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Holonomy groups in a nutshell

Let (M,g) be a semi-Riemannian manifold{ Parallel transport

Pγ : Tγ(0)M 3 X0
∼
7−→ X(1) ∈ Tγ(1)M

where X(t) is the solution to the ODE ∇γ̇(t)X(t) ≡ 0 with X(0) = X0.

For p ∈ Mn we define the (connected) holonomy group

Hol 0
p (M,g) :=

{
Pγ

∣∣∣ γ(0) = γ(1) = p, γ ∼ {p}
}
⊂ O(TpM,gp) ' O(r , s)

For p, q ∈ M: Holp(M,g) ∼ Holq(M,g) conjugated in O(r , s).
Hol0p(M,g) ⊂ Holp(M,g) normal and the fundamental group

Π1(M, p) 3 [γ]
surjects
�

[
Pγ

]
∈ Holp(M,g)/Hol0p(M,g)

Ambrose-Singer: The Lie algebra holp(M,g) is spanned by

P−1
γ ◦ Rγ(1)(X ,Y) ◦ Pγ ∈ so(TpM,gp),

where γ(0) = p, Rγ(1) the curvature at γ(1), X ,Y ∈ Tγ(1)M.
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Special Lorentzian holonomy

A Lorentzian manifold (Mn+2,g) has special holonomy if
1 Hol0 , SO0(1, n) and
2 TpM has no non-degenerate Hol0-invariant subspaces.

This is in accordance with the terminology for Riemannian manifolds
(indecomposable = irreducible, Berger’s list),

De Rham/ Wu decomposition
=⇒ (M,g) is not a product, not even locally.

but with a fundamental difference:

Hol0 ⊂ SO0(1, n + 1) irreducible =⇒ Hol0 = SO0(1, n + 1)
[Berger, DiScala/Olmos]
I.e., special holonomy =⇒ Hol0-invariant null line L ⊂ TpM.

NorO(1,n+1)(Hol0) ⊂ StabO(1,n+1)(L) ' (R∗ × O(n)) n Rn =⇒
L is Hol-invariant.

Geometrically: M admits a parallel null line bundle, i.e., fibres are invariant
under parallel transport.
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Classification [Bérard-Bergery & Ikemakhen ’93, TL ’03 ]

If (Mn+2,g) is Lorentzian with special holonomy, then Hol0(M,g) '

1 G n Rn or (R+ × G) n Rn, where G is a Riemannian holonomy group,
2 (A × Gs) n Rn−k , where Gs is the semisimple part of a Riemannian

holonomy group G and A ⊂ R+ × Z(G) if k = 0, or A ⊂ Z(G) × Rk .
In fact, A = graph(Ψ) for Ψ ∈ Hom(Z(G),R+ or Rk )

For all possible groups there exist metrics [ ... Galaev ‘06].

E.g.: (Nn,h) Riemannian, H ∈ C∞(R2 × N), ∃p: det(∇hdH)p , 0⇒(
M = R2 × N , g = gh,H := 2du(dv + Hdu) + h

)
has holonomy (R+ ×Hol(N ,h))nRn−2 or Hol(N ,h)nRn−2, if ∂H

∂v = 0.

Are there compact or geodesically complete examples for all groups?
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Screen bundle and screen distribution

Let (M,g) be Lorentzian of dim. n + 2, Hol0 indecomp. & not irred.,
∃ bundle of parallel null lines L ⊂ L⊥ ⊂ TM
Screen bundle Σ := L⊥/L −→M with pos. def. metric induced by g
and connection ∇Σ: ∇Σ

X [Y ] := [∇X Y ]. Then

G = prSO(n)Holp(M,g) = Holp(Σ,∇Σ)

Screen distribution S ⊂ L⊥, rank n and g|S×S positive definite, i.e., a
splitting of 0→ L→ L⊥ → Σ→ 0.

Assume L is spanned by a parallel null vector field V ∈ Γ(L)

screen vector field Z : null, g(Z ,V) = 1
1−1
←→ S := V⊥ ∩ Z⊥.

As (M,g) is time-oriented, there exists a screen distribution/vf

Involutive and horizontal screen distributions
S horizontal ⇐⇒ [V ,S] ∈ Γ(S) ∀S ∈ Γ(S)
S involutive ⇐⇒ [S1,S2] ∈ Γ(S) ∀S1,S2 ∈ Γ(S)

}
⇐⇒ V [∧dZ [ = 0

In the above example: S = span(∂1, . . . , ∂n), Z = ∂u −H∂v , Z [ = dv + Hdu.
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pp-waves (“plane fronted with parallel rays” [Ehlers-Kundt])

Definition: A Lorentzian manifold (M,g) is a

pp-wave if it admits a parallel null vf V and R(U,W) = 0 ∀U,W ∈ V⊥.

standard pp-wave ifM = Rn+2 3 (u, v , x1, . . . , xn) and
g = gH := 2du(dv + Hdu) + δijdx idx j (1)

for a smooth function H with ∂vH = 0.

Equivalences: (M,g) is a pp-wave
⇔ it is locally of the form (1),

⇔ ∇V = 0 & R(X ,Y) : V⊥ → RV , ∀ X ,Y ∈ TM,

⇔ ∇V = 0 & the screen bundle is flat,

⇔ Hol0(M,g) ⊂ Rn,

⇔ Hol(M,g) ⊂ Γ n Rn for Γ ⊂ O(n) discrete,

⇔ ∇V = 0 & locally, ∃ S1, . . .Sn ∈ Γ(V⊥) with g(Si ,Sj) = δij and
∇Si = αi ⊗ V , where αi local one-forms with dαi |V⊥∧V⊥ = 0.
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Geodesic completeness for compact pp-waves

Compact Lorentzian manifolds are not always geodesically complete.
They are if: homogeneous (Marsden ‘72), of constant curvature
(Carriére ‘89, Klingler ‘96), or have a time-like conformal vf
(Romero/Sánchez ’95) Are compact pp-waves complete?
Ehlers-Kundt ‘62: “Prove that complete, Ricci-flat pp-waves are plane
waves, no matter which topology one chooses!” (EK)
plane wave = pp-wave with ∇X R = 0 ∀ X ∈ V⊥.

Theorem (Schliebner/TL ‘13)
Let (M,g) be a compact pp-wave. Then:

1 Its universal cover is globally isometric to a standard pp-wave.
2 (M,g) is geodescically complete.

Corollary
Every compact Ricci-flat pp-wave is a plane wave.

Thm and Corollary give a proof of (EK) in the compact case (and any dim).
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Examples

1 η flat metric on the torus Tn, H ∈ C∞(Tn) smooth. M := T2 × Tn with

gH = 2dθdϕ + 2Hdθ2 + η,

⇒ complete pp-wave metric on the torus Tn+2, in gen. no plane wave.
2 I Torus Tn+1 with canonical 1-forms ξ0, . . . , ξn. Set

ω = 1
2

n∑
i,j=1

aijξ
i ∧ ξj ∈ Ω2(Tn+1)

with const’s aij = −aji such that 0 , c := [ω] ∈ H2(Tn+1,Z).
I Let π :M→ Tn+1 be the S1-bundle with 1st Chern class = c,

A ∈ T ∗M⊗ iR the S1-connection with curvature F := dA = −2πiπ∗ω.
I Pull backs η := π∗ξ0, σi := π∗ξi i = 1, . . . n, function H ∈ C∞(Tn+1),

g = 2 (Hη − iA) · η +
n∑

i=1

(σi)2 = pp-wave metric onM.

I Note: (M,g) does not admit an involute screen distribution
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Step 1: A compact pp-wave is univ. covered by Rn+2.

1 Screen distribution S := V⊥ ∩ Z⊥ { complete Riemannian metric:

h(V , .) := g(Z , .), h(Z , .) := g(V , .), h|S×S := g|S×S,

with complete lift h̃ to the universal cover M̃.

2 Z complete⇒ M̃
diff .
' R× Ñ , with Ñ is a leaf of Ṽ⊥, and h̃|

Ñ
complete.

3 Σ flat⇒ ∃ S1, . . .Sn ∈ Γ(Ṽ⊥ → M̃) with
I g(Si ,Sj) = δij , ∇̃Si = αi ⊗ Ṽ , with dαi |Ṽ⊥∧Ṽ⊥ = 0
I geodetic for h̃|

Ñ
and hence complete.

4 ∃ bi ∈ C∞(M̃): dbi |Ṽ⊥ = αi |Ṽ⊥ . Ŝi := Si − biV spans an involutive and
horizontal screen and satisfies: ∇̃UŜi = 0, whenever U ∈ Ṽ⊥.

5 Si complete⇒ Ŝi complete.
Ṽ and Ŝi complete & parallel on (Ñ , ∇̃), i.e., Ñ ' Rn+1.
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Step 2: The universal cover is a standard pp-wave

Let Z be a screen vf and γ be the integral curve of Z̃ ∈ Γ(TM̃) through o,
Si be a global frame for the screen S̃.

Φ : Rn+2 3 (u, v , x1, . . . , xn) 7→ expg̃
γ(u)

(
v Ṽ(γ(u)) + xk Sk (γ(u))

)
∈ M̃.

(Ñ , ∇̃|
Ñ

) is complete, flat and simply connected, for each leaf Ñ

⇒ expg̃
p |Ṽ⊥ : Ṽ⊥p −→ Ñ is a diffeomorphism for each p ∈ M̃.

⇒ Φ is a diffeomorphism.

Φ∗g̃ is a standard pp-wave metric on Rn+2 with 2H := (Φ∗g̃)(∂u, ∂u).
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Step 3: Completeness

Lemma (C.f. results by Candela et al)

A standard pp-wave metric gH is complete if all
∣∣∣∣ ∂2H
∂x i∂x j

∣∣∣∣ are bounded.

Let (M,g) be a compact pp-wave with screen vf Z and let Φ∗g = gH.

Define a bilinear form Q := R(.,Z ,Z , .) onM.

WithM compact, g(Q ,Q) =
∑n

i,j=1 R(Si ,Z ,Z ,Sj)
2 is bounded.

We have Φ∗Q(∂i , ∂j) = −∂i∂j(H), and thus

C2 > g(Q ,Q) = gH(Φ∗Q ,Φ∗Q)2 =
n∑

i,j=1

Φ∗Q(∂i , ∂i) =
n∑

i,j=1

(∂i∂jH)2 ≥ 0,

i.e., all ∂i∂jH bounded.

By the Lemma, a compact pp-wave is complete. �
Proof of corollary: Ric = 0⇒ H and thus ∂i∂jH harmonic for ∆0 =

∑n
i=1 ∂

2
i .

∂i∂jH bounded⇒ independent of x i .
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Holonomy groups and coverings

(M̃, g̃) semi-Riemannian, Γ ⊂ Iso(M̃, g̃) properly discontinuous on M̃
=⇒ covering (M̃, g̃)

π
−→ (M := M̃/Γ,g).

For p ∈ M and p̃ ∈ π−1(p):
1 injective group homomorphism

ι : Holp̃(M̃, g̃) ↪→ Holp(M,g), P̃γ̃ 7−→ Pπ◦γ̃,

for γ̃ a loop at p̃, and the image is a normal subgroup.
2 surjective group homomorphism

Φ : Γ � Holp(M)/Holp̃(M̃), σ 7−→
[
Pγ

]
,

γ loop at p that, when lifted to a curve γ̃ starting at p̃, ends at σ−1(p̃).
For a loop γ at p ∈ M, we have:

Pγ = dσσ−1(p̃) ◦ P̃γ̃ ( using Tp̃M̃
dπp̃
' TpM),

γ̃ is the lift of γ starting at p̃ and ending at σ−1(p̃) with σ ∈ Γ. I.e.,[
dσσ−1(p̃) ◦ P̃γ̃ = (dσ−1 |̃p)−1 ◦ P̃γ̃

]
∈ Φ(σ) ∈ Holp(M)/Holp̃(M̃).
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Isometries of special Lorentzian manifolds

Let (Nn,h) be Riemannian, H ∈ C∞(R2 × N), ∃p: det(∇hdH)p , 0.(
M̃ = Ω × N , g̃ = gh,H := 2du(dv + Hdu) + h

)
Ω ⊂ R2 open domain. Isometries of (M̃, g̃) are of the form:

σ

 u
v
x

 =


1
a u + b
v + τ(u, x)
ρ(u, x)

 , with ρ(u, .) ∈ Iso(N ,h) ∀u.

Theorem (Baum, Lärz,TL ’12)

Let π : (M̃,gH,h)→ (M,g) := M̃/Γ be a covering. Then, for σ ∈ Γ a
representative of Φ(σ) ∈ Holp(M)/Holp̃(M̃) is given by

φ̂(σ) =

a 0 0
0 (dρ−1(u, v , .)|x)−1 ◦ Ph

σ 0
0 0 a−1

 ∈ Φ(σ),

In particular, Holπ(q̃)(M) =
{
φ̂(σ)

∣∣∣σ ∈ Γ
}
· Holp(N, h) n Rn.

12/13



Examples with disconnected holonomy groups [BLL ‘12]

Using certain Γ ⊂ Iso(M̃, g̃) we obtain examples with Hol =

Zp nRn, (Z2⊕Z2)nRn, (Z⊕Z)nRn, (ZnSU(n))nR2n, (Z2 nSU(n))nR2n

Example with infinitely generated holonomy group

N := R2 \ Z2 with flat metric h = dx2 + dy2, Γ := Π1(N) = Z ∗ Z ∗ . . .
infinitely generated free group, Hol(N ,h) trivial, H ∈ C∞(N).

π : R2 → N = R2/Γ univ. cover, h̃ = π∗h, H̃ := H ◦ π are Γ-invariant.

Ω :=
{
(v , u) ∈ R2 | u > 0

}
, M̃ := Ω × R2, g̃ = 2du(dv + H̃

u2 du) + h.

Fix generators (γ1, γ2, . . . ) of Γ, λ := (λ1, λ2, . . . ) lin. indep. over Q,
σi(v , u, x) := (eλi v , e−λi u, γi(x)), Γλ :=

〈
σi | i = 1, 2, . . .

〉
⊂ Iso(M̃, g̃).

Γλ acts properly discontinuous on M̃ andM = M̃/Γλ is LMf with
metric g, Hol(M,g) is infinitely generated bye

λi w ∗

0 12 ∗

0 0 e−λi

 ∈ O(1, 3), w ∈ R2
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