Ambient metrics for *n*-dimensional pp-waves

Thomas Leistner

54th Meeting of the AustMS in Brisbane Geometric Analysis Session September 30, 2010

[Joint work with Paweł Nurowski (Warsaw), Comm. Math. Phys, 2010]

- Let (Mⁿ, [g]) be a smooth manifold equipped with a conformal structure of semi-Riemannian metrics, [g] := {e^{2φ}g | φ ∈ C[∞](M)}.
- Problem: Invariant description of conformal structures (e.g. Weyl tensor= 0 ⇐⇒ conformally flat).
- One solution: Fefferman-Graham ambient metric: Describe the conformal geometry of (*Mⁿ*, [*g*]) in terms of the metric geometry of an *ambient space* (*M̃ⁿ⁺²*, *g̃*) as in the following

Example

Let S^n be the *n* sphere. Consider the n + 2 dimensional Minkowski space \mathbb{M}^{n+2} with flat metric \tilde{g}_0 , and C^+ be the light cone. Then $S^n \simeq C^+/\mathbb{R}^+$ and every section $\sigma \in \Gamma(C^+ \to S^n)$ defines a metric $g := \sigma^* \tilde{g}_0$ on S^n . Two metrics obtained in this way are conformally equivalent.

The ambient metric construction generalises this picture to arbitrary conformal classes.

Construction of the ambient space

 A conformal class [g] on M corresponds to an ℝ⁺-principle fibre bundle, the cone

$$C := \left\{ (g, x) \in \odot^2 TM \mid (g, x) = g_x \text{ for a } g \in [g] \right\} \xrightarrow{\pi} M$$

$$\mathbb{R}^+ \text{-action } \delta_t(g, x) := (t^2g, x) \text{ on the fibres}$$

• Tautological tensor on *C*: $\mathbf{g}(U, V)|_{(g,x)} := g_x(\mathrm{d}\pi(U), \mathrm{d}\pi(V)),$

- $\mathbf{g}(T, T) = 0$ for the fundamental vector field T of δ .
- of degree 2 w.r.t. the \mathbb{R}^+ -action, i.e. $\delta_t^* \mathbf{g} = t^2 \mathbf{g}$.

• Every $g \in [g]$ defines a trivialisation of C,

$$\begin{array}{rcl} \mathbb{R}^+ \times M &\simeq & C \\ (t,x) &\mapsto & (t^2 g_x, x) \end{array}$$

• Now, thicken the cone to obtain the ambient space

$$\widetilde{M}:=C\times(-\varepsilon,\varepsilon)$$

The \mathbb{R}^+ action on *C* extends trivially to \widetilde{M} : $\delta_t(g_x, \rho) := (\delta_t g_x, \rho)$.

Definition

Let (M, [g]) be smooth manifold with conformal class of signature (t, s). An *ambient metric* for (M, [g]) is a smooth metric \tilde{g} on \tilde{M} such that

• \widetilde{g} is homogeneous of degree 2 w.r.t. the \mathbb{R}^+ -action δ .

2
$$\iota^* \widetilde{g} = \mathbf{g}$$
, for the inclusion $\iota : C = C \times \{0\} \subset \widetilde{M}$.

3 $\operatorname{Ric}(\widetilde{g}) = 0.$

(1), (2) and $\operatorname{Ric}(\widetilde{g}) = 0$ imply that by fixing $g \in [g]$ that trivialises *C* and a coordinate ρ such that $\widetilde{M} \simeq \mathbb{R}^+ \times M \times (-\varepsilon, \varepsilon) \ni (t, x, \rho)$, we have

$$\widetilde{g} = 2td\rho dt + 2\rho dt^2 + t^2 g_{\rho},$$

for a ρ -dependent family of metrics g_{ρ} with $g_0 = g$ and subject to the condition $\operatorname{Ric}(\tilde{g}) = 0$.

The Fefferman-Graham ambient metric

Theorem (C. Fefferman & C.R. Graham '85,'07)

- If $n := \dim M$ is odd, then
 - there exists a formal power series solution g_{ρ} to $\operatorname{Ric}(\widetilde{g}) = 0$,
 - 2 this solution is unique up to \mathbb{R}^+ invariant diffeomorphisms fixing $C \subset \widetilde{M}$,
 - if [g] is analytic, then there exists an ambient metric.
- If *n* is even, then there exists a conformally invariant tensor $O \in \Gamma(\odot^2 TM)$, the obstruction tensor, such that $O \equiv 0 \iff (1), (2), (3)$ as in the odd case.

Furthermore, there exists a formal power series solution to the problem $\operatorname{Ric}(\widetilde{g}) = O(\frac{n-2}{2})$ in ρ which is uniquely determined up to terms of order $\frac{n}{2}$.

O is trace and divergence free, conf. invariant of weight (2 - n), given by

$$O = \Delta_g^{n/2-2} \left(\Delta_g \mathcal{P} -
abla^2 \mathrm{tr}(\mathcal{P})
ight) + ext{lower order terms},$$

where $P = \frac{1}{n-2} \left(Ric - \frac{scal}{2(n-1)}g \right)$ is the Schouten tensor and Δ_g is the Laplacian of $g \in [g]$.

Expanding $g_{
ho}$ as a power series we get

$$\widetilde{g} = 2td\rho dt + 2\rho dt^2 + t^2 \left(g + \sum_{k=1}^{\infty} \rho^k \mu_k\right).$$

with
$$(\mu_1)_{ab} = 2P_{ab}$$

 $(n-4)(\mu_2)_{ab} = -B_{ab} + (n-4)P_a{}^cP_{bc}$
 $3(n-4)(n-6)(\mu_3)_{ab} = \Delta_g B_{ab} + ...$

where $B_{ab} = \nabla_c C_{ab}^{\ c} - P_{cd} W_{ab}^{\ c}^{\ d}$ is the Bach tensor, W_{abcd} is the Weyl tensor, $C_{abc} := \nabla_c P_{ab} - \nabla_b P_{ac}$ is the Cotton tensor.

[*g*] contains a (local) Einstein metric $\iff \tilde{g}$ admits a parallel vector field: If $g_{\Lambda} \in [g]$ is Einstein with $P = \Lambda g$. Then

$$\widetilde{g} = 2td(\rho t)dt + (t^{2} + 2t^{2}\rho\Lambda + t^{2}\rho^{2}\lambda^{2})g_{\Lambda}$$

$$\stackrel{-u=t\rho}{=} -2dudt + (t^{2} - 2\Lambda ut + \Lambda^{2}u^{2})g_{\Lambda}$$

$$\bullet \Lambda \neq 0: \quad \widetilde{g} \stackrel{r=t-\Lambda u}{=} -\frac{1}{2\Lambda}ds^{2} + \underbrace{\frac{1}{2\Lambda}dr^{2} + r^{2}g_{\Lambda}}_{cone \ metric}$$

$$\bullet \Lambda = 0: \quad \widetilde{g} = -dudt + t^{2}g_{\Lambda}.$$

Examples of explicit ambient metrics with truncated ambient metric:

- Products of Einstein metrics with related Einstein constants [R. Gover & F. Leitner '06]
- G₂-conformal structures [P. Nurowski '07, Nurowski & L. 09]

An *n*-dimensional Lorentzian manifold (M, g) is a *pp-wave* \iff

• \exists parallel null vector field K,

• R(U, V) maps K^{\perp} to $\mathbb{R} \cdot K$ for all $U, V \in TM$ ($\iff R_{abij}R^{ij}_{cd} = 0$).

- \iff (*M*, *g*) has abelian holonomy \mathbb{R}^{n-2}
- \iff (M, g) admits coordinates $(x^1, \ldots, x^{n-2}, u, r)$ such that

$$g = \sum_{i=1}^{n-2} (\mathrm{d}x^i)^2 + 2\mathrm{d}u \, (\mathrm{d}r + h\mathrm{d}u), \quad \text{with } h = h(x^1, \dots, x^{n-2}, u)$$

pp-waves satisfy *scal* = 0 and

$$P = \frac{1}{n-2} \text{Ric} = -\frac{1}{n-2} \Delta h du^2 \text{ and } B = -\frac{1}{n-2} \Delta^2 h du^2$$

where $\Delta h = \sum_{i=1}^{n-2} \partial_i^2 h$.

The ambient metric of a pp-wave

Let $(M, g = \sum_{i=1}^{n-2} (dx^i)^2 + 2du (dr + hdu))$ be a pp-wave. Ansatz for ambient metric

$$\widetilde{g} = 2d(\rho t)dt + t^2(g + Hdu^2)$$

where $H = H(\rho, x^i, u)$, and $H(\rho, x^i, u)_{|\rho=0} = 0$. Then we have

$$\operatorname{Ric}(\widetilde{g}) = \left((2-n)H_{\rho} + 2\rho H_{\rho\rho} - \Delta H - \Delta h\right) du^2,$$

with $H_{\rho} := \frac{\partial H}{\partial \rho}$, etc. I.e., \tilde{g} is ambient metric for [g] if

$$(2-n)H_{\rho}+2\rho H_{\rho\rho}-\Delta H=\Delta h.$$
 (*)

Solution to (*) is given by

$$H := \sum_{k=1}^{\infty} \frac{\rho^k \Delta^k h}{k! \prod_{i=1}^k (2i-n)}$$

Theorem (Nurowski & L. '10)

Let $g = \sum_{i=1}^{n-2} (dx^i)^2 + 2du (dr + hdu)$ be a pp-wave metric. If n is odd, then the ambient metric for \tilde{g} for the conformal class [g] is given by

$$\widetilde{g} = 2\mathrm{d}(\rho t)\mathrm{d}t + t^2g + t^2 \left(\sum_{k=1}^{\infty} \frac{\rho^k \Delta^k h}{k! \prod_{i=1}^k (2i-n)}\right) \mathrm{d}u^2$$

If n = 2s is even, the obstruction tensor is given as

$$O = \Delta^s h du^2$$
.

If it vanishes, the ambient metric truncates at order (s - 1) in ρ .

In dimension n = 4 the obstruction to the existence of the ambient metric for a pp-wave

 $g = \mathrm{d}z\mathrm{d}\overline{z} + 2\mathrm{d}u\mathrm{d}r + 2h\mathrm{d}u^2$

is given by the Bach tensor $B = -\frac{1}{n-2}\Delta^2 h du^2$.

Proposition (Nurowski & L. '10)

A 4-dimensional pp-wave is Bach flat \iff

 $h = z\overline{\alpha} + \overline{z}\alpha + \beta + \overline{\beta}$ for $\alpha = \alpha(z, u)$ and $\beta = \beta(z, u)$ holom. in z

Furthermore, a 4-dimensional Bach flat pp-wave satisfies

g is conformally flat \iff g is conformally Einstein $\iff \partial_z^2 \alpha = 0$.

This gives an abundance of examples for which the ambient metric truncates but which are not conformally Einstein.