Global aspects of Lorentzian manifolds with special holonomy

Thomas Leistner

International Fall Workshop on Geometry and Physics Évora, September 2 – 5, 2013

Outline

Lorentzian holonomy

- Holonomy groups
- Lorentzian manifolds with special holonomy
- Screen bundle and screen distribution

Compact pp-waves

- Compact pp-waves are covered by \mathbb{R}^n and geodesically complete
- Main steps in the proof

The full holonomy of special Lorentzian manifolds

- Holonomy groups and covering maps
- Examples with with disconnected holonomy groups

[Joint work with D. Schliebner, arXiv:1306.0120, and with H. Baum & K. Lärz, arXiv:1204.5657, all Humboldt University Berlin]

Holonomy groups in a nutshell

• Let $(\mathcal{M}, \mathbf{g})$ be a semi-Riemannian manifold \rightarrow Parallel transport

 $\mathcal{P}_{\gamma} : T_{\gamma(0)}\mathcal{M} \ni X_0 \xrightarrow{\sim} X(1) \in T_{\gamma(1)}\mathcal{M}$

where X(t) is the solution to the ODE $\nabla_{\dot{\gamma}(t)}X(t) \equiv 0$ with $X(0) = X_0$.

For $p \in M^n$ we define the (connected) holonomy group

$$\operatorname{Hol}_{\rho}^{0}(\mathcal{M}, \mathbf{g}) := \left\{ \mathcal{P}_{\gamma} \mid \gamma(0) = \gamma(1) = \rho, \gamma \sim \{ \rho \} \right\} \subset \operatorname{O}(\mathcal{T}_{\rho}\mathcal{M}, \mathbf{g}_{\rho}) \simeq \operatorname{O}(r, s)$$

For p, q ∈ M: Hol_p(M, g) ~ Hol_q(M, g) conjugated in O(r, s).
Hol⁰_p(M, g) ⊂ Hol_p(M, g) normal and the fundamental group

$$\Pi_{1}(\mathcal{M},\boldsymbol{\rho}) \ni [\gamma] \stackrel{surjects}{\twoheadrightarrow} \left[P_{\gamma} \right] \in \operatorname{Hol}_{\boldsymbol{\rho}}(\mathcal{M},\mathbf{g})/\operatorname{Hol}_{\boldsymbol{\rho}}^{0}(\mathcal{M},\mathbf{g})$$

• Ambrose-Singer: The Lie algebra $\mathfrak{hol}_p(\mathcal{M}, \mathbf{g})$ is spanned by

$$P_{\gamma}^{-1} \circ R_{\gamma(1)}(X, Y) \circ P_{\gamma} \in \mathfrak{so}(T_{\rho}\mathcal{M}, \mathbf{g}_{\rho}),$$

where $\gamma(0) = p$, $R_{\gamma(1)}$ the curvature at $\gamma(1)$, $X, Y \in T_{\gamma(1)}M$.

A Lorentzian manifold $(\mathcal{M}^{n+2}, \mathbf{g})$ has special holonomy if

- $\operatorname{Hol}^0 \neq \operatorname{SO}^0(1, n)$ and
- **2** $T_{p}\mathcal{M}$ has no non-degenerate Hol⁰-invariant subspaces.

This is in accordance with the terminology for Riemannian manifolds (indecomposable = irreducible, Berger's list),

• De Rham/ Wu decomposition

 \implies $(\mathcal{M}, \mathbf{g})$ is not a product, not even locally.

but with a fundamental difference:

- $\operatorname{Hol}^0 \subset \operatorname{SO}^0(1, n+1)$ irreducible $\Longrightarrow \operatorname{Hol}^0 = \operatorname{SO}^0(1, n+1)$ [Berger, DiScala/Olmos] I.e., special holonomy $\Longrightarrow \operatorname{Hol}^0$ -invariant null line $\mathbb{L} \subset T_p \mathcal{M}$.
- $\operatorname{Nor}_{O(1,n+1)}(\operatorname{Hol}^0) \subset \operatorname{Stab}_{O(1,n+1)}(\mathbb{L}) \simeq (\mathbb{R}^* \times O(n)) \ltimes \mathbb{R}^n \Longrightarrow$ \mathbb{L} is Hol-invariant.

Geometrically: \mathcal{M} admits a parallel null line bundle, i.e., fibres are invariant under parallel transport.

If $(\mathcal{M}^{n+2}, \mathbf{g})$ is Lorentzian with special holonomy, then $\mathrm{Hol}^0(\mathcal{M}, \mathbf{g}) \simeq$

- $G \ltimes \mathbb{R}^n$ or $(\mathbb{R}^+ \times G) \ltimes \mathbb{R}^n$, where G is a Riemannian holonomy group,
- (A × G^s) κ ℝ^{n-k}, where G^s is the semisimple part of a Riemannian holonomy group G and A ⊂ ℝ⁺ × Z(G) if k = 0, or A ⊂ Z(G) × ℝ^k. In fact, A = graph(Ψ) for Ψ ∈ Hom(Z(G), ℝ⁺ or ℝ^k)
 - For all possible groups there exist metrics [... Galaev '06].
 - E.g.: $(\mathcal{N}^n, \mathbf{h})$ Riemannian, $H \in C^{\infty}(\mathbb{R}^2 \times \mathcal{N}), \exists p: \det(\nabla^{\mathbf{h}} dH)_p \neq 0 \Rightarrow$ $\left(\mathcal{M} = \mathbb{R}^2 \times \mathcal{N}, \ \mathbf{g} = \mathbf{g}^{\mathbf{h}, H} := 2du(dv + Hdu) + \mathbf{h}\right)$

has holonomy $(\mathbb{R}^+ \times \operatorname{Hol}(\mathcal{N}, \mathbf{h})) \ltimes \mathbb{R}^{n-2}$ or $\operatorname{Hol}(\mathcal{N}, \mathbf{h}) \ltimes \mathbb{R}^{n-2}$, if $\frac{\partial H}{\partial v} = 0$.

Are there compact or geodesically complete examples for all groups?

Screen bundle and screen distribution

Let $(\mathcal{M}, \mathbf{g})$ be Lorentzian of dim. n + 2, Hol⁰ indecomp. & not irred.,

- \exists bundle of parallel null lines $\mathbb{L} \subset \mathbb{L}^{\perp} \subset T\mathcal{M}$
- Screen bundle Σ := L[⊥]/L → M with pos. def. metric induced by g and connection ∇^Σ: ∇^Σ_X[Y] := [∇_XY]. Then

$$G = \operatorname{pr}_{\operatorname{SO}(n)}\operatorname{Hol}_{\rho}(\mathcal{M}, \mathbf{g}) = \operatorname{Hol}_{\rho}(\Sigma, \nabla^{\Sigma})$$

Screen distribution S ⊂ L[⊥], rank n and g|_{S×S} positive definite, i.e., a splitting of 0 → L → L[⊥] → Σ → 0.

Assume \mathbb{L} is spanned by a *parallel* null vector field $V \in \Gamma(\mathbb{L})$

- screen vector field Z: null, $\mathbf{g}(Z, V) = 1 \stackrel{1-1}{\longleftrightarrow} \mathbb{S} := V^{\perp} \cap Z^{\perp}$.
- As $(\mathcal{M}, \mathbf{g})$ is time-oriented, there exists a screen distribution/vf

Involutive and horizontal screen distributions

 $\begin{array}{ll} \mathbb{S} \text{ horizontal} & \longleftrightarrow & [V,S] \in \Gamma(\mathbb{S}) \ \forall S \in \Gamma(\mathbb{S}) \\ \mathbb{S} \text{ involutive} & \longleftrightarrow & [S_1,S_2] \in \Gamma(\mathbb{S}) \ \forall S_1,S_2 \in \Gamma(\mathbb{S}) \end{array} \right\} \iff V^{\flat} \wedge dZ^{\flat} = 0$

In the above example: $\mathbb{S} = \operatorname{span}(\partial_1, \ldots, \partial_n), Z = \partial_u - H\partial_v, Z^{\flat} = dv + Hdu.$

pp-waves ("plane fronted with parallel rays" [Ehlers-Kundt])

Definition: A Lorentzian manifold $(\mathcal{M}, \mathbf{g})$ is a

- *pp-wave* if it admits a parallel null vf V and $R(U, W) = 0 \forall U, W \in V^{\perp}$.
- standard pp-wave if $\mathcal{M} = \mathbb{R}^{n+2} \ni (u, v, x^1, \dots, x^n)$ and

$$\mathbf{g} = \mathbf{g}^{H} := 2du(dv + Hdu) + \delta_{ij}dx^{i}dx^{j}$$
(1)

for a smooth function *H* with $\partial_v H = 0$.

Equivalences: $(\mathcal{M}, \mathbf{g})$ is a pp-wave

- \Leftrightarrow it is locally of the form (1),
- $\Leftrightarrow \nabla V = 0 \& \mathsf{R}(X, Y) : V^{\perp} \to \mathbb{R}V, \forall X, Y \in T\mathcal{M},$
- $\Leftrightarrow \nabla V = 0$ & the screen bundle is flat,
- $\Leftrightarrow \operatorname{Hol}^{0}(\mathcal{M},\mathbf{g}) \subset \mathbb{R}^{n},$
- $\Leftrightarrow \operatorname{Hol}(\mathcal{M}, \mathbf{g}) \subset \Gamma \ltimes \mathbb{R}^n \text{ for } \Gamma \subset \operatorname{O}(n) \text{ discrete},$

 $\Leftrightarrow \nabla V = 0 \text{ & locally, } \exists S_1, \dots S_n \in \Gamma(V^{\perp}) \text{ with } g(S_i, S_j) = \delta_{ij} \text{ and } \nabla S_i = \alpha^i \otimes V, \text{ where } \alpha^i \text{ local one-forms with } d\alpha^i|_{V^{\perp} \wedge V^{\perp}} = 0.$

Geodesic completeness for compact pp-waves

- Compact Lorentzian manifolds are not always geodesically complete.
- They are if: homogeneous (Marsden '72), of constant curvature (Carriére '89, Klingler '96), or have a time-like conformal vf (Romero/Sánchez '95) Are compact pp-waves complete?
- Ehlers-Kundt '62: "Prove that complete, Ricci-flat pp-waves are plane waves, no matter which topology one chooses!" (EK)
- plane wave = pp-wave with $\nabla_X R = 0 \ \forall \ X \in V^{\perp}$.

Theorem (Schliebner/TL '13)

Let (\mathcal{M}, g) be a compact pp-wave. Then:

- Its universal cover is globally isometric to a standard pp-wave.
- **2** $(\mathcal{M}, \mathbf{g})$ is geodescically complete.

Corollary

Every compact Ricci-flat pp-wave is a plane wave.

Thm and Corollary give a proof of (EK) in the compact case (and any dim).

Examples

• η flat metric on the torus \mathbb{T}^n , $H \in C^{\infty}(\mathbb{T}^n)$ smooth. $\mathcal{M} := \mathbb{T}^2 \times \mathbb{T}^n$ with

$$\mathbf{g}^{H} = 2d\theta d\varphi + 2Hd\theta^{2} + \eta,$$

 \Rightarrow complete pp-wave metric on the torus \mathbb{T}^{n+2} , in gen. no plane wave.

▶ Torus \mathbb{T}^{n+1} with canonical 1-forms ξ^0, \ldots, ξ^n . Set

$$\omega = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} \xi^{i} \wedge \xi^{j} \in \Omega^{2}(\mathbb{T}^{n+1})$$

with const's $a_{ij} = -a_{ji}$ such that $0 \neq c := [\omega] \in H^2(\mathbb{T}^{n+1}, \mathbb{Z})$.

- ► Let $\pi : \mathcal{M} \to \mathbb{T}^{n+1}$ be the S^1 -bundle with 1st Chern class = c, $A \in T^*\mathcal{M} \otimes i\mathbb{R}$ the S¹-connection with curvature $F := dA = -2\pi i \pi^* \omega$.
- Pull backs $\eta := \pi^* \xi^0$, $\sigma^i := \pi^* \xi^i$ i = 1, ..., n, function $H \in C^{\infty}(\mathbb{T}^{n+1})$,

$$\mathbf{g} = 2(H\eta - iA) \cdot \eta + \sum_{i=1}^{n} (\sigma^{i})^{2} = \text{pp-wave metric on } \mathcal{M}.$$

▶ Note: $(\mathcal{M}, \mathbf{g})$ does *not* admit an involute screen distribution

Step 1: A compact pp-wave is univ. covered by \mathbb{R}^{n+2} .

() Screen distribution $\mathbb{S} := V^{\perp} \cap Z^{\perp} \rightsquigarrow$ complete Riemannian metric:

$$\mathsf{h}(V,.):=\mathsf{g}(Z,.),\;\mathsf{h}(Z,.):=\mathsf{g}(V,.),\;\mathsf{h}|_{\mathbb{S} imes\mathbb{S}}:=\mathsf{g}|_{\mathbb{S} imes\mathbb{S}},$$

with complete lift $\widetilde{\mathbf{h}}$ to the universal cover $\widetilde{\mathcal{M}}$.

- 2 complete $\Rightarrow \widetilde{\mathcal{M}} \stackrel{\text{diff.}}{\simeq} \mathbb{R} \times \widetilde{\mathcal{N}}$, with $\widetilde{\mathcal{N}}$ is a leaf of \widetilde{V}^{\perp} , and $\widetilde{\mathbf{h}}|_{\widetilde{\mathcal{N}}}$ complete.
- **③** Σ flat \Rightarrow ∃ $S_1, ..., S_n \in \Gamma(\widetilde{V}^{\perp} \to \widetilde{\mathcal{M}})$ with
 - $g(S_i, S_j) = \delta_{ij}, \widetilde{\nabla} S_i = \alpha^i \otimes \widetilde{V}$, with $d\alpha^i|_{\widetilde{V}^{\perp} \wedge \widetilde{V}^{\perp}} = 0$
 - geodetic for $\widetilde{\mathbf{h}}|_{\widetilde{\mathcal{N}}}$ and hence complete.
- ③ ∃ b_i ∈ C[∞](*M*): db_i|_{V[⊥]} = αⁱ|_{V[⊥]}. Ŝ_i := S_i − b_iV spans an involutive and horizontal screen and satisfies: ∇_UŜ_i = 0, whenever U ∈ V[⊥].
- S_i complete ⇒ Ŝ_i complete.
 Ṽ and Ŝ_i complete & parallel on (Ñ, Ṽ), i.e., Ñ ≃ ℝⁿ⁺¹.

Let Z be a screen vf and γ be the integral curve of $\widetilde{Z} \in \Gamma(T\widetilde{\mathcal{M}})$ through o, S_i be a global frame for the screen $\widetilde{\mathbb{S}}$.

 $\Phi: \mathbb{R}^{n+2} \ni (u, v, x^1, \dots, x^n) \mapsto \exp_{\gamma(u)}^{\widetilde{\mathbf{g}}} \left(v \ \widetilde{V}(\gamma(u)) + x^k S_k(\gamma(u)) \right) \in \widetilde{\mathcal{M}}.$

- (N
 (N
 (N
 (N

 ⇒ exp^g_p|_{V[⊥]} : V[⊥]_p → N

 ⇒ Φ is a diffeomorphism.
- $\Phi^*\widetilde{\mathbf{g}}$ is a standard pp-wave metric on \mathbb{R}^{n+2} with $2H := (\Phi^*\widetilde{g})(\partial_u, \partial_u)$.

Lemma (C.f. results by Candela et al)

A standard pp-wave metric \mathbf{g}^{H} is complete if all $\left|\frac{\partial^{2}H}{\partial x^{i}\partial x^{j}}\right|$ are bounded.

Let $(\mathcal{M}, \mathbf{g})$ be a compact pp-wave with screen vf Z and let $\Phi^* \mathbf{g} = g^H$.

- Define a bilinear form Q := R(., Z, Z, .) on \mathcal{M} .
- With \mathcal{M} compact, $\mathbf{g}(Q, Q) = \sum_{i,j=1}^{n} \mathbb{R}(S_i, Z, Z, S_j)^2$ is bounded.
- We have $\Phi^*Q(\partial_i,\partial_j) = -\partial_i\partial_j(H)$, and thus

$$C^2 > \mathbf{g}(Q,Q) = \mathbf{g}^H (\Phi^*Q, \Phi^*Q)^2 = \sum_{i,j=1}^n \Phi^*Q(\partial_i, \partial_i) = \sum_{i,j=1}^n (\partial_i \partial_j H)^2 \ge 0,$$

i.e., all $\partial_i \partial_j H$ bounded.

By the Lemma, a compact pp-wave is complete. Proof of corollary: Ric = 0 \Rightarrow *H* and thus $\partial_i \partial_j H$ harmonic for $\Delta^0 = \sum_{i=1}^n \partial_i^2$. $\partial_i \partial_j H$ bounded \Rightarrow independent of x^i .

Holonomy groups and coverings

 $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{g}})$ semi-Riemannian, $\Gamma \subset \operatorname{Iso}(\widetilde{\mathcal{M}}, \widetilde{\mathbf{g}})$ properly discontinuous on $\widetilde{\mathcal{M}}$ \implies covering $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{g}}) \stackrel{\pi}{\longrightarrow} (\mathcal{M} := \widetilde{\mathcal{M}}/\Gamma, \mathbf{g}).$ For $p \in M$ and $\widetilde{p} \in \pi^{-1}(p)$:

injective group homomorphism

$$\iota: \operatorname{Hol}_{\widetilde{\rho}}(\widetilde{\mathcal{M}}, \widetilde{\mathbf{g}}) \hookrightarrow \operatorname{Hol}_{\rho}(M, \mathbf{g}), \ \widetilde{P}_{\widetilde{\gamma}} \longmapsto \ P_{\pi \circ \widetilde{\gamma}},$$

for $\tilde{\gamma}$ a loop at \tilde{p} , and the image is a normal subgroup.

Surjective group homomorphism

$$\Phi \ : \ \Gamma \ \twoheadrightarrow \operatorname{Hol}_{\rho}(M)/\operatorname{Hol}_{\widetilde{\rho}}(\widetilde{\mathcal{M}}), \ \sigma \longmapsto \ \left[\mathsf{P}_{\gamma} \right],$$

 γ loop at *p* that, when lifted to a curve $\tilde{\gamma}$ starting at \tilde{p} , ends at $\sigma^{-1}(\tilde{p})$. For a loop γ at $p \in M$, we have:

$$P_{\gamma} = d\sigma_{\sigma^{-1}(\widetilde{\rho})} \circ \widetilde{P}_{\widetilde{\gamma}} \quad (\text{ using } T_{\widetilde{\rho}} \widetilde{\mathcal{M}} \stackrel{o\pi_{\widetilde{\rho}}}{\simeq} T_{\rho} M),$$

 $\tilde{\gamma}$ is the lift of γ starting at \tilde{p} and ending at $\sigma^{-1}(\tilde{p})$ with $\sigma \in \Gamma$. I.e.,

$$\left[d\sigma_{\sigma^{-1}(\widetilde{\rho})} \circ \widetilde{P}_{\widetilde{\gamma}} = (d\sigma^{-1}|_{\widetilde{\rho}})^{-1} \circ \widetilde{P}_{\widetilde{\gamma}} \right] \in \Phi(\sigma) \in \operatorname{Hol}_{\rho}(M)/\operatorname{Hol}_{\widetilde{\rho}}(\widetilde{\mathcal{M}}).$$

Isometries of special Lorentzian manifolds

Let $(\mathcal{N}^n, \mathbf{h})$ be Riemannian, $H \in C^{\infty}(\mathbb{R}^2 \times \mathcal{N}), \exists p: \det(\nabla^{\mathbf{h}} dH)_p \neq 0.$

$$\left(\widetilde{\mathcal{M}} = \Omega \times \mathcal{N} , \ \widetilde{\mathbf{g}} = \mathbf{g}^{\mathbf{h}, \mathcal{H}} := 2du(dv + \mathcal{H}du) + \mathbf{h}\right)$$

 $\Omega \subset \mathbb{R}^2$ open domain. Isometries of $(\widetilde{\mathcal{M}},\widetilde{g})$ are of the form:

$$\sigma\begin{pmatrix} u\\ v\\ \mathbf{x} \end{pmatrix} = \begin{pmatrix} \frac{1}{a}u+b\\ v+\tau(u,\mathbf{x})\\ \rho(u,\mathbf{x}) \end{pmatrix}, \text{ with } \rho(u,.) \in \operatorname{Iso}(\mathcal{N},\mathbf{h}) \,\forall u.$$

Theorem (Baum, Lärz, TL '12)

In par

Let $\pi : (\widetilde{\mathcal{M}}, \mathbf{g}^{H,\mathbf{h}}) \to (\mathcal{M}, \mathbf{g}) := \widetilde{\mathcal{M}}/\Gamma$ be a covering. Then, for $\sigma \in \Gamma$ a representative of $\Phi(\sigma) \in \operatorname{Hol}_{p}(\mathcal{M})/\operatorname{Hol}_{\widetilde{p}}(\widetilde{\mathcal{M}})$ is given by

$$\hat{\phi}(\sigma) = \begin{pmatrix} a & 0 & 0\\ 0 & (d\rho^{-1}(u, v, .)|_{\mathbf{X}})^{-1} \circ \mathbf{P}_{\sigma}^{\mathbf{h}} & 0\\ 0 & 0 & a^{-1} \end{pmatrix} \in \Phi(\sigma),$$

ticular, $\operatorname{Hol}_{\pi(\widetilde{q})}(M) = \{\hat{\phi}(\sigma) | \sigma \in \Gamma\} \cdot \operatorname{Hol}_{\rho}(N, h) \ltimes \mathbb{R}^{n}.$

Examples with disconnected holonomy groups [BLL '12]

Using certain $\Gamma \subset \operatorname{Iso}(\widetilde{\mathcal{M}}, \widetilde{g})$ we obtain examples with $\operatorname{Hol} =$

 $\mathbb{Z}^{p} \ltimes \mathbb{R}^{n}, \ (\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}) \ltimes \mathbb{R}^{n}, \ (\mathbb{Z} \oplus \mathbb{Z}) \ltimes \mathbb{R}^{n}, \ (\mathbb{Z} \ltimes \mathrm{SU}(n)) \ltimes \mathbb{R}^{2n}, \ (\mathbb{Z}_{2} \ltimes \mathrm{SU}(n)) \ltimes \mathbb{R}^{2n}$

Example with infinitely generated holonomy group

N := R² \ Z² with flat metric h = dx² + dy², Γ := Π₁(N) = Z * Z * ... infinitely generated free group, Hol(N, h) trivial, H ∈ C[∞](N).

•
$$\pi : \mathbb{R}^2 \to \mathcal{N} = \mathbb{R}^2 / \Gamma$$
 univ. cover, $\widetilde{\mathbf{h}} = \pi^* \mathbf{h}$, $\widetilde{\mathcal{H}} := \mathcal{H} \circ \pi$ are Γ -invariant.

•
$$\Omega := \{(v, u) \in \mathbb{R}^2 \mid u > 0\}, \widetilde{\mathcal{M}} := \Omega \times \mathbb{R}^2, \widetilde{g} = 2du(dv + \frac{\widetilde{H}}{u^2}du) + h.$$

- Fix generators $(\gamma_1, \gamma_2, ...)$ of $\Gamma, \underline{\lambda} := (\lambda_1, \lambda_2, ...)$ lin. indep. over \mathbb{Q} , $\sigma_i(\mathbf{v}, u, x) := (e^{\lambda_i} \mathbf{v}, e^{-\lambda_i} u, \gamma_i(x)), \Gamma_{\underline{\lambda}} := \langle \sigma_i \mid i = 1, 2, ... \rangle \subset \operatorname{Iso}(\widetilde{\mathcal{M}}, \widetilde{\mathbf{g}}).$
- Γ_{<u>λ</u>} acts properly discontinuous on *M* and *M* = *M*/Γ<u>λ</u> is LMf with metric **g**, Hol(*M*, **g**) is infinitely generated by

$$\begin{pmatrix} e^{\lambda_i} & w & * \\ 0 & 1_2 & * \\ 0 & 0 & e^{-\lambda_i} \end{pmatrix} \in \mathrm{O}(1,3), \ w \in \mathbb{R}^2$$