Conformal classes with explicit ambient metrics

Thomas Leistner

The Geometry of Differential Equations Mathematical Sciences Institute, ANU September 23, 2011

[Joint work with Paweł Nurowski (Warsaw)]

Let $(M^n, [g])$ be a smooth manifold equipped with a conformal structure of semi-Riemannian metrics, $[g] := \{e^{2\varphi}g \mid \varphi \in C^{\infty}(M)\}$. Invariant descriptions:

- Fefferman-Graham ambient metric: Describe the conformal geometry of $(M^n, [g])$ in terms of the metric geometry of an *ambient space* $(\widetilde{M}^{n+2}, \widetilde{g})$ as in the the flat case $S^n \simeq C^+/\mathbb{R}^+$ with $C^+ \subset \mathbb{R}^{1,n+1} =: \widetilde{M}$.
- Tractor bundle associated to the Cartan bundle with normal conformal Cartan connection.

Construct explicit ambient metrics for

- n-dimensional pp-waves
- Invesses of the second structures associated to (2, 3, 5)-distributions with split G₂ Cartan connection → Holonomy split G₂ ambient metric

Construction of the ambient space

• A conformal class [g] on *M* corresponds to an \mathbb{R}^+ -principle fibre bundle, the cone

$$\bigcup_{x \in M} \left\{ g_x \in \odot^2 T_x M \mid g \in [g] \right\} =: C \quad \bigcirc \mathbb{R}^+, \quad \delta_t(g_x) := (t^2 g_x)$$
$$\pi \downarrow$$
$$M$$

- Tautological tensor on *C*: $\mathbf{g}(U, V)|_{g_x} := g_x(\mathrm{d}\pi(U), \mathrm{d}\pi(V)),$
 - $\mathbf{g}(T, .) = 0$ for the fundamental vector field T of δ .
 - of degree 2 w.r.t. the \mathbb{R}^+ -action, i.e. $\delta_t^* \mathbf{g} = t^2 \mathbf{g}$.

• Each $g \in [g]$ trivialises C,

$$\begin{array}{rcl} \mathbb{R}^+ \times M &\simeq & C \\ (t,x) &\mapsto & (t^2 g_x, x) \end{array}$$

• Get the ambient space from the cone:

$$\widetilde{M} := C \times (-\varepsilon, \varepsilon)$$

The \mathbb{R}^+ action on *C* extends trivially to \widetilde{M} : $\delta_t(g_x, \rho) := (\delta_t g_x, \rho)$.

Ambient metric

Definition

Let (M, [g]) be smooth manifold with conformal class of signature (t, s). An *ambient metric* for (M, [g]) is a smooth metric \tilde{g} on \tilde{M} such that

• \widetilde{g} is homogeneous of degree 2 w.r.t. the \mathbb{R}^+ -action δ .

2)
$$\iota^*\widetilde{g} = \mathbf{g}$$
, for the inclusion $\iota : C = C \times \{0\} \subset \widetilde{M}$.

3 $\operatorname{Ric}(\widetilde{g}) = 0.$

This implies that by fixing $g \in [g]$ trivialising *C* and a coordinate ρ such that $\widetilde{M} \simeq \mathbb{R}^+ \times M \times (-\varepsilon, \varepsilon) \ni (t, x, \rho)$, we have

$$\widetilde{g} = 2td\rho dt + 2\rho dt^2 + t^2 g_{\rho},$$

for a ρ -dependent family of metrics g_{ρ} with $g_0 = g$ and subject to the condition $\operatorname{Ric}(\tilde{g}) = 0$.

The Fefferman-Graham ambient metric

Theorem (C. Fefferman & C.R. Graham '85, '07)

- If $n := \dim M$ is odd, then
 - there exists a formal power series solution g_{ρ} to $\operatorname{Ric}(\widetilde{g}) = 0$,
 - 2 this solution is unique up to \mathbb{R}^+ invariant diffeomorphisms fixing $C \subset \widetilde{M}$,
 - if [g] is analytic, then there exists an ambient metric.
- If n is even, then there exists a formal power series solution to Ric(g) = O(ρⁿ⁻²/₂) which is uniquely determined up to terms of order ⁿ/₂ in ρ. Furthermore, there exists a conformally invariant tensor O ∈ Γ(⊙²TM), the obstruction tensor, such that O ≡ 0 ⇔ Ric(g) = 0 to infinite order.

O is trace and divergence free, conf. invariant of weight (2 - n), given by

$$O = \Delta_g^{n/2-2} \left(\Delta_g \mathsf{P} -
abla^2 \mathrm{tr}(\mathcal{P})
ight) + ext{lower order terms},$$

where $P = \frac{1}{n-2} \left(Ric - \frac{scal}{2(n-1)}g \right)$ is the Schouten tensor and Δ_g is the Laplacian of $g \in [g]$.

First terms for g_{ρ}

Expanding g_{ρ} as a power series we get

$$\widetilde{g} = 2td\rho dt + 2\rho dt^2 + t^2 \left(g + \sum_{k=1}^{\infty} \rho^k \mu_k\right).$$

with
$$(\mu_1)_{ab} = 2P_{ab}$$

 $(n-4)(\mu_2)_{ab} = -B_{ab} + (n-4)P_a{}^cP_{bc}$
 $3(n-4)(n-6)(\mu_3)_{ab} = \Delta_g B_{ab} + ...$

where $B_{ab} = \nabla_c C_{ab}^{\ c} - P_{cd} W_{ab}^{\ c}^{\ d}$ is the Bach tensor, W_{abcd} is the Weyl tensor, $C_{abc} := \nabla_c P_{ab} - \nabla_b P_{ac}$ is the Cotton tensor.

Ambient metrics for Einstein classes

[g] contains a Einstein metric $\implies \tilde{g}$ admits a parallel vector field: If $g_{\Lambda} \in [g]$ is Einstein with $P = \Lambda g$. Then

$$\widetilde{g} = 2d(\rho t)dt + (t^{2} + 2t^{2}\rho\Lambda + t^{2}\rho^{2}\Lambda^{2})g_{\Lambda}$$

$$\stackrel{-u=t\rho}{=} -2dudt + (t^{2} - 2\Lambda ut + \Lambda^{2}u^{2})g_{\Lambda}$$

$$\bullet \Lambda \neq 0: \quad \widetilde{g} \stackrel{r=t-\Lambda u}{=} -\frac{1}{2\Lambda}ds^{2} + \underbrace{\frac{1}{2\Lambda}dr^{2} + r^{2}g_{\Lambda}}_{cone \ metric}$$

$$\bullet \Lambda = 0: \quad \widetilde{g} = -dudt + t^{2}g_{\Lambda}.$$

Further examples of explicit ambient metrics with truncated ambient metric:

 Products of Einstein metrics with related Einstein constants [R. Gover & F. Leitner '06]

pp-waves

An *n*-dimensional Lorentzian (pseudo-Riemannian) manifold (M, g) is a *pp-wave* (*"plane fronted with parallel rays"*) \iff

- \exists parallel null vector field K,
- $R(U, V) : K^{\perp} \rightarrow \mathbb{R}K$ for all $U, V \in TM$
- $\iff (M,g) \text{ has abelian holonomy contained in } \mathbb{R}^{n-2} \subset \mathrm{SO}(n-2) \ltimes \mathbb{R}^{n-2}$ $\iff (M,g) \text{ admits coordinates } (x^1, \ldots, x^{n-2}, u, r) \text{ such that}$

$$g = \sum_{i=1}^{n-2} (\mathrm{d}x^i)^2 + 2\mathrm{d}u \, (\mathrm{d}r + h\mathrm{d}u), \quad \text{with } h = h(x^1, \dots, x^{n-2}, u)$$

All scalar invariants vanish, in particular scal = 0 and

$$P = \frac{1}{n-2} \operatorname{Ric} = -\frac{1}{n-2} \Delta h \, \mathrm{d} u^2 \quad \text{and} \quad B = -\frac{1}{n-2} \Delta^2 h \, \mathrm{d} u^2$$

where $\Delta h = \sum_{i=1}^{n-2} \partial_i^2 h$. Note: Einstein $\iff Ric = 0 \iff \Delta h = 0$.

op-waves

The ambient metric of a pp-wave

Let $(M, g = \sum_{i=1}^{n-2} (dx^i)^2 + 2dudr + 2hdu^2)$ be a pp-wave. Ansatz for ambient metric

$$\widetilde{g} = 2d(\rho t)dt + t^{2}(g + Hdu^{2})$$

= 2d(\rho t)dt + t^{2}(2dudr + 2(h + H)du^{2} + \sum_{i=1}^{n-2}(dx^{i})^{2}),

where $H = H(\rho, x^i, u)$, and $H(\rho, x^i, u)_{|\rho=0} = 0$. Then

$$\operatorname{Ric}(\widetilde{g}) = \left((2-n)\partial_{\rho}H + 2\rho\,\partial_{\rho}^{2}H - \Delta H - \Delta h\right)\mathrm{d}u^{2},$$

I.e., \widetilde{g} is ambient metric for [g] if

$$\left((2-n)\partial_{\rho}+2\rho\,\partial_{\rho}^{2}-\Delta\right)(H)=\Delta h. \tag{1}$$

Solution to (1) is given by

$$H := \sum_{k=1}^{\infty} \frac{\rho^k \Delta^k h}{k! \prod_{i=1}^k (2i-n)}$$

Theorem (Nurowski & L. '10)

Let $g = \sum_{i=1}^{n-2} (dx^i)^2 + 2du (dr + hdu)$ be a pp-wave metric. If n is odd, then the ambient metric for \tilde{g} for the conformal class [g] is given by

$$\widetilde{g} = 2\mathrm{d}(\rho t)\mathrm{d}t + t^2g + t^2\left(\sum_{k=1}^{\infty} \frac{\rho^k \Delta^k h}{k! \prod_{i=1}^k (2i-n)}\right)\mathrm{d}u^2.$$

If n is even, the obstruction tensor is given as $O = \Delta^{\frac{n}{2}} h du^2$. If O = 0, then

$$\widetilde{g} = 2\mathrm{d}(\rho t)\mathrm{d}t + t^2g + t^2\left(\sum_{k=1}^{\frac{n-2}{2}} \frac{\rho^k \Delta^k h}{k! \prod_{i=1}^k (2i-n)}\right)\mathrm{d}u^2.$$
(2)

is an ambient metric.

Note that even if $O = \Delta^{\frac{n}{2}} h du^2 = 0$ the ambient metric is not unique since we can add terms of the form

$$\rho^{\frac{n}{2}}\Delta^{\frac{n-2}{2}}h\,\mathrm{d}u^2$$

in (2) and still get a Ricci flat ambient metric.

pp-waves

Bach flat pp-waves in dimension 4

In dimension n = 4 the obstruction to the existence of the ambient metric for a pp-wave

$$g = \mathrm{d}z\mathrm{d}\overline{z} + 2\mathrm{d}u\mathrm{d}r + 2h\mathrm{d}u^2$$

is given by the Bach tensor $B = -\frac{1}{n-2}\Delta^2 h du^2$.

Proposition

A 4-dimensional pp-wave is Bach flat \iff

 $h = z\overline{\alpha} + \overline{z}\alpha + \beta + \overline{\beta}$ for $\alpha = \alpha(z, u)$ and $\beta = \beta(z, u)$ holom. in z

Furthermore, a 4-dimensional Bach flat pp-wave satisfies

g is conformally flat \iff g is conformally Einstein $\iff \partial_z^2 \alpha = 0$.

 \rightsquigarrow Examples for which the ambient metric truncates but which are not conformally Einstein.

Normal conformal tractor bundle

Let (M, [g]) be a conformal manifold of signature (p, q) and set $G := SO^0(p + 1, q + 1), P = Stab_G(L)$ and $g := \mathfrak{so}(p + 1, q + 1)$:

- ω ∈ TP → g be the normal conformal Cartan connection on the Cartan bundle P with structure group P.
- $\overline{\omega}: T\overline{\mathcal{P}} := T(\mathcal{P} \times_{\mathcal{P}} G) \to \mathfrak{g}$ extension to a *G*-bundle connection, and
- $\overline{\nabla}$ the corresponding covariant derivative on the tractor bundle $\mathbb{T} = \overline{\mathcal{P}} \times_{G} \mathbb{R}^{p+1,q+1}$.

Every $g \in [g]$ splits $\mathbb{T} = \underline{\mathbb{R}} \oplus TM \oplus \underline{\mathbb{R}}$ with

$$\overline{g} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & g & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ and } \overline{\nabla}_X \begin{pmatrix} \tau \\ Y \\ \sigma \end{pmatrix} = \begin{pmatrix} d\tau(X) - P(X, Y) \\ \nabla_X Y + \tau X + \sigma(X \sqcup P)^{\sharp} \\ d\sigma(X) - g(X, Y) \end{pmatrix}.$$

Relation to the ambient metric

Computing the LC connection $\widetilde{\nabla}$ of \widetilde{g} along $M \subset \widetilde{M}$ yields that the vector bundle isomoprhism

$$\Phi: T\widetilde{M}|_{M} \ni \sigma \frac{\partial}{\partial \rho} + \tau \frac{\partial}{\partial t} + Y \mapsto \begin{pmatrix} \tau \\ Y \\ \sigma \end{pmatrix} \in \mathbb{T}$$

is affine for $\widetilde{\nabla}$ and $\overline{\nabla}$, i.e. $\Phi(\widetilde{\nabla}_X U) = \overline{\nabla}_X(\Phi(U))$. In particular, $\operatorname{Hol}_X(\mathbb{T}, \overline{\nabla}) = \operatorname{Hol}_X(T\widetilde{M}|_M, \widetilde{\nabla})$ and hence

$$\operatorname{Hol}_{X}(\mathbb{T},\overline{\nabla}) \subset \operatorname{Hol}_{X}(T\widetilde{M},\widetilde{\nabla}).$$
 (3)

Extension of parallel tractors to *M* yields = in (3) at least when n is odd: Graham & Willse [last week].

Parallel objects for the tractor connection

Let (M, [g]) be a conformal manifold.

"[g] is conformal ..." :=

"on an open dense subset of M there is a metric g in [g] such that g is ..."

- $\overline{\nabla}$ admits a parallel line bundle $\iff [g]$ is conformal Einstein.
- 3 $\overline{\nabla}$ admits a parallel plane bundle of totally null planes $\iff [g]$ is conformal *aligned pure radiation*. *g* is aligned pure radiation metric if
 - \exists parallel null line bundle \mathcal{K} ,
 - $\mathcal{K}^{\perp} \, \sqcup \operatorname{Ric} = 0.$
- If g is a conformal pp-wave $\iff \overline{\nabla}$ admits a parallel totally null plane subbundle *H* such that *R* satisfies

$$\overline{R}_{abCD}X^CY^D=0,$$

for all X^C and Y^D orthogonal to \mathcal{H} . [2,3: L '06, Nurowski & L '11]. Replace tractor connection $\overline{\nabla}$ by ambient connection $\widetilde{\nabla}$ we get \Rightarrow in the above statements.

Nurowski's conformal structures

For a function *F* on $\mathbb{R}^5 = \{(x, y, p, q, z)\}$ with $F_{qq} \neq 0$ consider the (2, 3, 5)-distribution \mathcal{D}_F spanned by

$$\partial_q$$
 and $\partial_x + p\partial_y + q\partial_p + F\partial_z$.

 \mathcal{D}_F defines a conformal class $[g_F]$ on $\mathbb{R}^{3,2}$ such that $\mathcal{D}_F^{\perp} = \operatorname{span}(\mathcal{D}_F, [\mathcal{D}_F, \mathcal{D}_F])$ and whose normal conformal Cartan connection reduces to split G₂. Nurowski observed: For *F* of the form

$$F = q^2 + \sum_{i=1}^6 a_i p^i + bz \tag{4}$$

the ambient metric for $[g_F]$ is of the form

$$\widetilde{g}_F = -2\mathrm{d}t\mathrm{d}u + t^2g_F - 2ut\mathsf{P} - u^2B, \tag{5}$$

where P and B are the Schouten and Bach tensors of g_F and $u = -t\rho$.

Properties of $[g_F]$

- $F = F(q) \implies [g_F]$ contains Ricci-flat metric \implies $Hol(\tilde{g}) \subset Stab_{G_2}$ (null vector).
- If at least one of a_4 , a_5 , or a_6 is not zero, then the conformal class $[g_F]$ is not conformal Cotton flat and thus, not conformal Einstein.
- So For a₄ = a₅ = a₆ = 0 and a₃ ≠ 0 there is a unique Cotton flat metric in [g_F], but [g_F] is not conformal Einstein.
- If at least one of a_3 , a_4 , a_5 , a_6 not equal to zero. Then $[g_F]$ is not conformal aligned pure radiation.

Proposition

For F as in (4) the ambient metric \tilde{g}_F of $[g_F]$ admits a parallel spinor of non-zero length. Hence, $\operatorname{Hol}(\tilde{g}_F) \subset G_2$.

Ambient holonomy G₂

Theorem (Nurowski & L '11)

If $\operatorname{Hol}(\widetilde{g}_F) \neq G_2$, then $[g_F]$ is conformal Einstein or conformal aligned pure radiation. In particular, if at least one of a_3 , a_4 , a_5 or a_6 in F is not zero then $\operatorname{Hol}(\widetilde{g}_F) = G_2$.

Proof: Berger's list in signature (4, 3): G_2 and $SO^0(4, 3)$. Have to check that $Hol(\tilde{g}_F)$ has no invariant subspace. Let $V \subset \mathbb{R}^{4,3}$ be invariant.

V non-degenerate. De Rham ⇒ g̃_F is locally a product with both factors Ricci-flat. One factor has dim ≤ 3 ⇒ flat ⇒ conformal Ricci flat

•
$$V \cap V =: W \neq 0$$
 totally null.

- dim(W) = 1 \Rightarrow conformal Ricci flat.
- dim $(W) = 2 \Rightarrow$ conformal aligned pure radiation.
- dim(W) = 3 maximal null space $\Rightarrow \exists$ invariant null line of spinors. Then

Non-null spinor ψ + null line of spinors $\mathbb{R}\varphi \Rightarrow$ null line of vectors $\mathbb{R}V_{\psi,\varphi}$

via $\widetilde{g}_F(V_{\psi,\varphi}, X) = \langle X \cdot \psi, \varphi \rangle$. Hence, $[g_F]$ is conformal Ricci flat.