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with 1 < k < n— 1, is called stable if and w has an open orbit under the
action of GL,R.
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[Kimura & Sato '77]

@ Stable forms come in pairs: There is a GL,} R-invariant map
¢ : A< — A" which sends stable forms to volume forms which and
defines a dual stable form & by

OAw=gd(w)

for every stable form w. The connected components of their
stabilisers are the same.
@ Example: k = 2, n = 2m: w € A? stable iff it is non-degenerate.

$(w) = o, &= (m11)!“’m_1 , and Stabgr,(w) = SpyR.
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@ k =3, n = 6: A stable form p € A3V* on an oriented V defines a
linear map
Vov o vapApe NPV =V

which can be rescaled to a (para-)complex structure J, : V — V with
J? = eI with € = +1. We have

L A _ [ SLsC, e =-1
¢(p)—Jpp/\p, p—Jpp, StabGLg—(p)_{ SLsRXSLaR, e=1

@ k =3,n=7:¢e ANV*is stable if the bilinear form (values in A7 V*)
by: (v.w) > IvagAwapAg e NV*

is non-degenerate. Then ¢(¢) = det(b,)'/® defines a volume form
and a scalar product g, := ﬁb We have

X Go ¢ SO(7 >0
30 =, 7¢(¢) = pAxp, Stabgr,(¢) = {chsogs)4) grse.
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@ n = 6: A pair of stable forms w € A2V* and p € A2V* is compatible if

wAp=0 and ¢(p) = 24(w)
In this case h := ew(:, J,-) defines a scalar product and

SU(3) or SU(1,2), €= -1

Stabgr, (p, w) = { SLsR c SO(3,3), e=1

@ Letp e A3V* and w € A2V* be a pair of compatible stable forms
defining the scalar product h. Then, on W := R - €® @ V the form
p=whe+p e AW
is stable, defines scalar product g, = h — €(€°)?, and

Go, e=-1andh>0

Stabor, (¢) = { G;, else

@ Conversely, fix v € V7 with g,(v, v) = —¢, then w := (v¢)|,- and
o = ¢|,+ are compatible stable forms on v+.
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@ Let G c GL,R. A G-structure on a smooth manifold M is a reduction
of the frame bundle of M from GL,R to G.
For G c O(s, t), a G-structure is parallel if the bundle of G-frames is
invariant under parallel transport ( &< Holonomy of V€ c G.)

@ For areal form H of SL3C a H-structure is equivalent to the existence
of p € Q°M and w € Q?>M which define a pair of compatible stable
forms at each point in M.

@ A H-structure (p, w) on a 6-manifold is half flat if

do=0 and d& =0.

(Recall: @ = % .) This generalises CY 3-manifolds for which we

have dp = dp = 0 and dw = 0.

oA Gg*)-structure on a 7-manifold is given by ¢ € Q3M that defines a
stable form at each point of M.
It is parallel if V:Cp = 0, or equivalently, if dp = 0 and dx¢ = 0.
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Let H be a real form H of SL3C and (p;, w;) be a one-parameter family of
H structures on a 6-manifold M® with t € I. Then

p=wAdt+p

defines a parallel Gg*)—structure on Ix M8 < (p1,w;) is half flat ¥Vt and

O = dw and & = dp  Hitchin flow eq’s (1) |

Theorem (Hitchin *01 for M compact & H = SU(3), CLSS in gen.)

Let (p, w) be a 1-parameter family of stable forms on M® satisfying the
Hitchin flow eq’s. If (p1,, wy,) is half flat for a ty € 1, then (p, w) is a family of
half flat H-structures.

In particular, the three-form ¢ = w A dt + p defines a parallel Gg*)-structure
on M x [ with induced metric g, = gi — edt?.

v
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Using Cauchy-Kovalevskaya Theorem we can now construct Gg*)
structures from real analytic half flat structures.

Corollary
Let M be a real analytic 6-mf with real analytic half flat structure (wo, po)-
@ 3! maximal solution (w, p) of (1) with initial value (wo, po), which is
defined on an open neighbourhood Q2 c R x M of {0} x M. In
particular, there is a parallel Gg“)-structure on Q.
@ The evolution is natural, i.e. automorphisms of the initial structures
extend to automorphisms of the evolved structures.

@ Furthermore, if M is compact or a homogeneous space M = G/K
such that the (wo, po) is G-invariant, then there is unique maximal
open interval | and a unique solution (w, p) of (1) with initial value

(wo,p0) on I x M. In particular, there is a parallel Gg*)-structure on
I x M.

In general, the ng)-metrics obtained in this way will only be geodesically

complete if I = R. But they can be conformally changed to a complete

metric.
e~V £ I
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@ CY 3-manifolds are half flat, dw = 0 and dp = dp = 0. The resulting
Gé*)-metric is a direct product: g, = —edt? + go.

@ Let (M, g,J) be an almost e-Hermitian manifold, i.e. J?> = €l and
J*g = —€g. If VJ is skew, (M2™, g, J) is called nearly-s-Kahler.
On a 6-manifold M, a nearly s-Kahler structure with [VJ|? = 4 is
equivalent to a half flat structure (w, p) with p := Vw which satisfies

dw = 3p and dp=4b 2)
The solutions to the Hitchin flow are given as
wi = tPwg, pr = t3py defining the metric g; = t2go

for an initial half flat structure (wp, po). Indeed, because of (2):

atpt = 3t2p0 = tzdwo = dwt and at(l\)t = 4t3(//.\)0 = tsdﬁo = dﬁt The

resulting Gé*) metric is a cone metric g, = —edt® + t2go on R x M®.
@ Conversely, Gg*)-cone-metrics define nearly-e-Kéhler metrics on the

base.
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Let G be a 6-dimensional Lie group. Then:

compatible forms (w, p) on g*
with dw? =dp =0

~> algebraic problem as da(X, Y) = «([X, Y]) for X, Y e gand @ € g".
~» Classification of left inv. half flat structures on the product of two 3-dim
Lie groups [Schulte-Hengesbach, J. Geom. Phys. ‘10]
Let H3 be the 3-dim Heisenberg group and G = Hs X Hs.
@ Every stable w € A?g* with dw? = 0 has one of the normal forms:
wi=e'f' +e?P 4+ %3, wi=e"P4+ e’ +e3f 4313
wp = €212 4 @13 4 13, ws = e'f3 + e2f2 4 e!3 4 13
w3 = e'f* + e?f + e3f1,

{Ieft-inv half flat structures on G} “ {

for a basis (e', €, €3, f', f2, %) be a basis of Hz x Hz with commutator
de® = e'? and df* = 2 and 8 # —1 a parameter.

@ Compatible stable closed 3-forms p are given by a linear 8-parameter
family p; = pi(a’, ..., a®) subject to a quartic non-degeneracy

condition.
Y < ¥ £ I
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@ w = wy is a necessary condition for the existence of a half flat SU(3)
structure on G := Hz X Hj
@ There are half flat SU(1, 2) and SL3R structures on G with w # w1.
@ Examples of half flat structures on G with
w=ws =e'fl +e?f + e3f3;
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~> half flat SU(1, 2)-structure, e; and e4 being spacelike.
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@ w = wy is a necessary condition for the existence of a half flat SU(3)
structure on G := Hz X Hj
@ There are half flat SU(1,2) and SL3R structures on G with w # w;.
@ Examples of half flat structures on G with
w=ws =e'fl +e?f + e3f3;
> p= %(6123 _ f123 _ e1 f23 + 923f1 _ e2f31 + eS1 f2 _ eSf12 + e12f3)
~ half flat SU(3)-structure.
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lat structures on Hs x Hs with w = w1

@ w = wy is a necessary condition for the existence of a half flat SU(3)
structure on G := Hz X Hj
@ There are half flat SU(1,2) and SL3R structures on G with w # wy.
@ Examples of half flat structures on G with
w=ws =e'fl +e?f + e3f3;
> p= %(9123 _ f123 _ e1 f23 + eZSf1 _ er31 + eS1 f2 _ eSf12 + e12f3)
~ half flat SU(3)-structure.
> p= %(6123 _ f123 _ e1 f23 + 623f1 + e2f31 _ eS1 f2 + eSf12 _ e12f3)
~> half flat SU(1, 2)-structure, ey and e4 being spacelike.
» p= V2(e'® + 128) ~; half flat SLgR-structure such that the b3’s are
the J,-eigenspaces, i.e. the metricis g=2(e' - f' +e2-f2 + &3 f3).
@ In order to evolve these structures we define k : | —» R:

SUB) : «(x)=(x- V23(x+ V2) , I=(-V2,V2)
SU(1,2) = «(x)=(x- V2)(x+ V2)® , I=(-V2,V2)
SLsR : «(x)=(2+x)? , I=R



Theorem

Let pg be one of the stable forms compatible to w = w1 defining a half flat
structure on Hz X Hz and k : | — R as on the previous slide.
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Theorem

Let pg be one of the stable forms compatible to w = w1 defining a half flat
structure on Hz x Hz and x : | — R as on the previous slide. Let x be a
solution to the ODE x = ——2—

Ve(x(1))
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Theorem

Let pg be one of the stable forms compatible to w = w1 defining a half flat
structure on Hz x Hz and x : | — R as on the previous slide. Let x be a

solution to the ODE x = 2 Then
Vek(x(1))
px = po+x(e?f®-e%'?),
1
wx = 5 (ex(x)72 (ex(x)e'f" +ex(x) €2 + €% ),

give a solution to the Hitchin flow on the intervall I.
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Theorem

Let pg be one of the stable forms compatible to w = w1 defining a half flat
structure on Hz x Hz and x : | — R as on the previous slide. Let x be a
solution to the ODE x = ——2 Then

Vex(x(t))”
px = po+ x(e'?f - e3f12),

1
wx = 5 (ex(x)72 (ex(x)e'f" +ex(x) €2 + €% ),

give a solution to the Hitchin flow on the intervall I. The parallel stable
three-form and the metric on M x | are

p= % vEK(X)wx AdX 4+ px, Gy = Ox — %K(x)dxz,

and (M x 1, g,) has holonomy equal to Gé*).




lat structures on Hs x H3 with w = w1

Theorem

Let pg be one of the stable forms compatible to w = w1 defining a half flat
structure on Hz x Hz and x : | — R as on the previous slide. Let x be a
solution to the ODE x = ——2 Then

Ve(x(1))

px = po+ x(e'?f - e3f12),

1
wx = 5 (ex(x)72 (ex(x)e'f" +ex(x) €2 + €% ),

give a solution to the Hitchin flow on the intervall I. The parallel stable
three-form and the metric on M x | are

¢ =1 Jek(X)wx AdX +px, Gy = gx — 3k(X)dXZ,

and (M x 1, g,) has holonomy equal to Gé*).
Moreover, by varying p we obtain an 8-parameter family of metrics with
holonomy equal to Gg‘).
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@ The pseudo-Riemannian manifold (Hs x Hs, g) is either flat or
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What happens in the case when w is not of the form w4 ?
Let (w, p) be a left-invariant half flat structure with w # w1 on G = Hz x H3
and let g be the pseudo-Riemannian metric induced by (w, p). Then
@ The pseudo-Riemannian manifold (Hs x Hs, g) is either flat or
isometric to the product of

» a two-dimensional flat factor and

» the unique 4-dimensional simply connected para-hyper Kéhler
symmetric space (N, gn) with 1-dimensional holonomy group
[Alekseevsky et al ‘05]
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What happens in the case when w is not of the form w4 ?
Let (w, p) be a left-invariant half flat structure with w # w1 on G = Hz x H3
and let g be the pseudo-Riemannian metric induced by (w, p). Then
@ The pseudo-Riemannian manifold (Hs x Hs, g) is either flat or
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» a two-dimensional flat factor and
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symmetric space (N, gn) with 1-dimensional holonomy group
[Alekseevsky et al ‘05]

In particular, the metric g is Ricci-flat.
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Let (w, p) be a left-invariant half flat structure with w # w1 on G = Hz x H3
and let g be the pseudo-Riemannian metric induced by (w, p). Then
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In particular, the metric g is Ricci-flat.

@ The Hitchin flow is defined for all times and defines a G;-metric on
G xR.



structures on Hz x Hsz with w # w1

What happens in the case when w is not of the form w4 ?
Let (w, p) be a left-invariant half flat structure with w # w1 on G = Hz x H3
and let g be the pseudo-Riemannian metric induced by (w, p). Then
@ The pseudo-Riemannian manifold (Hz x Hs, g) is either flat or
isometric to the product of
» a two-dimensional flat factor and
» the unique 4-dimensional simply connected para-hyper Kéhler
symmetric space (N, gn) with 1-dimensional holonomy group
[Alekseevsky et al ‘05]

In particular, the metric g is Ricci-flat.
@ The Hitchin flow is defined for all times and defines a G;-metric on
G xR.

@ However, this metric is either flat or isometric to a product of (N, gn)
and a 3-dim flat factor, so its holonomy is at most one-dimensional.
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