Half flat structures and special holonomy

Thomas Leistner

AMSI workshop: Riemannian and differential geometry November 30 – December 2, 2010 La Trobe University Melbourne

2 Half flat structures and their evolution under the Hitchin flow

Joint work with V. Cortés, F. Schulte-Hengesbach (Hamburg), and L. Schäfer (Hannover) [Proc. London Math. Soc., 2010]

Stable forms

Definition

Let *V* be a real vector space of dimension *n*. A *k*-form $\omega \in \Lambda^k V^* =: \Lambda^k$, with 1 < k < n - 1, is called *stable* if and ω has an open orbit under the action of $GL_n\mathbb{R}$.

イロト イロト イヨト イヨト

æ

1/11

Stable forms

Definition

Let *V* be a real vector space of dimension *n*. A *k*-form $\omega \in \Lambda^k V^* =: \Lambda^k$, with 1 < k < n - 1, is called *stable* if and ω has an open orbit under the action of $GL_n\mathbb{R}$.

• Stable forms exists if k = 2, n - 2 or k = 3, n - 3 and n = 6, 7, 8 [Kimura & Sato '77]

Let *V* be a real vector space of dimension *n*. A *k*-form $\omega \in \Lambda^k V^* =: \Lambda^k$, with 1 < k < n - 1, is called *stable* if and ω has an open orbit under the action of $GL_n\mathbb{R}$.

- Stable forms exists if k = 2, n 2 or k = 3, n 3 and n = 6, 7, 8 [Kimura & Sato '77]
- Stable forms come in pairs: There is a GL⁺_nℝ-invariant map
 φ : Λ^k → Λⁿ which sends stable forms to volume forms which and defines a *dual stable form* ŵ by

$$\hat{\omega} \wedge \omega = \frac{n}{k} \phi(\omega)$$

for every stable form ω .

Let *V* be a real vector space of dimension *n*. A *k*-form $\omega \in \Lambda^k V^* =: \Lambda^k$, with 1 < k < n - 1, is called *stable* if and ω has an open orbit under the action of $GL_n\mathbb{R}$.

- Stable forms exists if k = 2, n 2 or k = 3, n 3 and n = 6, 7, 8 [Kimura & Sato '77]
- Stable forms come in pairs: There is a GL⁺_nℝ-invariant map
 φ : Λ^k → Λⁿ which sends stable forms to volume forms which and defines a *dual stable form* ŵ by

$$\hat{\omega} \wedge \omega = \frac{n}{k} \phi(\omega)$$

for every stable form ω . The connected components of their stabilisers are the same.

A (1) > A (1) > A

Let *V* be a real vector space of dimension *n*. A *k*-form $\omega \in \Lambda^k V^* =: \Lambda^k$, with 1 < k < n - 1, is called *stable* if and ω has an open orbit under the action of $GL_n\mathbb{R}$.

- Stable forms exists if k = 2, n 2 or k = 3, n 3 and n = 6, 7, 8 [Kimura & Sato '77]
- Stable forms come in pairs: There is a GL⁺_nℝ-invariant map
 φ : Λ^k → Λⁿ which sends stable forms to volume forms which and defines a *dual stable form* ŵ by

$$\hat{\omega} \wedge \omega = \frac{n}{k} \phi(\omega)$$

for every stable form ω . The connected components of their stabilisers are the same.

• Example: k = 2, n = 2m: $\omega \in \Lambda^2$ stable iff it is non-degenerate.

1/11

Let *V* be a real vector space of dimension *n*. A *k*-form $\omega \in \Lambda^k V^* =: \Lambda^k$, with 1 < k < n - 1, is called *stable* if and ω has an open orbit under the action of $GL_n\mathbb{R}$.

- Stable forms exists if k = 2, n 2 or k = 3, n 3 and n = 6, 7, 8 [Kimura & Sato '77]
- Stable forms come in pairs: There is a GL⁺_nℝ-invariant map
 φ : Λ^k → Λⁿ which sends stable forms to volume forms which and defines a *dual stable form* ŵ by

$$\hat{\omega} \wedge \omega = \frac{n}{k} \phi(\omega)$$

for every stable form ω . The connected components of their stabilisers are the same.

• Example: k = 2, n = 2m: $\omega \in \Lambda^2$ stable iff it is non-degenerate.

$$\phi(\omega) = \frac{1}{m!}\omega^m$$
, $\hat{\omega} = \frac{1}{(m-1)!}\omega^{m-1}$, and $Stab_{\mathrm{GL}_n}(\omega) = \mathrm{Sp}_m\mathbb{R}$.

- * ロ * * 個 * * 目 * * 目 * 「目 * つへで

k = 3, n = 6: A stable form ρ ∈ Λ³V^{*} on an oriented V defines a linear map

$$V \ni v \mapsto v \lrcorner \rho \land \rho \in \Lambda^5 V^* \simeq V$$

• k = 3, n = 6: A stable form $\rho \in \Lambda^3 V^*$ on an oriented V defines a linear map

$$V \ni v \mapsto v \lrcorner \rho \land \rho \in \Lambda^5 V^* \simeq V$$

which can be rescaled to a (para-)complex structure $J_{\rho}: V \to V$ with $J_{\rho}^2 = \epsilon \mathbb{I}$ with $\epsilon = \pm 1$.

• k = 3, n = 6: A stable form $\rho \in \Lambda^3 V^*$ on an oriented V defines a linear map

$$V \ni v \mapsto v \lrcorner \rho \land \rho \in \Lambda^5 V^* \simeq V$$

which can be rescaled to a (para-)complex structure $J_{\rho}: V \to V$ with $J_{\rho}^2 = \epsilon \mathbb{I}$ with $\epsilon = \pm 1$. We have

$$\phi(\rho) = J_{\rho}^* \rho \land \rho, \ \hat{\rho} = J_{\rho}^* \rho, \ \text{Stab}_{\mathrm{GL}_6^+}(\rho) = \left\{ \begin{array}{ll} \mathrm{SL}_3 \mathbb{C} \ , & \epsilon = -1 \\ \mathrm{SL}_3 \mathbb{R} \times \mathrm{SL}_3 \mathbb{R} \ , & \epsilon = 1 \end{array} \right.$$

2

イロト イロト イヨト イヨト

• k = 3, n = 6: A stable form $\rho \in \Lambda^3 V^*$ on an oriented V defines a linear map

$$V \ni v \mapsto v \lrcorner \rho \land \rho \in \Lambda^5 V^* \simeq V$$

which can be rescaled to a (para-)complex structure $J_{\rho}: V \to V$ with $J_{\rho}^2 = \epsilon \mathbb{I}$ with $\epsilon = \pm 1$. We have

$$\phi(\rho) = J_{\rho}^* \rho \land \rho, \ \hat{\rho} = J_{\rho}^* \rho, \ \text{Stab}_{\mathrm{GL}_6^+}(\rho) = \left\{ \begin{array}{ll} \mathrm{SL}_3 \mathbb{C} \ , & \epsilon = -1 \\ \mathrm{SL}_3 \mathbb{R} \times \mathrm{SL}_3 \mathbb{R} \ , & \epsilon = 1 \end{array} \right.$$

• k = 3, n = 7: $\varphi \in \Lambda^3 V^*$ is stable if the bilinear form (values in $\Lambda^7 V^*$)

$$b_{arphi}:\,(v,w)\;\mapsto\;rac{1}{6}v\lrcornerarphi\wedge w\lrcornerarphi\wedgearphi\;\in \Lambda^7V^*$$

is non-degenerate.

< 回 > < 回 > < 回 > <

• k = 3, n = 6: A stable form $\rho \in \Lambda^3 V^*$ on an oriented V defines a linear map

$$V \ni v \mapsto v \lrcorner \rho \land \rho \in \Lambda^5 V^* \simeq V$$

which can be rescaled to a (para-)complex structure $J_{\rho}: V \to V$ with $J_{\rho}^2 = \epsilon \mathbb{I}$ with $\epsilon = \pm 1$. We have

$$\phi(
ho) = J^*_{
ho}
ho \wedge
ho, \ \hat{
ho} = J^*_{
ho}
ho, \ Stab_{\mathrm{GL}_6^+}(
ho) = \left\{ egin{array}{cc} \mathrm{SL}_3\mathbb{C}\,, & \epsilon = -1 \ \mathrm{SL}_3\mathbb{R} imes \mathrm{SL}_3\mathbb{R}\,, & \epsilon = 1 \end{array}
ight.$$

• k = 3, n = 7: $\varphi \in \Lambda^3 V^*$ is stable if the bilinear form (values in $\Lambda^7 V^*$)

$$b_{arphi}: (v,w) \mapsto rac{1}{6} v \lrcorner arphi \land w \lrcorner arphi \land arphi \in \Lambda^7 V^*$$

is non-degenerate. Then $\phi(\varphi) = \det(b_{\varphi})^{1/9}$ defines a volume form and a scalar product $g_{\varphi} := \frac{1}{\phi(\varphi)} b_{\varphi}$. • k = 3, n = 6: A stable form $\rho \in \Lambda^3 V^*$ on an oriented V defines a linear map

$$V \ni v \mapsto v \lrcorner \rho \land \rho \in \Lambda^5 V^* \simeq V$$

which can be rescaled to a (para-)complex structure $J_{\rho}: V \to V$ with $J_{\rho}^2 = \epsilon \mathbb{I}$ with $\epsilon = \pm 1$. We have

$$\phi(
ho) = J^*_{
ho}
ho \wedge
ho, \ \hat{
ho} = J^*_{
ho}
ho, \ Stab_{\mathrm{GL}_6^+}(
ho) = \left\{ egin{array}{cc} \mathrm{SL}_3\mathbb{C}\,, & \epsilon = -1 \ \mathrm{SL}_3\mathbb{R} imes \mathrm{SL}_3\mathbb{R}\,, & \epsilon = 1 \end{array}
ight.$$

• k = 3, n = 7: $\varphi \in \Lambda^3 V^*$ is stable if the bilinear form (values in $\Lambda^7 V^*$)

$$b_{\varphi}: (v, w) \mapsto \frac{1}{6} v \lrcorner \varphi \land w \lrcorner \varphi \land \varphi \in \Lambda^7 V^*$$

is non-degenerate. Then $\phi(\varphi) = \det(b_{\varphi})^{1/9}$ defines a volume form and a scalar product $g_{\varphi} := \frac{1}{\phi(\varphi)} b_{\varphi}$. We have

$$3\hat{\varphi} = *\varphi, \ 7\phi(\varphi) = \varphi \wedge *\varphi, \ Stab_{\mathrm{GL}_7}(\varphi) = \left\{ \begin{array}{ll} \mathrm{G}_2 \subset \mathrm{SO}(7)\,, & g_\varphi > 0\\ \mathrm{G}_2^* \subset \mathrm{SO}(3,4)\,, & \text{else.} \end{array} \right.$$

• *n* = 6:

• n = 6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

 $\omega \wedge \rho = 0$

• n = 6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

 $\omega \wedge \rho = 0$ and $\phi(\rho) = 2\phi(\omega)$

3/11

• n = 6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

$$\omega \wedge \rho = 0$$
 and $\phi(\rho) = 2\phi(\omega)$

In this case $h:=\epsilon\omega(\cdot,J_{\rho}\cdot)$ defines a scalar product and

$$Stab_{\text{GL}_6}(\rho, \omega) = \begin{cases} \text{SU}(3) \text{ or } \text{SU}(1, 2), & \epsilon = -1 \\ \text{SL}_3 \mathbb{R} \subset \text{SO}(3, 3), & \epsilon = 1 \end{cases}$$

• n = 6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

$$\omega \wedge \rho = 0$$
 and $\phi(\rho) = 2\phi(\omega)$

In this case $h:=\epsilon\omega(\cdot,J_{\rho}\cdot)$ defines a scalar product and

$$Stab_{\text{GL}_6}(\rho, \omega) = \begin{cases} \text{SU(3) or SU(1,2)}, & \epsilon = -1 \\ \text{SL}_3 \mathbb{R} \subset \text{SO(3,3)}, & \epsilon = 1 \end{cases}$$

Let ρ ∈ Λ³V* and ω ∈ Λ²V* be a pair of compatible stable forms defining the scalar product *h*.

• n = 6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

$$\omega \wedge \rho = 0$$
 and $\phi(\rho) = 2\phi(\omega)$

In this case $h := \epsilon \omega(\cdot, J_{\rho} \cdot)$ defines a scalar product and

$$Stab_{\text{GL}_6}(\rho, \omega) = \begin{cases} \text{SU}(3) \text{ or } \text{SU}(1, 2), & \epsilon = -1 \\ \text{SL}_3 \mathbb{R} \subset \text{SO}(3, 3), & \epsilon = 1 \end{cases}$$

Let ρ ∈ Λ³ V^{*} and ω ∈ Λ² V^{*} be a pair of compatible stable forms defining the scalar product *h*. Then, on W := ℝ · e⁰ ⊕ V the form

$$\varphi := \omega \wedge e^0 + \rho \in \Lambda^3 W^*$$

is stable,

• n = 6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

$$\omega \wedge \rho = 0$$
 and $\phi(\rho) = 2\phi(\omega)$

In this case $h:=\epsilon\omega(\cdot,J_{
ho}\cdot)$ defines a scalar product and

$$Stab_{\text{GL}_6}(\rho, \omega) = \begin{cases} \text{SU}(3) \text{ or } \text{SU}(1, 2), & \epsilon = -1 \\ \text{SL}_3 \mathbb{R} \subset \text{SO}(3, 3), & \epsilon = 1 \end{cases}$$

Let ρ ∈ Λ³ V^{*} and ω ∈ Λ² V^{*} be a pair of compatible stable forms defining the scalar product *h*. Then, on W := ℝ · e⁰ ⊕ V the form

$$\varphi := \omega \wedge \boldsymbol{e}^0 + \rho \in \Lambda^3 \boldsymbol{W}^*$$

is stable, defines scalar product $g_{arphi}=h-\epsilon(e^0)^2,$ and

$$Stab_{ ext{GL}_7}(arphi) = \left\{egin{array}{c} ext{G}_2 \ , & \epsilon = -1 ext{ and } h > 0 \ ext{G}_2^* \ , & else \end{array}
ight.$$

3/11

• n = 6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

$$\omega \wedge \rho = 0$$
 and $\phi(\rho) = 2\phi(\omega)$

In this case $h:=\epsilon\omega(\cdot,J_{
ho}\cdot)$ defines a scalar product and

$$Stab_{\text{GL}_6}(\rho, \omega) = \begin{cases} \text{SU}(3) \text{ or } \text{SU}(1, 2), & \epsilon = -1 \\ \text{SL}_3 \mathbb{R} \subset \text{SO}(3, 3), & \epsilon = 1 \end{cases}$$

Let ρ ∈ Λ³ V^{*} and ω ∈ Λ² V^{*} be a pair of compatible stable forms defining the scalar product *h*. Then, on W := ℝ · e⁰ ⊕ V the form

$$\varphi := \omega \wedge e^0 + \rho \in \Lambda^3 W^*$$

is stable, defines scalar product $g_arphi=h-\epsilon(e^0)^2,$ and

$$Stab_{\mathrm{GL}_7}(arphi) = \left\{ egin{array}{cc} \mathrm{G}_2 \ , & \epsilon = -1 \ \mathrm{and} \ h > 0 \ \mathrm{G}_2^* \ , & \textit{else} \end{array}
ight.$$

• Conversely, fix $v \in V^7$ with $g_{\varphi}(v, v) = -\epsilon$, then $\omega := (v \lrcorner \varphi)|_{v^{\bot}}$ and $\rho := \varphi|_{v^{\bot}}$ are compatible stable forms on v^{\bot} .

 Let G ⊂ GL_nℝ. A G-structure on a smooth manifold M is a reduction of the frame bundle of M from GL_nℝ to G.

Half flat structures

Let G ⊂ GL_nℝ. A G-structure on a smooth manifold M is a reduction of the frame bundle of M from GL_nℝ to G.
 For G ⊂ O(s, t), a G-structure is parallel if the bundle of G-frames is invariant under parallel transport (⇔ Holonomy of ∇^{LC} ⊂ G.)

- Let G ⊂ GL_nℝ. A G-structure on a smooth manifold M is a reduction of the frame bundle of M from GL_nℝ to G.
 For G ⊂ O(s, t), a G-structure is parallel if the bundle of G-frames is invariant under parallel transport (⇔ Holonomy of ∇^{LC} ⊂ G.)
- For a real form H of SL₃C a H-structure is equivalent to the existence of ρ ∈ Ω³M and ω ∈ Ω²M which define a pair of compatible stable forms at each point in M.

- Let G ⊂ GL_nℝ. A G-structure on a smooth manifold M is a reduction of the frame bundle of M from GL_nℝ to G.
 For G ⊂ O(s, t), a G-structure is parallel if the bundle of G-frames is invariant under parallel transport (⇔ Holonomy of ∇^{LC} ⊂ G.)
- For a real form H of SL₃C a H-structure is equivalent to the existence of ρ ∈ Ω³M and ω ∈ Ω²M which define a pair of compatible stable forms at each point in M.
- A *H*-structure (ρ, ω) on a 6-manifold is half flat if

(Recall: $\hat{\omega} = \frac{1}{2}\omega^2$.)

- Let G ⊂ GL_nℝ. A G-structure on a smooth manifold M is a reduction of the frame bundle of M from GL_nℝ to G.
 For G ⊂ O(s, t), a G-structure is parallel if the bundle of G-frames is invariant under parallel transport (⇔ Holonomy of ∇^{LC} ⊂ G.)
- For a real form H of SL₃C a H-structure is equivalent to the existence of ρ ∈ Ω³M and ω ∈ Ω²M which define a pair of compatible stable forms at each point in M.
- A *H*-structure (ρ, ω) on a 6-manifold is half flat if

(Recall: $\hat{\omega} = \frac{1}{2}\omega^2$.) This generalises CY 3-manifolds for which we have $d\rho = d\hat{\rho} = 0$ and $d\omega = 0$.

- Let G ⊂ GL_nℝ. A G-structure on a smooth manifold M is a reduction of the frame bundle of M from GL_nℝ to G.
 For G ⊂ O(s, t), a G-structure is parallel if the bundle of G-frames is invariant under parallel transport (→ Holonomy of ∇^{LC} ⊂ G.)
- For a real form H of SL₃C a H-structure is equivalent to the existence of ρ ∈ Ω³M and ω ∈ Ω²M which define a pair of compatible stable forms at each point in M.
- A *H*-structure (ρ, ω) on a 6-manifold is half flat if

(Recall: $\hat{\omega} = \frac{1}{2}\omega^2$.) This generalises CY 3-manifolds for which we have $d\rho = d\hat{\rho} = 0$ and $d\omega = 0$.

A G₂^(*)-structure on a 7-manifold is given by φ ∈ Ω³M that defines a stable form at each point of M.

- Let G ⊂ GL_nℝ. A G-structure on a smooth manifold M is a reduction of the frame bundle of M from GL_nℝ to G.
 For G ⊂ O(s, t), a G-structure is parallel if the bundle of G-frames is invariant under parallel transport (⇔ Holonomy of ∇^{LC} ⊂ G.)
- For a real form H of SL₃C a H-structure is equivalent to the existence of ρ ∈ Ω³M and ω ∈ Ω²M which define a pair of compatible stable forms at each point in M.
- A *H*-structure (ρ, ω) on a 6-manifold is half flat if

(Recall: $\hat{\omega} = \frac{1}{2}\omega^2$.) This generalises CY 3-manifolds for which we have $d\rho = d\hat{\rho} = 0$ and $d\omega = 0$.

A G₂^(*)-structure on a 7-manifold is given by φ ∈ Ω³M that defines a stable form at each point of M. It is parallel if ∇^{LC}φ = 0, or equivalently, if dφ = 0 and d*φ = 0.

ミトメミト ミークへの

Let *H* be a real form *H* of $SL_3\mathbb{C}$ and (ρ_t, ω_t) be a one-parameter family of *H* structures on a 6-manifold M^6 with $t \in I$.

Let *H* be a real form *H* of $SL_3\mathbb{C}$ and (ρ_t, ω_t) be a one-parameter family of *H* structures on a 6-manifold M^6 with $t \in I$. Then

 $\varphi = \omega \wedge dt + \rho$

defines a parallel $G_2^{(*)}$ -structure on $I \times M^6$

Let *H* be a real form *H* of $SL_3\mathbb{C}$ and (ρ_t, ω_t) be a one-parameter family of *H* structures on a 6-manifold M^6 with $t \in I$. Then

 $\varphi = \omega \wedge dt + \rho$

defines a parallel $G_2^{(*)}$ -structure on $I \times M^6 \iff (\rho_t, \omega_t)$ is half flat $\forall t$ and

 $\partial_t \rho = d\omega$ and $\partial_t \hat{\omega} = d\hat{\rho}$ Hitchin flow eq's (1)

・ 回 ト ・ ヨ ト ・ ヨ ト

Let *H* be a real form *H* of $SL_3\mathbb{C}$ and (ρ_t, ω_t) be a one-parameter family of *H* structures on a 6-manifold M^6 with $t \in I$. Then

 $\varphi = \omega \wedge dt + \rho$

defines a parallel $G_2^{(*)}$ -structure on $I \times M^6 \iff (\rho_t, \omega_t)$ is half flat $\forall t$ and

 $\partial_t \rho = d\omega$ and $\partial_t \hat{\omega} = d\hat{\rho}$ Hitchin flow eq's (1)

Theorem (Hitchin '01 for *M* compact & H = SU(3), CLSS in gen.)

Let (ρ, ω) be a 1-parameter family of stable forms on M⁶ satisfying the Hitchin flow eq's. If $(\rho_{t_0}, \omega_{t_0})$ is half flat for a $t_0 \in I$, then (ρ, ω) is a family of half flat H-structures.

Let *H* be a real form *H* of $SL_3\mathbb{C}$ and (ρ_t, ω_t) be a one-parameter family of *H* structures on a 6-manifold M^6 with $t \in I$. Then

 $\varphi = \omega \wedge dt + \rho$

defines a parallel $G_2^{(*)}$ -structure on $I \times M^6 \iff (\rho_t, \omega_t)$ is half flat $\forall t$ and

 $\partial_t \rho = d\omega$ and $\partial_t \hat{\omega} = d\hat{\rho}$ Hitchin flow eq's

Theorem (Hitchin '01 for *M* compact & H = SU(3), CLSS in gen.)

Let (ρ, ω) be a 1-parameter family of stable forms on M^6 satisfying the Hitchin flow eq's. If $(\rho_{t_0}, \omega_{t_0})$ is half flat for a $t_0 \in I$, then (ρ, ω) is a family of half flat H-structures.

In particular, the three-form $\varphi = \omega \wedge dt + \rho$ defines a parallel $G_2^{(*)}$ -structure on $M \times I$ with induced metric $g_{\varphi} = g_t - \epsilon dt^2$.

(1)

5/11

Using Cauchy-Kovalevskaya Theorem we can now construct $G_2^{(*)}$ structures from real analytic half flat structures.

6/11
Corollary

Let M be a real analytic 6-mf with real analytic half flat structure (ω_0, ρ_0).

Corollary

Let M be a real analytic 6-mf with real analytic half flat structure (ω_0, ρ_0).

∃! maximal solution (ω, ρ) of (1) with initial value (ω₀, ρ₀), which is defined on an open neighbourhood Ω ⊂ ℝ × M of {0} × M. In particular, there is a parallel G₂^(*)-structure on Ω.

Corollary

Let M be a real analytic 6-mf with real analytic half flat structure (ω_0, ρ_0).

- ∃! maximal solution (ω, ρ) of (1) with initial value (ω₀, ρ₀), which is defined on an open neighbourhood Ω ⊂ ℝ × M of {0} × M. In particular, there is a parallel G₂^(*)-structure on Ω.
- The evolution is natural, i.e. automorphisms of the initial structures extend to automorphisms of the evolved structures.

Corollary

Let M be a real analytic 6-mf with real analytic half flat structure (ω_0, ρ_0).

- ∃! maximal solution (ω, ρ) of (1) with initial value (ω₀, ρ₀), which is defined on an open neighbourhood Ω ⊂ ℝ × M of {0} × M. In particular, there is a parallel G₂^(*)-structure on Ω.
- The evolution is natural, i.e. automorphisms of the initial structures extend to automorphisms of the evolved structures.

• Furthermore, if M is compact or a homogeneous space M = G/K such that the (ω_0, ρ_0) is G-invariant, then there is unique maximal open interval I and a unique solution (ω, ρ) of (1) with initial value (ω_0, ρ_0) on $I \times M$. In particular, there is a parallel $G_2^{(*)}$ -structure on $I \times M$.

Corollary

Let M be a real analytic 6-mf with real analytic half flat structure (ω_0, ρ_0).

- ∃! maximal solution (ω, ρ) of (1) with initial value (ω₀, ρ₀), which is defined on an open neighbourhood Ω ⊂ ℝ × M of {0} × M. In particular, there is a parallel G₂^(*)-structure on Ω.
- The evolution is natural, i.e. automorphisms of the initial structures extend to automorphisms of the evolved structures.

• Furthermore, if M is compact or a homogeneous space M = G/K such that the (ω_0, ρ_0) is G-invariant, then there is unique maximal open interval I and a unique solution (ω, ρ) of (1) with initial value (ω_0, ρ_0) on $I \times M$. In particular, there is a parallel $G_2^{(*)}$ -structure on $I \times M$.

In general, the $G_2^{(*)}$ -metrics obtained in this way will only be geodesically complete if $I = \mathbb{R}$. But they can be conformally changed to a complete metric.

- * 日 * * 個 * * 目 * * 目 * - 目 * うへで

7/11

• CY 3-manifolds are half flat, $d\omega = 0$ and $d\rho = d\hat{\rho} = 0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_{\varphi} = -\epsilon dt^2 + g_0$.

- CY 3-manifolds are half flat, $d\omega = 0$ and $d\rho = d\hat{\rho} = 0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_{\varphi} = -\epsilon dt^2 + g_0$.
- Let (M, g, J) be an almost ϵ -Hermitian manifold, i.e. $J^2 = \epsilon \mathbb{I}$ and $J^*g = -\epsilon g$. If ∇J is skew, (M^{2m}, g, J) is called nearly- ϵ -Kähler.

- CY 3-manifolds are half flat, $d\omega = 0$ and $d\rho = d\hat{\rho} = 0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_{\varphi} = -\epsilon dt^2 + g_0$.
- Let (M, g, J) be an almost ε-Hermitian manifold, i.e. J² = εI and J^{*}g = -εg. If ∇J is skew, (M^{2m}, g, J) is called nearly-ε-Kähler. On a 6-manifold M, a nearly ε-Kähler structure with |∇J|² ≡ 4 is equivalent to a half flat structure (ω, ρ) with ρ := ∇ω which satisfies

$$d\omega = 3\rho$$
 and $d\hat{\rho} = 4\hat{\omega}$ (2)

- CY 3-manifolds are half flat, $d\omega = 0$ and $d\rho = d\hat{\rho} = 0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_{\varphi} = -\epsilon dt^2 + g_0$.
- Let (M, g, J) be an almost ε-Hermitian manifold, i.e. J² = εI and J^{*}g = -εg. If ∇J is skew, (M^{2m}, g, J) is called nearly-ε-Kähler. On a 6-manifold M, a nearly ε-Kähler structure with |∇J|² ≡ 4 is equivalent to a half flat structure (ω, ρ) with ρ := ∇ω which satisfies

$$d\omega = 3\rho$$
 and $d\hat{\rho} = 4\hat{\omega}$ (2)

The solutions to the Hitchin flow are given as

$$\omega_t = t^2 \omega_0$$
, $\rho_t = t^3 \rho_0$ defining the metric $g_t = t^2 g_0$

for an initial half flat structure (ω_0, ρ_0) .

- CY 3-manifolds are half flat, $d\omega = 0$ and $d\rho = d\hat{\rho} = 0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_{\varphi} = -\epsilon dt^2 + g_0$.
- Let (M, g, J) be an almost ε-Hermitian manifold, i.e. J² = εI and J^{*}g = -εg. If ∇J is skew, (M^{2m}, g, J) is called nearly-ε-Kähler. On a 6-manifold M, a nearly ε-Kähler structure with |∇J|² ≡ 4 is equivalent to a half flat structure (ω, ρ) with ρ := ∇ω which satisfies

$$d\omega = 3\rho$$
 and $d\hat{\rho} = 4\hat{\omega}$ (2)

The solutions to the Hitchin flow are given as

$$\omega_t = t^2 \omega_0$$
, $\rho_t = t^3 \rho_0$ defining the metric $g_t = t^2 g_0$

for an initial half flat structure (ω_0, ρ_0) . Indeed, because of (2): $\partial_t \rho_t = 3t^2 \rho_0 = t^2 d\omega_0 = d\omega_t$ and $\partial_t \hat{\omega}_t = 4t^3 \hat{\omega}_0 = t^3 d\hat{\rho}_0 = d\hat{\rho}_t$.

- CY 3-manifolds are half flat, $d\omega = 0$ and $d\rho = d\hat{\rho} = 0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_{\varphi} = -\epsilon dt^2 + g_0$.
- Let (M, g, J) be an almost ε-Hermitian manifold, i.e. J² = εI and J^{*}g = -εg. If ∇J is skew, (M^{2m}, g, J) is called nearly-ε-Kähler. On a 6-manifold M, a nearly ε-Kähler structure with |∇J|² ≡ 4 is equivalent to a half flat structure (ω, ρ) with ρ := ∇ω which satisfies

$$d\omega = 3\rho$$
 and $d\hat{\rho} = 4\hat{\omega}$ (2)

The solutions to the Hitchin flow are given as

$$\omega_t = t^2 \omega_0$$
, $ho_t = t^3
ho_0$ defining the metric $g_t = t^2 g_0$

for an initial half flat structure (ω_0, ρ_0) . Indeed, because of (2): $\partial_t \rho_t = 3t^2 \rho_0 = t^2 d\omega_0 = d\omega_t$ and $\partial_t \hat{\omega}_t = 4t^3 \hat{\omega}_0 = t^3 d\hat{\rho}_0 = d\hat{\rho}_t$. The resulting $G_2^{(*)}$ metric is a cone metric $g_{\varphi} = -\epsilon dt^2 + t^2 g_0$ on $\mathbb{R}^+ \times M^6$.

- CY 3-manifolds are half flat, $d\omega = 0$ and $d\rho = d\hat{\rho} = 0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_{\varphi} = -\epsilon dt^2 + g_0$.
- Let (M, g, J) be an almost ε-Hermitian manifold, i.e. J² = εI and J^{*}g = -εg. If ∇J is skew, (M^{2m}, g, J) is called nearly-ε-Kähler. On a 6-manifold M, a nearly ε-Kähler structure with |∇J|² ≡ 4 is equivalent to a half flat structure (ω, ρ) with ρ := ∇ω which satisfies

$$d\omega = 3\rho$$
 and $d\hat{\rho} = 4\hat{\omega}$ (2)

The solutions to the Hitchin flow are given as

$$\omega_t = t^2 \omega_0$$
, $ho_t = t^3
ho_0$ defining the metric $g_t = t^2 g_0$

for an initial half flat structure (ω_0, ρ_0) . Indeed, because of (2): $\partial_t \rho_t = 3t^2 \rho_0 = t^2 d\omega_0 = d\omega_t$ and $\partial_t \hat{\omega}_t = 4t^3 \hat{\omega}_0 = t^3 d\hat{\rho}_0 = d\hat{\rho}_t$. The resulting $G_2^{(*)}$ metric is a cone metric $g_{\varphi} = -\epsilon dt^2 + t^2 g_0$ on $\mathbb{R}^+ \times M^6$. • Conversely, $G_2^{(*)}$ -cone-metrics define nearly- ϵ -Kähler metrics on the base.

Let *G* be a 6-dimensional Lie group. Then:

 $\left\{ \text{left-inv half flat structures on } G \right\} \leftrightarrow \left\{ \begin{array}{l} \text{compatible forms } (\omega, \rho) \text{ on } \mathfrak{g}^* \\ \text{with } d\omega^2 = d\rho = 0 \end{array} \right\}$

 \rightsquigarrow algebraic problem as $d\alpha(X, Y) = \alpha([X, Y])$ for $X, Y \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^*$.

Let G be a 6-dimensional Lie group. Then:

 $\left\{ \text{left-inv half flat structures on } G \right\} \leftrightarrow \left\{ \begin{array}{c} \text{compatible forms } (\omega, \rho) \text{ on } \mathfrak{g}^* \\ \text{with } d\omega^2 = d\rho = 0 \end{array} \right\}$

- \rightarrow algebraic problem as $d\alpha(X, Y) = \alpha([X, Y])$ for $X, Y \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^*$.
- → Classification of left inv. half flat structures on the product of two 3-dim Lie groups [Schulte-Hengesbach, J. Geom. Phys. '10]

Let G be a 6-dimensional Lie group. Then:

 $\left\{ \text{left-inv half flat structures on } G \right\} \leftrightarrow \left\{ \begin{array}{c} \text{compatible forms } (\omega, \rho) \text{ on } \mathfrak{g}^* \\ \text{with } d\omega^2 = d\rho = 0 \end{array} \right\}$

 \rightarrow algebraic problem as $d\alpha(X, Y) = \alpha([X, Y])$ for $X, Y \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^*$.

 → Classification of left inv. half flat structures on the product of two 3-dim Lie groups [Schulte-Hengesbach, J. Geom. Phys. '10]
 Let *H*, be the 2 dim Heisenberg group and C. *H* × *H*.

Let H_3 be the 3-dim Heisenberg group and $G = H_3 \times H_3$.

・日・ ・ ヨ・ ・

Let G be a 6-dimensional Lie group. Then:

 $\left\{ \text{left-inv half flat structures on } G \right\} \leftrightarrow \left\{ \begin{array}{c} \text{compatible forms } (\omega, \rho) \text{ on } \mathfrak{g}^* \\ \text{with } d\omega^2 = d\rho = 0 \end{array} \right\}$

 \rightsquigarrow algebraic problem as $d\alpha(X, Y) = \alpha([X, Y])$ for $X, Y \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^*$.

 → Classification of left inv. half flat structures on the product of two 3-dim Lie groups [Schulte-Hengesbach, J. Geom. Phys. '10]

Let H_3 be the 3-dim Heisenberg group and $G = H_3 \times H_3$.

• Every stable $\omega \in \Lambda^2 g^*$ with $d\omega^2 = 0$ has one of the normal forms:

$$\begin{split} &\omega_1 = e^1 f^1 + e^2 f^2 + e^3 f^3, \qquad \omega_4 = e^1 f^3 + e^2 f^2 + e^3 f^1 + e^{13} + \beta f^{13} \\ &\omega_2 = e^2 f^2 + e^{13} + f^{13}, \qquad \omega_5 = e^1 f^3 + e^2 f^2 + e^{13} + f^{13} \\ &\omega_3 = e^1 f^3 + e^2 f^2 + e^3 f^1, \end{split}$$

for a basis $(e^1, e^2, e^3, f^1, f^2, f^3)$ be a basis of $H_3 \times H_3$ with commutator $de^3 = e^{12}$ and $df^3 = f^{12}$ and $\beta \neq -1$ a parameter.

Let G be a 6-dimensional Lie group. Then:

 $\left\{ \text{left-inv half flat structures on } G \right\} \leftrightarrow \left\{ \begin{array}{l} \text{compatible forms } (\omega, \rho) \text{ on } \mathfrak{g}^* \\ \text{with } d\omega^2 = d\rho = 0 \end{array} \right\}$

 \rightsquigarrow algebraic problem as $d\alpha(X, Y) = \alpha([X, Y])$ for $X, Y \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^*$.

- → Classification of left inv. half flat structures on the product of two 3-dim Lie groups [Schulte-Hengesbach, J. Geom. Phys. '10]
- Let H_3 be the 3-dim Heisenberg group and $G = H_3 \times H_3$.
 - Every stable $\omega \in \Lambda^2 g^*$ with $d\omega^2 = 0$ has one of the normal forms:

$$\begin{split} & \omega_1 = e^1 f^1 + e^2 f^2 + e^3 f^3, \qquad \omega_4 = e^1 f^3 + e^2 f^2 + e^3 f^1 + e^{13} + \beta f^{13} \\ & \omega_2 = e^2 f^2 + e^{13} + f^{13}, \qquad \omega_5 = e^1 f^3 + e^2 f^2 + e^{13} + f^{13} \\ & \omega_3 = e^1 f^3 + e^2 f^2 + e^3 f^1, \end{split}$$

for a basis $(e^1, e^2, e^3, f^1, f^2, f^3)$ be a basis of $H_3 \times H_3$ with commutator $de^3 = e^{12}$ and $df^3 = f^{12}$ and $\beta \neq -1$ a parameter.

• Compatible stable closed 3-forms ρ are given by a linear 8-parameter family $\rho_i = \rho_i(a^1, \dots, a^8)$ subject to a quartic non-degeneracy condition.

ω = ω₁ is a necessary condition for the existence of a half flat SU(3) structure on G := H₃ × H₃

- ω = ω₁ is a necessary condition for the existence of a half flat SU(3) structure on G := H₃ × H₃
- There are half flat SU(1,2) and $SL_3\mathbb{R}$ structures on *G* with $\omega \neq \omega_1$.

- ω = ω₁ is a necessary condition for the existence of a half flat SU(3) structure on G := H₃ × H₃
- There are half flat SU(1,2) and $SL_3\mathbb{R}$ structures on *G* with $\omega \neq \omega_1$.
- Examples of half flat structures on G with

 $\omega = \omega_1 = e^1 f^1 + e^2 f^2 + e^3 f^3$:

- ω = ω₁ is a necessary condition for the existence of a half flat SU(3) structure on G := H₃ × H₃
- There are half flat SU(1,2) and $SL_3\mathbb{R}$ structures on G with $\omega \neq \omega_1$.
- Examples of half flat structures on G with
 - $\omega = \omega_1 = e^1 f^1 + e^2 f^2 + e^3 f^3:$ $\rho = \frac{1}{\sqrt{2}} (e^{123} - f^{123} - e^1 f^{23} + e^{23} f^1 - e^2 f^{31} + e^{31} f^2 - e^3 f^{12} + e^{12} f^3)$ $\sim \text{half flat SU(3)-structure.}$

▲御を ▲ 国を ▲ 国をし

- ω = ω₁ is a necessary condition for the existence of a half flat SU(3) structure on G := H₃ × H₃
- There are half flat SU(1,2) and $SL_3\mathbb{R}$ structures on G with $\omega \neq \omega_1$.
- Examples of half flat structures on G with

 \rightarrow half flat SU(1,2)-structure, e_1 and e_4 being spacelike.

<回を < 目を < 目を

- ω = ω₁ is a necessary condition for the existence of a half flat SU(3) structure on G := H₃ × H₃
- There are half flat SU(1,2) and $SL_3\mathbb{R}$ structures on G with $\omega \neq \omega_1$.
- Examples of half flat structures on G with
 - - $\rho = \frac{1}{\sqrt{2}} (e^{123} f^{123} e^1 f^{23} + e^{23} f^1 + e^2 f^{31} e^{31} f^2 + e^3 f^{12} e^{12} f^3)$

 \rightarrow half flat SU(1,2)-structure, e_1 and e_4 being spacelike.

ρ = √2 (e¹²³ + f¹²³) → half flat SL₃ℝ-structure such that the b₃'s are the J_ρ-eigenspaces, i.e. the metric is g = 2(e¹ ⋅ f¹ + e² ⋅ f² + e³ ⋅ f³).

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○ ○ ○ ○

- ω = ω₁ is a necessary condition for the existence of a half flat SU(3) structure on G := H₃ × H₃
- There are half flat SU(1,2) and $SL_3\mathbb{R}$ structures on G with $\omega \neq \omega_1$.
- Examples of half flat structures on G with
 - - $\rho = \frac{1}{\sqrt{2}} (e^{123} f^{123} e^1 f^{23} + e^{23} f^1 + e^2 f^{31} e^{31} f^2 + e^3 f^{12} e^{12} f^3)$

 \rightarrow half flat SU(1,2)-structure, e_1 and e_4 being spacelike.

► $\rho = \sqrt{2} (e^{123} + f^{123}) \rightarrow \text{half flat } SL_3 \mathbb{R}\text{-structure such that the } \mathfrak{h}_3 \text{'s are the } J_{\rho}\text{-eigenspaces, i.e. the metric is } g = 2(e^1 \cdot f^1 + e^2 \cdot f^2 + e^3 \cdot f^3).$

• In order to evolve these structures we define $\kappa : I \to \mathbb{R}$:

$$\begin{array}{rcl} \mathrm{SU}(3) & : & \kappa(x) = (x - \sqrt{2})^3 (x + \sqrt{2}) & , & I = (-\sqrt{2}, \sqrt{2}) \\ \mathrm{SU}(1,2) & : & \kappa(x) = (x - \sqrt{2})(x + \sqrt{2})^3 & , & I = (-\sqrt{2}, \sqrt{2}) \\ \mathrm{SL}_3 \mathbb{R} & : & \kappa(x) = (2 + x)^2 & , & I = \mathbb{R} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Theorem

Let ρ_0 be one of the stable forms compatible to $\omega = \omega_1$ defining a half flat structure on $H_3 \times H_3$ and $\kappa : I \to \mathbb{R}$ as on the previous slide.

Theorem

Let ρ_0 be one of the stable forms compatible to $\omega = \omega_1$ defining a half flat structure on $H_3 \times H_3$ and $\kappa : I \to \mathbb{R}$ as on the previous slide. Let x be a solution to the ODE $\dot{x} = \frac{2}{\sqrt{\epsilon \kappa(x(t))}}$.

Theorem

Let ρ_0 be one of the stable forms compatible to $\omega = \omega_1$ defining a half flat structure on $H_3 \times H_3$ and $\kappa : I \to \mathbb{R}$ as on the previous slide. Let x be a solution to the ODE $\dot{x} = \frac{2}{\sqrt{\epsilon \kappa(x(t))}}$. Then

$$\rho_{x} = \rho_{0} + x(e^{12}f^{3} - e^{3}f^{12}),$$

$$\omega_{x} = \frac{1}{2}(\varepsilon\kappa(x))^{-\frac{1}{2}} (\varepsilon\kappa(x)e^{1}f^{1} + \varepsilon\kappa(x)e^{2}f^{2} + 4e^{3}f^{3}),$$

give a solution to the Hitchin flow on the intervall I.

Theorem

Let ρ_0 be one of the stable forms compatible to $\omega = \omega_1$ defining a half flat structure on $H_3 \times H_3$ and $\kappa : I \to \mathbb{R}$ as on the previous slide. Let x be a solution to the ODE $\dot{x} = \frac{2}{\sqrt{\epsilon \kappa(x(t))}}$. Then

$$\begin{aligned} \rho_{x} &= \rho_{0} + x(e^{12}f^{3} - e^{3}f^{12}), \\ \omega_{x} &= \frac{1}{2}(\varepsilon\kappa(x))^{-\frac{1}{2}} \left(\varepsilon\kappa(x)e^{1}f^{1} + \varepsilon\kappa(x)e^{2}f^{2} + 4e^{3}f^{3}\right), \end{aligned}$$

give a solution to the Hitchin flow on the intervall I. The parallel stable three-form and the metric on $M \times I$ are

$$arphi = rac{1}{2} \sqrt{arepsilon \kappa(x)} \, \omega_x \wedge dx +
ho_x, \qquad g_{arphi} = g_x - rac{1}{4} \kappa(x) dx^2,$$

and $(M \times I, g_{\varphi})$ has holonomy equal to $G_2^{(*)}$.

Theorem

Let ρ_0 be one of the stable forms compatible to $\omega = \omega_1$ defining a half flat structure on $H_3 \times H_3$ and $\kappa : I \to \mathbb{R}$ as on the previous slide. Let x be a solution to the ODE $\dot{x} = \frac{2}{\sqrt{\epsilon \kappa(x(t))}}$. Then

$$\begin{aligned} \rho_{x} &= \rho_{0} + x(e^{12}f^{3} - e^{3}f^{12}), \\ \omega_{x} &= \frac{1}{2}(\varepsilon\kappa(x))^{-\frac{1}{2}} \left(\varepsilon\kappa(x)e^{1}f^{1} + \varepsilon\kappa(x)e^{2}f^{2} + 4e^{3}f^{3}\right), \end{aligned}$$

give a solution to the Hitchin flow on the intervall I. The parallel stable three-form and the metric on $M \times I$ are

$$arphi=rac{1}{2}\sqrt{arepsilon\kappa(x)}\,\omega_x\wedge dx+
ho_x,\qquad g_arphi=g_x-rac{1}{4}\kappa(x)dx^2,$$

and $(M \times I, g_{\varphi})$ has holonomy equal to $G_2^{(*)}$. Moreover, by varying ρ we obtain an 8-parameter family of metrics with holonomy equal to $G_2^{(*)}$.

What happens in the case when ω is not of the form ω_1 ?

11/11

What happens in the case when ω is not of the form ω_1 ? Let (ω, ρ) be a left-invariant half flat structure with $\omega \neq \omega_1$ on $G = H_3 \times H_3$ and let *g* be the pseudo-Riemannian metric induced by (ω, ρ) . Then

 The pseudo-Riemannian manifold (H₃ × H₃, g) is either flat or isometric to the product of

- The pseudo-Riemannian manifold (*H*₃ × *H*₃, *g*) is either flat or isometric to the product of
 - a two-dimensional flat factor and

- The pseudo-Riemannian manifold (H₃ × H₃, g) is either flat or isometric to the product of
 - a two-dimensional flat factor and
 - the unique 4-dimensional simply connected para-hyper Kähler symmetric space (N, g_N) with 1-dimensional holonomy group [Alekseevsky et al '05]

- The pseudo-Riemannian manifold (H₃ × H₃, g) is either flat or isometric to the product of
 - a two-dimensional flat factor and
 - the unique 4-dimensional simply connected para-hyper Kähler symmetric space (N, g_N) with 1-dimensional holonomy group [Alekseevsky et al '05]

In particular, the metric g is Ricci-flat.
What happens in the case when ω is not of the form ω_1 ? Let (ω, ρ) be a left-invariant half flat structure with $\omega \neq \omega_1$ on $G = H_3 \times H_3$ and let *g* be the pseudo-Riemannian metric induced by (ω, ρ) . Then

- The pseudo-Riemannian manifold (*H*₃ × *H*₃, *g*) is either flat or isometric to the product of
 - a two-dimensional flat factor and
 - the unique 4-dimensional simply connected para-hyper Kähler symmetric space (N, g_N) with 1-dimensional holonomy group [Alekseevsky et al '05]

In particular, the metric g is Ricci-flat.

• The Hitchin flow is defined for all times and defines a G_2^* -metric on $G \times \mathbb{R}$.

What happens in the case when ω is not of the form ω_1 ? Let (ω, ρ) be a left-invariant half flat structure with $\omega \neq \omega_1$ on $G = H_3 \times H_3$ and let *g* be the pseudo-Riemannian metric induced by (ω, ρ) . Then

- The pseudo-Riemannian manifold (H₃ × H₃, g) is either flat or isometric to the product of
 - a two-dimensional flat factor and
 - the unique 4-dimensional simply connected para-hyper Kähler symmetric space (N, g_N) with 1-dimensional holonomy group [Alekseevsky et al '05]

In particular, the metric g is Ricci-flat.

- The Hitchin flow is defined for all times and defines a G_2^* -metric on $G \times \mathbb{R}$.
- However, this metric is either flat or isometric to a product of (N, g_N) and a 3-dim flat factor, so its holonomy is at most one-dimensional.