebra $\mathfrak{hol}(M, g)$.

Classification problem:

What are the possible holonomy groups of Riemannian manifolds?

Why do we want to know this?

- Holonomy groups encode geometric information
- Information about solutions to "geometric" differential equations can be obtained by algebraic means.

For example: covariantly constant vector fields

$$\left\{ y \in \mathbb{R}^n \text{ with } Hol(y) = y \right\} \simeq \left\{ \begin{array}{c} \text{constant vector fields } Y \\ \nabla_V Y \equiv 0 \text{ for all } V \end{array} \right\}$$

- Get Y from y by parallel transport (y inv. \Rightarrow indep. of path).
- The same applies to other geometric vector bundles

Product manifolds: The manifold is a Cartesian product $M = M_1 \times M_2$ and metric is a sum $g = g_1 + g_2$ of metrics on M_1 and M_2 .

The cylinder is a product of the circle S^1 and \mathbb{R} .

The sphere is not a product.

The torus is a product of two circles S^1 , BUT the metric is not a sum.

 Product structure of a Riemannian manifold can be detected by the holonomy group. Decomopsition Theorem [G. De Rham, Math. Helv., '52] A Riemannian manifold (complete and simpy connected) is a product of Riemannian manifolds $M = M_1 \times \ldots \times M_k \iff$ its holonomy group is a product group $H_1 \times \ldots \times H_k$ acting block diagonal

$$Hol = \begin{pmatrix} H_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & H_k \end{pmatrix}$$

In this case $H_i \subset SO(\dim M_i)$ is the holonomy of M_i .

Holonomy and curvature

- $\nabla_{\dot{\gamma}(0)} X|_{\rho} = \frac{d}{dt} \left[\mathcal{P}_{\gamma|_{[0,t]}}^{-1}(X(\gamma(t))) \right]|_{t=0}.$
- ► curvature \mathcal{R} of ∇ : $X, Y \in T_p M$, extended such that [X, Y] = 0and λ_t parallelogram of flows of X and Y of length $\sqrt{t} \Rightarrow$

$$\mathcal{R}(X, Y)|_{p} = \lim_{t \to 0} \frac{1}{t} \left(\mathcal{P}_{\lambda_{t}} - Id_{T_{p}M} \right).$$

Hence, $\mathcal{R}(X, Y)|_p \in \mathfrak{hol}_p(M, g) \forall X, Y \in T_pM$. Theorem (Ambrose & Singer [*Trans. AMS* '53]) If *M* is connected, then $\mathfrak{hol}_p(M, g)$ is spanned by

$$\left\{ \mathscr{P}_{\gamma}^{-1} \circ \mathscr{R}(X, Y) \circ \mathscr{P}_{\gamma} \in \operatorname{GL}(T_{p}M) \mid \gamma(0) = p \text{ und } X, Y \in T_{\gamma(1)}M
ight\}$$

Bianchi-Identity for $\mathcal{R} \implies \mathfrak{hol}_{\rho}(M,g)$ is a Berger algebra, i.e.,

$$\mathfrak{hol} = \mathrm{span} \{ R(x, y) \mid R \in \mathcal{K}(\mathfrak{hol}), x, y \in \mathbb{R}^n \},$$

with

$$\mathcal{K}(\mathfrak{g}) := \left\{ R \in \Lambda^2 \mathbb{R}^{n^*} \otimes \mathfrak{g} \mid R(x, y)z + R(y, z)x + R(z, x)y = 0 \right\}.$$

Berger's list [Berger, Bull. Soc. Math. France, '55]

The holonomy group of a (simply connected) *n*-dim'l Riemannian manifold that is not a locally product is isomorphic to one of

- SO(n) grouprofalotations ob f \mathbb{R}^n
- U(n/2) unitaayinoadrices lool Children R. "Kähler"
- SU(n/2) uihitariyimatpices/ofuleterionmanaplecial Kähler"
- Sp(n/4)quaternioninitaryctnatricesperr
mähler" \mathbb{R}^n Kähler + parallel holomorphic symplectic form
- $Sp(1) \cdot Sp(n/4)$ unput a speate violation of Sp(n/4)
 - $G_2 \subset SO(7)$ exceptionalic istrarctupe, " G_2 -manifold"

 $Spin(7) \subset SO(8)$ understall-converted d'SO(7) with spin representation

That's all! (... apart from symmetric spaces ...)

It tells us a lot about the possible geometry of the manifold, e.g. if $Hol \subset U(n/2)$ then the manifold is complex (\exists holomorphic coordinates), or if the manifold admits constant spinor fields

Question: \exists ? Riemannian metrics for all groups *G* on Berger's list? Symmetric examples:

- sphere, hyperbolic space: Hol = SO(n)
- complex projective space \mathbb{CP}^n : Hol = U(n)
- quaternionic projective space \mathbb{HP}^n : $Hol = Sp(1) \cdot Sp(n)$.

Local existence: Construct metric with Hol = G on open set in \mathbb{R}^n .

- ► SO(*n*): generic Riemannian manifold
- U(n): K\u00e4hler metric given by generic K\u00e4hler potential on complex manifold
- SU(n): elliptic equation on the Kähler potential in order to get holomorphic volume form
- ▶ Sp(*n*): hyper-Kähler metric on $T^* \mathbb{CP}^n$ [Calabi, Ann. ENS '79]
- G₂ and Spin(7): metrics exist [Bryant, Ann. Math '87], general method to describe space of local metrics as solutions to system of overdetermined PDE's

Compact examples:

SU(n): Yau's solution of the Calabi conjecture [Com. Pure Appl. Math 1978]:

 $\left.\begin{array}{c} \text{compact K\"ahler mf's with} \\ \text{trivial canonical bundle} \end{array}\right\} = \left\{\begin{array}{c} \text{compact complex mf's} \\ \text{admitting an SU}(n)\text{-metric} \end{array}\right\}$

Problem: non constructive proof, only very few explicit "Calabi-Yau metrics" known.

- Sp(n): examples by Fujiki, Mukai, and Beauville.
- Sp(1) · Sp(n): symmetric spaces are the only known examples of compact manifolds with this holonomy
- Construction of compact G₂ and Spin(7) manifolds by Joyce [J. Diff. Geom. & Inv. Math. 1996]

Relevance for physics

Let $M^{1,n-1}$ be a space time, i.e. manifold with $(-+\cdots+)$ metric g_{ij}

• General relativity: n = 4 and the metric g_{ij} satisfies

$$R_{ij} - \frac{1}{2}Rg_{ij} = T_{ij}$$
 (Einstein eq's)

String theory (and the like): n = 10, 11, 12, Einsteins equations and spinor field equations of the form

 $\nabla_X \psi = F(X) \cdot \psi$ ("preserved supersymmetry")

Simplified versions

$$R_{ij} = 0$$
 (Ricci flat)
 $\nabla \psi = 0$ (constant spinor)

Ansatz: Product structure of the space time

$$M^{1,n-1} = \mathbb{R}^{1,3} \times X^k,$$

 X^k compact Riemannian manifold, k=6,7,8, with constant spinor ψ . This implies $Hol(X)\psi = \psi$ and hence (by Berger's list)

More general: $M^{1,n-1}$ is not a product Question: What are holonomy groups of *n*-dim'l space-times (with constant spinors)?

Holonomy groups of Lorentzian manifolds (= space-times)

Let *H* be the holonomy group of a space time of dimension n + 2 that is not locally a product. Then

- ► either *H* is the full Lorentz group SO(1, *n* + 1) [Berger '55] or $H \subset (\mathbb{R}^+ \times SO(n)) \ltimes \mathbb{R}^n$ = stabiliser of a null line,
- ► G := pr_{SO(n)}(H) is a Riemannian holonomy group [TL, J. Differential Geom., '07]
- H=G ⋉ ℝⁿ or H = (ℝ × G) ⋉ ℝⁿ, or (L × S) ⋉ ℝ^{n-k}, where S is the semisimple part of G and L ⊂ ℝ⁺ × Z(G) or L ⊂ ℝ^k × Z(G) [Bérard-Bergery & Ikemakhen, Proc. Symp. Pure Math. '93].

If the space time admits a constant spinor, then

$$G \ltimes \mathbb{R}^{n-2}$$

where *G* is a product of SU(k), Sp(l), G_2 or Spin(7) [TL '07]. For all possible groups there exist examples [..., Galaev '06].

Further applications to spinor field equations

Results from holonomy theory can be applied to more general spinor field equations, such as the Killing spinor equation: A spinor field φ is a *Killing spinor* to the *Killing number* $\lambda \in \mathbb{C}$ if

$$\nabla_X \varphi = \lambda X \cdot \varphi.$$

Manifolds with Killing spinor are Einstein .

A manifold M has a Killing \Leftrightarrow The cone over M admits a constant spinor.

"Bär-correspondence" [Bär, Comm. Math. Phys. '93]

Let *M* be a complete Riemannian spin manifold with a real Killing spinor. Then *M* is S^n , or a compact Einstein space with one of the following structures: Sasaki, 3-Sasaki, 6-dim. nearly-Kähler, or nearly parallel G_2 .

The Bär correspondence is based on

Theorem (Gallot [Ann. Sci. Ec. Norm. Sup. '79])

Let M be a Riemannian manifold that is geodesically complete. If the cone over M is a Riemannian product, then the cone is flat and M has constant sectional curvature 1.

Corollary: If M^{n-1} has a real Killing spinor, then cone is flat or has holonomy SU(n/2), Sp(n/4), G_2 or Spin(7). This implies Bär's correspondence.

Generalisation to manifolds with indefinite metrics [Alekseevsky, Cortés, Galaev & TL, *Crelle's Journal* '09]:

- Same result, under the additional assumption: *M* compact.
- Detailed description in cases when one of the assumptions fails and for Lorentzian and para-Kähler cones.

Work in progress:

Apply these results to Killing spinor equation for indefinite metrics.

Construction of manifolds with exceptional holonomy

- Long history for Riemannian manifolds: Calabi, Yau, Le Brun, Bryant, Salomon, Joyce ...
- Only few attempts for indefinite metrics.
- Method that can be generalised to indefinite metrics: Hitchin flow

Half flat structures

Let *M* be a 6-manifold. Two stable forms $\rho \in \Lambda^3 M$ and $\omega \in \Lambda^2 M$ such that

$$\omega \wedge \rho = 0, \ \mathrm{d}\rho = 0, \ \mathrm{d}(\omega \wedge \omega) = 0,$$

are called "half-flat structure".

Note: ω and ρ define a (non-integrable) complex strucure J on M.

Hitchin flow for half-flat structures

[Hitchin, J. Differential Geom. '00 (M compact Riemannian), Cortés, Schäfer, Schulte-Hengesbach & TL, Proc. LMS '10] Let M be a 6-manifold with a half-flat structure (ρ, ω). Then there is a one-parameter family ω_t and ρ_t satisfying the Hitchin flow equations

 $\partial_t \rho = \mathrm{d}\omega, \ \partial_t (\omega \wedge \omega) = \mathrm{d}(J^* \rho)$

with initial conditions $\omega_0 = \omega$ and $\rho_0 = \rho$. This family defines a parallel G₂-structure on $M \times [a, b]$ via $\varphi = \omega \wedge dt + \rho$.

 Construction of explicit examples with Hol = G₂ starting from homogeneous half-flat structures on 6-dimensional solvable Lie groups.

Thank you!