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Stable forms

Definition
Let V be a real vector space of dimension n. A k -form ω ∈ Λk V∗ =: Λk ,
with 1 < k < n − 1, is called stable if and ω has an open orbit under the
action of GLnR.

Stable forms exists if k = 2, n − 2 or k = 3, n − 3 and n = 6, 7, 8
[Kimura & Sato ’77]
Stable forms come in pairs: There is a GL+

n R-invariant map
φ : Λk → Λn which sends stable forms to volume forms which and
defines a dual stable form ω̂ by

ω̂ ∧ ω = n
k φ(ω)

for every stable form ω. The connected components of their
stabilisers are the same.
Example: k = 2, n = 2m: ω ∈ Λ2 stable iff it is non-degenerate.

φ(ω) = 1
m!ω

m , ω̂ = 1
(m−1)!

ωm−1 , and StabGLn (ω) = SpmR.
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Examples of stable forms

k = 3, n = 6: A stable form ρ ∈ Λ3V∗ on an oriented V defines a
linear map

V 3 v 7→ vyρ ∧ ρ ∈ Λ5V∗ ' V

which can be rescaled to a (para-)complex structure Jρ : V → V with
J2
ρ = ε I with ε = ±1. We have

φ(ρ) = J∗ρρ ∧ ρ, ρ̂ = J∗ρρ, StabGL+
6

(ρ) =

{
SL3C , ε = −1
SL3R × SL3R , ε = 1

k = 3, n = 7: ϕ ∈ Λ3V∗ is stable if the bilinear form (values in Λ7V∗)

bϕ : (v ,w) 7→ 1
6vyϕ ∧ wyϕ ∧ ϕ ∈ Λ7V∗

is non-degenerate. Then φ(ϕ) = det(bϕ)1/9 defines a volume form
and a scalar product gϕ := 1

φ(ϕ)
bϕ. We have

3ϕ̂ = ∗ϕ , 7φ(ϕ) = ϕ∧∗ϕ , StabGL7(ϕ) =

{
G2 ⊂ SO(7) , gϕ > 0
G∗2 ⊂ SO(3, 4) , else.
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Compatible stable forms

n = 6:

A pair of stable forms ω ∈ Λ2V∗ and ρ ∈ Λ3V∗ is compatible if

ω ∧ ρ = 0 and φ(ρ) = 2φ(ω)

In this case h := εω(·, Jρ·) defines a scalar product and

StabGL6(ρ, ω) =

{
SU(3) or SU(1, 2) , ε = −1
SL3R ⊂ SO(3, 3) , ε = 1

Let ρ ∈ Λ3V∗ and ω ∈ Λ2V∗ be a pair of compatible stable forms
defining the scalar product h. Then, on W := R · e0 ⊕ V the form

ϕ := ω ∧ e0 + ρ ∈ Λ3W∗

is stable, defines scalar product gϕ = h − ε(e0)2, and

StabGL7(ϕ) =

{
G2 , ε = −1 and h > 0
G∗2 , else

Conversely, fix v ∈ V7 with gϕ(v , v) = −ε, then ω := (vyϕ)|v⊥ and
ρ := ϕ|v⊥ are compatible stable forms on v⊥.
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Half flat structures

Let G ⊂ GLnR. A G-structure on a smooth manifold M is a reduction
of the frame bundle of M from GLnR to G.

For G ⊂ O(s, t), a G-structure is parallel if the bundle of G-frames is
invariant under parallel transport (⇐⇒ Holonomy of ∇LC ⊂ G.)

For a real form H of SL3C a H-structure is equivalent to the existence
of ρ ∈ Ω3M and ω ∈ Ω2M which define a pair of compatible stable
forms at each point in M.

A H-structure (ρ, ω) on a 6-manifold is half flat if

dρ = 0 and dω̂ = 0.

(Recall: ω̂ = 1
2ω

2.) This generalises CY 3-manifolds for which we
have dρ = dρ̂ = 0 and dω = 0.

A G(∗)
2 -structure on a 7-manifold is given by ϕ ∈ Ω3M that defines a

stable form at each point of M.
It is parallel if ∇LCϕ = 0, or equivalently, if dϕ = 0 and d∗ϕ = 0.
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2 -structure on a 7-manifold is given by ϕ ∈ Ω3M that defines a

stable form at each point of M.
It is parallel if ∇LCϕ = 0, or equivalently, if dϕ = 0 and d∗ϕ = 0.
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Half flat structures evolving under the Hitchin flow

Let H be a real form H of SL3C and (ρt , ωt ) be a one-parameter family of
H structures on a 6-manifold M6 with t ∈ I.

Then

ϕ = ω ∧ dt + ρ

defines a parallel G(∗)
2 -structure on I ×M6 ⇐⇒ (ρt , ωt ) is half flat ∀t and

∂tρ = dω and ∂t ω̂ = dρ̂ Hitchin flow eq’s (1)

Theorem (Hitchin ’01 for M compact & H = SU(3), CLSS in gen.)

Let (ρ, ω) be a 1-parameter family of stable forms on M6 satisfying the
Hitchin flow eq’s. If (ρt0 , ωt0) is half flat for a t0 ∈ I, then (ρ, ω) is a family of
half flat H-structures.
In particular, the three-form ϕ = ω∧ dt + ρ defines a parallel G(∗)

2 -structure
on M × I with induced metric gϕ = gt − εdt2.
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Using Cauchy-Kovalevskaya Theorem we can now construct G(∗)
2

structures from real analytic half flat structures.

Corollary
Let M be a real analytic 6-mf with real analytic half flat structure (ω0, ρ0).

∃! maximal solution (ω, ρ) of (1) with initial value (ω0, ρ0), which is
defined on an open neighbourhood Ω ⊂ R ×M of {0} ×M. In
particular, there is a parallel G(∗)

2 -structure on Ω.

The evolution is natural, i.e. automorphisms of the initial structures
extend to automorphisms of the evolved structures.

Furthermore, if M is compact or a homogeneous space M = G/K
such that the (ω0, ρ0) is G-invariant, then there is unique maximal
open interval I and a unique solution (ω, ρ) of (1) with initial value
(ω0, ρ0) on I ×M. In particular, there is a parallel G(∗)

2 -structure on
I ×M.

In general, the G(∗)
2 -metrics obtained in this way will only be geodesically

complete if I = R. But they can be conformally changed to a complete
metric.
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Evolution of nearly-Kähler 6-manifolds

CY 3-manifolds are half flat, dω = 0 and dρ = dρ̂ = 0. The resulting
G(∗)

2 -metric is a direct product: gϕ = −εdt2 + g0.
Let (M, g, J) be an almost ε-Hermitian manifold, i.e. J2 = εI and
J∗g = −εg. If ∇J is skew, (M2m, g, J) is called nearly-ε-Kähler.
On a 6-manifold M, a nearly ε-Kähler structure with |∇J|2 ≡ 4 is
equivalent to a half flat structure (ω, ρ) with ρ := ∇ω which satisfies

dω = 3ρ and dρ̂ = 4ω̂ (2)

The solutions to the Hitchin flow are given as

ωt = t2ω0 , ρt = t3ρ0 defining the metric gt = t2g0

for an initial half flat structure (ω0, ρ0). Indeed, because of (2):
∂tρt = 3t2ρ0 = t2dω0 = dωt and ∂t ω̂t = 4t3ω̂0 = t3dρ̂0 = dρ̂t . The
resulting G(∗)

2 metric is a cone metric gϕ = −εdt2 + t2g0 on R+ ×M6.

Conversely, G(∗)
2 -cone-metrics define nearly-ε-Kähler metrics on the

base.
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Left invariant half flat structures on H3 × H3

Let G be a 6-dimensional Lie group. Then:{
left-inv half flat structures on G

}
↔

{
compatible forms (ω, ρ) on g∗

with dω2 = dρ = 0

}
{ algebraic problem as dα(X ,Y) = α([X ,Y ]) for X ,Y ∈ g and α ∈ g∗.

{ Classification of left inv. half flat structures on the product of two 3-dim
Lie groups [Schulte-Hengesbach, J. Geom. Phys. ‘10]

Let H3 be the 3-dim Heisenberg group and G = H3 × H3.
Every stable ω ∈ Λ2g∗ with dω2 = 0 has one of the normal forms:

ω1 = e1f1 + e2f2 + e3f3, ω4 = e1f3 + e2f2 + e3f1 + e13 + βf13

ω2 = e2f2 + e13 + f13, ω5 = e1f3 + e2f2 + e13 + f13

ω3 = e1f3 + e2f2 + e3f1,

for a basis (e1, e2, e3, f1, f2, f3) be a basis of H3 ×H3 with commutator
de3 = e12 and df3 = f12 and β , −1 a parameter.
Compatible stable closed 3-forms ρ are given by a linear 8-parameter
family ρi = ρi(a1, . . . , a8) subject to a quartic non-degeneracy
condition.
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Half flat structures on H3 × H3 with ω = ω1

ω = ω1 is a necessary condition for the existence of a half flat SU(3)
structure on G := H3 × H3

There are half flat SU(1, 2) and SL3R structures on G with ω , ω1.
Examples of half flat structures on G with
ω = ω1 = e1f1 + e2f2 + e3f3:

I ρ = 1
√

2
(e123 − f123 − e1f23 + e23f1 − e2f31 + e31f2 − e3f12 + e12f3)

{ half flat SU(3)-structure.
I ρ = 1

√
2

(e123 − f123 − e1f23 + e23f1 + e2f31 − e31f2 + e3f12 − e12f3)

{ half flat SU(1, 2)-structure, e1 and e4 being spacelike.
I ρ =

√
2 (e123 + f123){ half flat SL3R-structure such that the h3’s are

the Jρ-eigenspaces, i.e. the metric is g = 2( e1 · f1 + e2 · f2 + e3 · f3).

In order to evolve these structures we define κ : I → R:

SU(3) : κ(x) = (x −
√

2)3(x +
√

2) , I = (−
√

2,
√

2)

SU(1, 2) : κ(x) = (x −
√

2)(x +
√

2)3 , I = (−
√

2,
√

2)
SL3R : κ(x) = (2 + x)2 , I = R
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Evolving half flat structures on H3 × H3 with ω = ω1

Theorem
Let ρ0 be one of the stable forms compatible to ω = ω1 defining a half flat
structure on H3 × H3 and κ : I → R as on the previous slide.

Let x be a
solution to the ODE ẋ = 2√

εκ(x(t))
. Then

ρx = ρ0 + x(e12f3 − e3f12),

ωx = 1
2 (εκ(x))−

1
2

(
εκ(x) e1f1 + εκ(x) e2f2 + 4e3f3

)
,

give a solution to the Hitchin flow on the intervall I. The parallel stable
three-form and the metric on M × I are

ϕ = 1
2

√
εκ(x)ωx ∧ dx + ρx , gϕ = gx −

1
4κ(x)dx2,

and (M × I, gϕ) has holonomy equal to G(∗)
2 .

Moreover, by varying ρ we obtain an 8-parameter family of metrics with
holonomy equal to G(∗)

2 .
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εκ(x(t))
.

Then

ρx = ρ0 + x(e12f3 − e3f12),

ωx = 1
2 (εκ(x))−

1
2

(
εκ(x) e1f1 + εκ(x) e2f2 + 4e3f3

)
,

give a solution to the Hitchin flow on the intervall I. The parallel stable
three-form and the metric on M × I are

ϕ = 1
2

√
εκ(x)ωx ∧ dx + ρx , gϕ = gx −

1
4κ(x)dx2,

and (M × I, gϕ) has holonomy equal to G(∗)
2 .

Moreover, by varying ρ we obtain an 8-parameter family of metrics with
holonomy equal to G(∗)

2 .

10/11



Evolving half flat structures on H3 × H3 with ω = ω1

Theorem
Let ρ0 be one of the stable forms compatible to ω = ω1 defining a half flat
structure on H3 × H3 and κ : I → R as on the previous slide. Let x be a
solution to the ODE ẋ = 2√
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Half flat structures on H3 × H3 with ω , ω1

What happens in the case when ω is not of the form ω1?

Let (ω, ρ) be a left-invariant half flat structure with ω , ω1 on G = H3 × H3

and let g be the pseudo-Riemannian metric induced by (ω, ρ). Then
The pseudo-Riemannian manifold (H3 × H3, g) is either flat or
isometric to the product of

I a two-dimensional flat factor and
I the unique 4-dimensional simply connected para-hyper Kähler

symmetric space (N, gN) with 1-dimensional holonomy group
[Alekseevsky et al ‘05]

In particular, the metric g is Ricci-flat.

The Hitchin flow is defined for all times and defines a G∗2-metric on
G × R.

However, this metric is either flat or isometric to a product of (N, gN)
and a 3-dim flat factor, so its holonomy is at most one-dimensional.

11/11
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