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[ME, Notes on conformal geometry] [ME, Symmetries of the Laplacian]

Happy Birthday, MikE!
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Conformal holonomy Definitions and questions

Conformal geometry

Conformal manifold: (M, [g]), [g] = class of conformally equivalent
semi-Riemannian metrics, dim(M) = p + q.

Flat model: Sp,q := N/R+ = G/P with
N null cone in Rp+1,q+1 with R+-action,
G := SO0(p + 1, q + 1), P := StabG(null line in Rp+1,q+1).
g = g+ ⊕ g0 ⊕ g− with g0 = co(p, q), g± ' Rp,q, p = g+ ⊕ g0.

The curved version is described by

A P-bundle G (conformal Cartan bundle)

G
G+
→ G0 = {conformal frames}

G0=CO(p,q)
→ M

↑

horizontal subspaces in TG0, kernel of some ωg, g ∈ [g]

Normal conformal Cartan connection ω ∈ T∗G ⊗ g,
ω : TG → g parallelism, R∗pω = Ad(p−1)ω, ω(X̃) = X ∈ p,
Ω(X ,Y) ∈ p (torsion-free) and curvature condition.
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Conformal holonomy Definitions and questions

What is conformal holonomy?

ω does not give horizontal subspaces and no parallel transport.

ω defines connection ω̂ on G-bundle Ĝ = G ×P G by ω̂|G = ω.

tractor connection ∇̂ on (standard) tractor bundle

T = Ĝ ×G R
p+1,q+1 = G ×p R

p+1,q+1.

Conformal holonomy: Holx(M, [g]) := Holx(T , ∇̂) ' Holp(Ĝ, ω̂) ⊂ G.
1 Which groups can occur?
2 Are they holonomy groups of semi-Riemannian metrics?
3 Which structures correspond to holonomy reductions?

Obstacles:

No obvious algebraic criterion for holonomy algebra.

Hol is defined up to conjugation in G, not only in P.

Reduction to subgroup H might not define a Cartan connection on M,
as we could have dim(H/H ∩ P) , dim(M).
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Conformal holonomy Definitions and questions

Classification of semi-Riemannian holonomy

Let h be the holonomy algebra of a semi-Riemannian manifold.
Ambrose-Singer holonomy theorem,

h = span
{
P−1
γ ◦ R(X ,Y) ◦ Pγ ∈ SO(TpM) | γ(0) = p,X ,Y ∈ Tγ(1)M

}
and 1st Bianchi-identity for R imply

(B) h = span
{
R(x, y) | R ∈ K(h), x, y ∈ Rn} ,

with K(h) :=
{

R ∈ Λ2Rn∗ ⊗ h | R(x, y)z + R(y, z)x + R(z, x)y = 0
}
. For

h ⊂ so(p, q) irreducible, (B) yields a classification (Berger ’55).

No such algebraic criterion known for conformal holonomy.
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Conformal holonomy Normal conformal tractor bundle and Einstein metrics

Conformally Einstein metrics and parallel tractors

Let gΛ ∈ [g] be an Einstein metric, i.e. Ric = (n − 1)Λ · gΛ. Then
1 T admits a constant section η with ĝ(η, η) = −Λ and hence,

Hol(M, [g]) admits an invariant vector.
2 the Fefferman-Graham ambient metric g̃ is given as

Λ , 0: g̃ = − 1
Λ ds2 + 1

Λ dr2 + r2gΛ︸         ︷︷         ︸
cone metric

Λ = 0: g̃ = −dudt + t2gΛ

and Hol(M̃, g̃) = Hol(M, [g]), i.e., the conformal holonomy is a
semi-Riemannian holonomy.

Conversely, if Hol(M, [g]) admits an invariant line, then on an open dense
subset M0 of M there exist an Einstein metric gΛ ∈ [g|M0 ], and all of the
above holds for Hol(M0, [g|M0 ]).
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Conformal holonomy Normal conformal tractor bundle and Einstein metrics

Tractor bundle and its constant sections
[Bailey/Eastwood/Gover]

Let P = StabG(I), I = null line.

Filtration I ⊂ I⊥ ⊂ Rp+1,q+1 gives I ⊂ I⊥ ⊂ T .

Projection I⊥ = G ×P I⊥ → I⊥/I ' TM ' G0 ×CO0(p,q) (I⊥/I).

Every g ∈ [g] splits T = L⊥ ⊕ R = R ⊕ TM ⊕ R with

ĝ =

0 0 1
0 g 0
1 0 0

 and ∇̂X

 τY
σ

 =


dτ(X) − P(X ,Y)

∇X Y + τX + σ(X P)]

dσ(X) − g(X ,Y)

 ,

X̂ =

 ρ

X
σ

 with ∇̂X̂ = 0 ⇐⇒ σ−2g is Einstein metric on the open and

dense complement of zero(σ).
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Conformal holonomy Irreducible conformal holonomy

Irreducible case: Riemannian conf. structures

Theorem (Berger ’55, Di Scala/Olmos ’00)

If H ⊂ SO0(1, n + 1) acts irreducibly, then H = SO0(1, n + 1).

⇒ A Riemannian conformal manifold has generic conformal holonomy
unless

[g] contains an Einstein metric or

a certain product of Einstein metrics:
Decomposition thm by S. Armstrong ’04: Hol(M, [g]) has invariant
subspace of dim k > 1 ⇐⇒ locally, [g] contains product of Einstein
metrics g1 and g2 of dim (k − 1) and (n − k + 1) with

n−k+1
k−1 Λ1 = − k−1

n−k+1 Λ2

and the conformal holonomy is given by the holonomy of the products
of cones. (cf. Leitner ’04, Leitner/Gover ’09).
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Conformal holonomy Irreducible conformal holonomy

Irreducible case: Lorentzian conf. structures

Theorem (Di Scala/L ’11)

Let H ⊂ SO0(2, n) act irreducibly. Then H is conjugated to
1 SO0(2, n),
2 SU(1, p), U(1, p), U(1)·SO0(1, p) if p > 1, n even

3 SO0(1, 2)
irr.
⊂ SO(2, 3), for n = 3.

U(1, p) and U(1)·SO0(1, p) can’t be conformal holonomy groups:
Hol([g])⊂U(r ,s)⇒ Hol([g]) ⊂ SU(r ,s)
[Leitner’06, Cap/Gover’06]

Hol([g]) = SU(1, p): Fefferman space in conformal class

What about (3)?
(3) corresponds to the symmetric space M5 := SL3R/SO0(1, 2) of
signature (2, 3) metric given by the Killing form of sl3R.
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Conformal holonomy Irreducible conformal holonomy

Isotropy representation of SLnR/SO(p, q)

Semi-Riemannian irreduccible symmetric space SLnR/SO(p, q)

symmetric decomposition slnR = so(p, q) ⊕m

irred. rep’n

Ad : SO(p, q)→ SO(m,KslnR) = SO
(
pq, p(p+1)+q(q+1)−2

2

)
Theorem (Alt/DiScala/L ’12)

If the conformal holonomy of a conformal manifold (M, [g]) is contained in
Ad(SO(2, 1)), then g is locally conformally flat.a

aIn the talk I claimed that this result is true not only for (p, q) = (2, 1) but for arbitrary p ≥ q ≥ 1.
The result is still true for n = p + q = 4, but for larger n we cannot fix the original proof.

Corollary

If the conformal holonomy group of a Lorentzian conformal manifold acts
irreducibly, then it is equal to SO(2, n) or SU(1, p).
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Conformal holonomy Holonomy reductions and curved orbit decomposition

Holonomy reductions via parallel sections

Principal G-bundle Ĝ → M with connection ω̂ on Ĝ.
H ⊂ G be closed and containing Holp(Ĝ, ω̂), the holonomy group of ω̂ at
p ∈ Ĝ. Reduction to the H-bundle (depending on p ∈ Ĝ),

Hp = {γ(1) | γ(0) = p, γ horizontal}︸                                   ︷︷                                   ︸
holonomy bundle

·H ⊂ Ĝ

W a G-module,W = Ĝ ×G W associated vector bundle. Connection ω̂ on
Ĝ induces a covariant derivative ∇̂ onW.

C∞(Ĝ,W)G ' Γ(W), s 7→ σ(x) = [p, s(p)] for p ∈ Ĝx .

σ ∈ Γ(W) defines map M 3 x 7→ s(Ĝx) =: Ox = G-orbit inW.
∇̂σ = 0 ⇐⇒ s ◦ γ const. for all horizontal curves γ in Ĝ. Hence,
σ ∈ Γ(W) with ∇̂σ = 0 implies
Holp(ω̂) ⊂ StabG(s(p)) and defines s(Ĝx) ≡ G · s(p) =: O.

σ ∈ Γ(W), ∇̂σ = 0 7→ O = G/StabG(w) for w ∈ O
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Conformal holonomy Holonomy reductions and curved orbit decomposition

Curved orbits [Čap/Gover/Hammerl ’11]

Assume that Ĝ and ω̂ come from a (normal conformal) Cartan connection
ω of type P ⊂ G on a P-bundle G via Ĝ = G ×P G and ∇̂ onW = G ×P W.
ω has a holonomy reduction of type O, if ∃ σ ∈ Γ(W) with ∇̂σ = 0 defining
s ∈ C∞(Ĝ,W)G with G-orbit O. Note:

ω̂-horizontal curves leave G if Holp(ω̂) 1 P.

P-orbits s(Gx) ⊂ O might change with x ∈ M.

s(Gx) = P ·w =: [w] ∈ P\O is the P-orbit type of σ at x ∈ M,

M =
⋃

[w]∈P\O

M[w], with M[w] :=
{
x ∈ M | s(Gx) = [w]

}
.

For w ∈ O set Gw = StabG(w). Then
P\O = P\G/Gw ' H\G/P = Gw\S

p,q. I.e.,

P-orbits in O = G/Gw ↔ Gw -orbits in G/P

P · g · Gw 7→ Gw · g−1 · P
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Conformal holonomy Holonomy reductions and curved orbit decomposition

Curved orbits and holonomy reduction

Theorem (Čap/Gover/Hammerl ’11)

Let ω be a Cartan connection of type P ⊂ G with curvature Ω and with a
holonomy reduction of type O.

Let w ∈ O with P-orbit [w] := P · w = PeGw in O,

Gw/Pw = GweP the corr. Gw -orbit in G/P, Pw := Gw ∩ P.

Then, ∀ x ∈ M[w] ∃ nbhd. U of x in M and a diffeom. φ : U → V ⊂ G/P:

φ(x) = eP, φ(U ∩M[w]) = V ∩ GweP,
U

φ
→ V ⊂ G/P

↓ ↓

P\O → Gw\G/P
comm.

ω induces a Cartan connection of type Pw ⊂ Gw on
Gw ⊂ G

↓ ↓

M[w] ⊂ M
whose curvature is the restriction of Ω to Gw with values in pw .

11/21



Conformal holonomy Holonomy reductions and curved orbit decomposition

Proof of Thm for SLnR/SO(p, q)

Ad(SO(p, q))-invariant decomposition slnR = so(p, q) ⊕m. Then

H := Ad(SO(p, q)) ⊂ SO(m,KslnR) is the stabilisier of a curvature
tensor R ∈W := Λ2m ⊗ so(m,KslnR).

The null cone N in m consists of matrices S with tr(S2) = 0 and
defines the Möbius sphere N → Sp̂,q̂ = N/R∗.

Proposition

Let N0 := {S ∈ N | S has n distinct eigenvalues, possibly in C}.
Then N0 is dense in N and, for all S ∈ N0, stabad(h)(R·S) = {0}.
I.e., the union of H-orbits of codimension n − 3 is dense in Sp̂,q̂.

CGH-Thm⇒
M0 := {x ∈ M | s(Gx) corresponds to orbit of max dim in Sp̂,q̂} is dense.
pw = {0} and invariance of Ω⇒ Ω ≡ 0 along maximal orbits.
Hence, for n = 3 we have Ω ≡ 0, i.e., locally conformally flat.
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Holonomy reductions and skew symmetric torsion Other classes of symmetric spaces

SLnC/SU(p, q) and SLnH/Sp(p, q)

Let H = SU(p, q) or H = Sp(p, q) = SU(2p, 2q) ∩ SpnC.
Ad(H)-invariant decomposition slnK = h ⊕m for K = C,H, respectively.
Let N be the null-cone w.r.t. the Killing form of slnK.

Proposition

N0 := {S ∈ N | S has n distinct eigenvalues} is dense in N and, for
S ∈ N0 there is an 1 ≤ r ≤ n

2 such that stabad(h)(R·S) is given as(
r · so(1, 1) ⊕ (n − r) · u(1))

)
∩ slnC ={

diag(z1, . . . , zr , ix1, . . . , ixn−2r ,−zr , . . . ,−z1) | zi ∈ C, xj ∈ R
}
∩ slnC,

if K = C,

r · sl2C ⊕ (n − 2r) · sp(1), if K = H.

Again, the union of H-orbits of codimension n − 3 is dense in Sp̂,q̂.

Note that both stabilisers are invariant under conjugate transpose.
Consequences for the holonomy reduction?
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Holonomy reductions and skew symmetric torsion Reductive Cartan connections

Reductive Cartan connections

A Cartan connection η of type B ⊂ H is reductive if b has an Ad(B)-inv
complement n in h = b ⊕ n. Then η decomposes inot

η = ηb ⊕ ηn

ηb a connection on B-bundle H ,

ηn ∈ T∗H ⊗ b is Ad(B)-inv.

For each u ∈ H , ηn defines an isom ψu : TxM → h/b→ n, yielding a
reduction of the frame bundle of M to H . Hence, ηb induces a linear
connection ∇η on TM.

If η is torsion-free, then the torsion Tη(X ,Y) := ∇ηX Y − ∇ηY X − [X ,Y ]
of ∇η is given as

ψu(Tη(X ,Y)) = − [ψu(X), ψu(Y)]n .
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Holonomy reductions and skew symmetric torsion Reductive Cartan connections

Totally skew symmetric torsion

Proposition

Let η be a reductive, torsion-free Cartan connection of type B ⊂ H.
Assume that h admits an AdH-invariant metric K : h × h→ R such that
h = b ⊕⊥ n. Then there is a canonical metric gη on M and an affine
connection ∇η with torsion Tη such that:

∇ηTη = 0 and ∇ηgη = 0,

gη(Tη(., .), .) is totally skew-symmetric,

Hol(∇η) ⊂ AdH(B) ⊂ O(n,K).

Proof.

Hol(ηb) ⊂ AdH(B) ⊂ O(n,K) by construction.

gη := ψ∗uK for u ∈ Bx , is ∇η-parallel.

Ad(B)-inv of K and b⊥n gives skew symmetry of the torsion.

Tη parallel as ψu ◦ (ψ−1)∗Tη = −[., .]n is Ad(B)-inv.

�
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Holonomy reductions and skew symmetric torsion Reductive Cartan connections

An algebraic Lemma

Conditions on a symmetric space G/H such that the holonomy reduction
of the nc Cartan connection satisfies the assumptions of the proposition.

Lemma
Let g = h ⊕m be a symmetric space, with h and g simple of non-compact
type, S ∈ N ⊂ m and b = stabh(RS).
If h has a Cartan involution θ such that θ(b) = b, then

(i) h = b ⊕ n is ad(h)-inv and orthogonal w.r.t. Kg=Killing form of g,

(ii) ∃ null vector Ŝ ∈ m such that Kg(S, Ŝ) , 0 and stabh(RŜ) = b.

Furthermore, if n̂ := span(S, Ŝ)⊥ satisfies dim(n) = dim(̂n) then (n,Kg|n)
and (̂n,Kg |̂n) are homothetic, and we have

b = stabh(S) = stabh(Ŝ).

The proof uses the Karpelevich-Mostov Theorem.
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Holonomy reductions and skew symmetric torsion Reductive Cartan connections

Holonomy reduction to isotropy groups

Theorem
Let G/H be a symmetric space with g and h simple of non-compact type,
and invariant decomposition g = h ⊕m.
Let (M, [g]) be a conformal manifold of signature (p, q) with holonomy
reduction to AdG(H) ⊂ SO(m) ' SO(p + 1, q + 1).
Assume there is a null vector S ∈ m with stabilizer B = StabH(RS) with

1 b = LA(B) is invariant under a Cartan involution of h,
2 the H-orbit of [S] is open in the Möbius sphere Sp,q of m.

Then M0 ⊂ M corresponding to the H-orbit of [S] in Sp,q has

a canonical metric g0 ∈ [g|M0 ],

a connection ∇0 with ∇0g0 = 0 and with skew-symmetric, ∇0-parallel
torsion T0, and

Hol(∇0) ⊂ AdH(B) ⊂ SO(h/b).
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Holonomy reductions and skew symmetric torsion Reductive Cartan connections

SL3C/SU(2, 1) and nearly para-Kähler structures

SLnC/SU(p, q) satisfies assumption (1) of the Thm and, for n = 3 also
assumption (2). We find: ∇0 = canonical connection for a para-nearly
Kähler structure (g, J) of constant type 1

2 , i.e.,
J ∈ End(TM0) with J2 = 1 and J∗g = −g,
∇X J(X) = 0 for all X ∈ TM0, where ∇ = ∇LC ,
g(∇X J(Y),∇X J(Y)) = 1

2

(
g(X ,X)g(Y ,Y) − g2(X ,Y) + g2(JX ,Y)

)
Fact [Ivanov/Zamkovoy ’05]:

Six-dim’l nearly para-Kähler manifolds are of constant type Λ and Einstein
with Einstein constant 5Λ.

Theorem

If (M, [g]) has conformal holonomy in Ad(SU(2, 1)) ⊂ SO(4, 4), then, on
an open dense subset, there exists a nearly para-Kähler metric in [g]. In
particular, the conformal holonomy preserves a time-like vector in R4,4,
and is properly contained in PSU(2, 1).
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Holonomy reductions and skew symmetric torsion Reductive Cartan connections

SL2H/Sp(2, 1) and Sp(2, 1)/SL2C × Sp(1)

SL2H/Sp(2, 1) satisfies the assumptions of the Thm.

The open orbits in the Möbius sphere are given by PSp(2, 1)/B with
B = SL2C × Sp(1).

This is a naturally reductive homogeneous space with metric Einstein
K of signature (5, 7).

The Ricci tensor of g0 in [g] is related to the one of K via

Ricg0(X ,Y) = RicK (ψu(X), ψu(Y)),

and is thus also Einstein.

Theorem

If (M, [g]) is a conformal manifold of signature (5, 7) with conformal
holonomy in PSp(2, 1) ⊂ SO(6, 8), then on an open dense subset there is
an Einstein metric [g]. In particular, the conformal holonomy is a proper
subgroup of PSp(2, 1).
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Holonomy reductions and skew symmetric torsion Fefferman-Graham ambient metric and conformal holonomy

Fefferman-Graham ambient metric and conf. holonomy

What about other symmetric spaces?

Theorem (Graham/Willse ’11)

Let (M, [g]) be a real analytic conformal structure on an odd-dim’l mf M.
Then parallel tractors in ⊗kT can be uniquely extended to parallel ambient
tensors for Ricci flat ambient space (M̃, g̃).

Hol(M̃, g̃) = Stab(R̃) , SO(p + 1, q + 1) irreducible with R̃ an algebraic
curvature tensor, then Ric = 0⇒ (M̃, g̃) flat.

Theorem

Let (M, [g]) be a real analytic conformal structure on an odd-dim’l mf M
with irreducible conformal holonomy H = Stab(w). Then H is equal to
SO(p + 1, q + 1) or G2(2).
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Holonomy reductions and skew symmetric torsion Fefferman-Graham ambient metric and conformal holonomy

Speculations

1 Isotropy groups of irreducible symmetric spaces cannot be conformal
holonomy groups.

2 Conformal holonomy groups are always pseudo-Riemannian
holonomy groups of Ricci flat manifolds.

3 Lie algebras h ⊂ so(T) for which Ric : K(h)→ �2T∗ is injective cannot
be conformal holonomy algebras.

Thank you!
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