Half flat structures and special holonomy

Thomas Leistner

54th Meeting of the AustMS in Brisbane Geometry and Topology Session September 27, 2010

Outline

Linear algebra of stable forms

Palf flat structures and their evolution under the Hitchin flow

3 Examples

Joint work with V. Cortés, F. Schulte-Hengesbach (Hamburg), and L. Schäfer (Hannover) [Proc. London Math. Soc., 2010]

Stable forms

Definition

Let V be a real vector space of dimension n. A k-form $\omega \in \Lambda^k V^* =: \Lambda^k$, with 1 < k < n - 1, is called *stable* if and ω has an open orbit under the action of $GL_n\mathbb{R}$.

- Stable forms exists if k = 2, n 2 or k = 3, n 3 and n = 6, 7, 8 [Kimura & Sato '77]
- Stable forms come in pairs: There is a GL⁺_nℝ-invariant map
 φ : Λ^k → Λⁿ which sends stable forms to volume forms which and
 defines a *dual stable form* û by

$$\hat{\omega} \wedge \omega = \frac{n}{k} \phi(\omega)$$

for every stable form ω . The connected components of their stabilisers are the same.

• Example: k = 2, n = 2m: $\omega \in \Lambda^2$ stable iff it is non-degenerate.

$$\phi(\omega) = \frac{1}{m!}\omega^m$$
, $\hat{\omega} = \frac{1}{(m-1)!}\omega^{m-1}$, and $\mathrm{Stab}_{\mathrm{GL}_n}(\omega) = \mathrm{Sp}_m\mathbb{R}$.

Examples of stable forms

• k = 3, n = 6: A stable form $\rho \in \Lambda^3 V^*$ on an oriented V defines a linear map

$$V \ni V \mapsto V \perp \rho \land \rho \in \Lambda^5 V^* \simeq V$$

which can be rescaled to a (para-)complex structure $J_{\rho}:V\to V$ with $J_{\rho}^2=\epsilon~\mathbb{I}$ with $\epsilon=\pm 1$. We have

$$\phi(\rho) = J_{\rho}^* \rho \wedge \rho, \ \hat{\rho} = J_{\rho}^* \rho, \ \operatorname{Stab}_{\operatorname{GL}_6^+}(\rho) = \left\{ \begin{array}{ll} \operatorname{SL}_3 \mathbb{C} \ , & \epsilon = -1 \\ \operatorname{SL}_3 \mathbb{R} \times \operatorname{SL}_3 \mathbb{R} \ , & \epsilon = 1 \end{array} \right.$$

• $k=3,\,n=7$: $\varphi\in\Lambda^3V^*$ is stable if the bilinear form (values in Λ^7V^*)

$$b_{\varphi}: (v, w) \mapsto \frac{1}{6} v \lrcorner \varphi \wedge w \lrcorner \varphi \wedge \varphi \in \Lambda^{7} V^{*}$$

is non-degenerate. Then $\phi(\varphi)=\det(b_\varphi)^{1/9}$ defines a volume form and a scalar product $g_\varphi:=\frac{1}{\phi(\varphi)}b_\varphi$. We have

$$3\hat{\varphi}=*\varphi\;,\;\;7\phi(\varphi)=\varphi\wedge*\varphi\;,\;\;\mathrm{Stab}_{\mathrm{GL}_7}(\varphi)=\left\{\begin{array}{ll}\mathrm{G}_2\subset\mathrm{SO}(7)\;,\;\;&g_\varphi>0\\\mathrm{G}_2^*\subset\mathrm{SO}(3,4)\;,\;\;\text{else}.\end{array}\right.$$

Compatible stable forms

• n=6: A pair of stable forms $\omega \in \Lambda^2 V^*$ and $\rho \in \Lambda^3 V^*$ is *compatible* if

$$\omega \wedge \rho = 0$$
 and $\phi(\rho) = 2\phi(\omega)$

In this case $h:=\epsilon\omega(\cdot,J_{\rho}\cdot)$ defines a scalar product and

$$\mathrm{Stab}_{\mathrm{GL}_{6}}(\rho,\omega) = \left\{ \begin{array}{ll} \mathrm{SU}(3) \text{ or } SU(1,2) \;, & \epsilon = -1 \\ \mathrm{SL}_{3}\mathbb{R} \subset \mathrm{SO}(3,3) \;, & \epsilon = 1 \end{array} \right.$$

• Let $\rho \in \Lambda^3 V^*$ and $\omega \in \Lambda^2 V^*$ be a pair of compatible stable forms defining the scalar product h. Then, on $W := \mathbb{R} \cdot e^0 \oplus V$ the form

$$\varphi := \omega \wedge e^0 + \rho \in \Lambda^3 W^*$$

is stable, defines scalar product $g_{\varphi} = h - \epsilon(e^0)^2$, and

$$\mathrm{Stab}_{\mathrm{GL}_7}(arphi) = \left\{ egin{array}{ll} \mathrm{G}_2 \;, & \epsilon = -1 \; \mathrm{and} \; h > 0 \\ \mathrm{G}_2^* \;, & \textit{else} \end{array} \right.$$

• Conversely, fix $v \in V^7$ with $g_{\varphi}(v, v) = -\epsilon$, then $\omega := (v \bot \varphi)|_{v^{\perp}}$ and $\rho := \varphi|_{v^{\perp}}$ are compatible stable forms on v^{\perp} .

Half flat structures

- Let $G \subset GL_n\mathbb{R}$. A *G*-structure on a smooth manifold *M* is a reduction of the frame bundle of *M* to *G*. For $G \subset O(s,t)$, a *G*-structure is parallel if the bundle of *G*-frames is invariant under parallel transport (\iff Holonomy of $\nabla^{LC} \subset G$.)
- For a real form H of $SL_3\mathbb{C}$ a H-structure is equivalent to the existence of $\rho \in \Omega^3 M$ and $\omega \in \Omega^2 M$ which define a pair of compatible stable forms at each point in M.
- A H-structure (ρ, ω) on a 6-manifold is half flat if

$$\mathrm{d} \rho = 0$$
 and $\mathrm{d} \hat{\omega} = 0$.

This generalises CY 3-manifolds for which we have $\mathrm{d}\rho=\mathrm{d}\hat{\rho}=0$ and $\mathrm{d}\omega=0$.

A G₂^(*)-structure on a 7-manifold is given by φ ∈ Ω³M that defines a stable form at each point of M.
 It is parallel if ∇^{LC}φ = 0, or equivalently, if dφ = 0 and d*φ = 0.

Half flat structures evolving under the Hitchin flow

Let H be a real form H of $SL_3\mathbb{C}$ and (ρ_t, ω_t) be a one-parameter family of H structures on a 6-manifold M^6 with $t \in I$. Then

$$\varphi = \omega \wedge dt + \rho$$

defines a parallel $G_2^{(*)}$ -structure on $I \times M^6 \iff (\rho_t, \omega_t)$ is half flat $\forall t$ and

$$\partial_t \rho = d\omega$$
 and $\partial_t \hat{\omega} = d\hat{\rho}$ Hitchin flow eq's (1)

Theorem (Hitchin '01 for M compact & H = SU(3), CLSS in gen.)

Let (ρ, ω) be a 1-parameter family of stable forms on M^6 satisfying the Hitchin flow eq's. If $(\rho_{t_0}, \omega_{t_0})$ is half flat for a $t_0 \in I$, then (ρ, ω) is a family of half flat H-structures.

In particular, the three-form $\varphi = \omega \wedge dt + \rho$ defines a parallel $G_2^{(*)}$ -structure on $M \times I$ with induced metric $g_{\varphi} = g_t - \epsilon dt^2$.

Using Cauchy-Kovalevskaya Theorem we can now construct ${\rm G}_2^{(*)}$ structures from real analytic half flat structures.

Corollary

Let M be a real analytic 6-mf with real analytic half flat structure (ω_0, ρ_0) .

- \exists ! maximal solution (ω, ρ) of (1) with initial value (ω_0, ρ_0) , which is defined on an open neighbourhood $\Omega \subset \mathbb{R} \times M$ of $\{0\} \times M$. In particular, there is a parallel $G_2^{(*)}$ -structure on Ω .
- The evolution is natural, i.e. automorphisms of the initial structures extend to automorphisms of the evolved structures.
- Furthermore, if M is compact or a homogeneous space M = G/K such that the (ω_0, ρ_0) is G-invariant, then there is unique maximal open interval I and a unique solution (ω, ρ) of (1) with initial value (ω_0, ρ_0) on $I \times M$. In particular, there is a parallel $G_2^{(*)}$ -structure on $I \times M$.

In general, the $G_2^{(*)}$ -metrics obtained in this way will only be geodesically complete if $I = \mathbb{R}$. But they can be conformally changed to a complete metric.

Evolution of nearly-Kähler 6-manifolds

- CY 3-manifolds are half flat, $\mathrm{d}\omega=0$ and $\mathrm{d}\rho=\mathrm{d}\hat{\rho}=0$. The resulting $G_2^{(*)}$ -metric is a direct product: $g_\varphi=-\epsilon\mathrm{d}t^2+g_0$.
- Let (M,g,J) be an almost ϵ -Hermitian manifold, i.e. $J^2=\epsilon\mathbb{I}$ and $J^*g=-\epsilon g$. If ∇J is skew, (M^{2m},g,J) is called nearly- ϵ -Kähler. On a 6-manifold M, a nearly ϵ -Kähler structure with $|\nabla J|^2\equiv 4$ is equivalent to a half flat structure (ω,ρ) with $\rho:=\nabla \omega$ which satisfies

$$d\omega = 3\rho$$
 and $d\hat{\rho} = 4\hat{\omega}$ (2)

The solutions to the Hitchin flow are given as

$$\omega_t = t^2 \omega_0$$
, $\rho_t = t^3 \rho_0$ defining the metric $g_t = t^2 g_0$

for an initial half flat structure (ω_0,ρ_0) . Indeed, because of (2): $\partial_t \rho_t = 3t^2 \rho_0 = t^2 d\omega_0 = d\omega_t$ and $\partial_t \hat{\omega}_t = 4t^3 \hat{\omega}_0 = t^3 d\hat{\rho}_0 = d\hat{\rho}_t$. The resulting $G_2^{(*)}$ metric is a cone metric $g_{\varphi} = -\epsilon \mathrm{d} t^2 + t^2 g_0$ on $\mathbb{R}^+ \times M^6$.

• Conversely, $G_2^{(*)}$ -cone-metrics define nearly- ϵ -Kähler metrics on the base.

Left invariant half flat structures on $H_3 \times H_3$

Let *G* be a 6-dimensional Lie group. Then:

$$\left\{ \text{left-inv half flat structures on } G \right\} \leftrightarrow \left\{ \begin{array}{l} \text{compatible forms } (\omega,\rho) \text{ on } \mathfrak{g}^* \\ \text{with } \mathrm{d}\omega^2 = \mathrm{d}\rho = 0 \end{array} \right\}$$

- \rightarrow algebraic problem as $d\alpha(X, Y) = \alpha([X, Y])$ for $X, Y \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^*$.
- → Classification of left inv half flat structures on the product of two 3-dim Lie groups [Schulte-Hengesbach, J. Geom. Phys. '10]

Let H_3 be the 3-dim Heisenberg group and $G = H_3 \times H_3$. • Every stable $\omega \in \Lambda^2 \mathfrak{g}^*$ with $d\omega^2 = 0$ has one of the normal forms:

$$\begin{array}{ll} \omega_1 = e^1f^1 + e^2f^2 + e^3f^3, & \omega_4 = e^1f^3 + e^2f^2 + e^3f^1 + e^{13} + \beta f^{13} \\ \omega_2 = e^2f^2 + e^{13} + f^{13}, & \omega_5 = e^1f^3 + e^2f^2 + e^{13} + f^{13} \\ \omega_3 = e^1f^3 + e^2f^2 + e^3f^1, & \end{array}$$

for a basis $(e^1, e^2, e^3, f^1, f^2, f^3)$ be a basis of $H_3 \times H_3$ with commutator $de^3 = e^{12}$ and $df^3 = f^{12}$ and $\beta \neq -1$ a parameter.

• Compatible stable closed 3-forms ρ are given by a linear 8-parameter family $\rho_i = \rho_i(a^1, \dots, a^8)$ subject to a quartic non-degeneracy condition.

Half flat structures on $H_3 \times H_3$ with $\omega = \omega_1$

- $\omega = \omega_1$ is a necessary condition for the existence of a half flat SU(3) structure on $G := H_3 \times H_3$
- There are half flat SU(1,2) and $SL_3\mathbb{R}$ structures on G with $\omega \neq \omega_1$.
- Examples of half flat structures on G with

$$\omega = \omega_1 = e^1 f^1 + e^2 f^2 + e^3 f^3:$$

$$\rho = \frac{1}{\sqrt{2}} (e^{123} - f^{123} - e^1 f^{23} + e^{23} f^1 - e^2 f^{31} + e^{31} f^2 - e^3 f^{12} + e^{12} f^3)$$

$$\Rightarrow \text{half flat SU(3)-structure.}$$

- $\rho = \frac{1}{\sqrt{2}} (e^{123} f^{123} e^1 f^{23} + e^{23} f^1 + e^2 f^{31} e^{31} f^2 + e^3 f^{12} e^{12} f^3)$ $\Rightarrow \text{half flat SU}(1, 2) \text{-structure, } e_1 \text{ and } e_4 \text{ being spacelike.}$
- ▶ $\rho = \sqrt{2} \left(e^{123} + f^{123} \right) \rightarrow$ half flat $SL_3\mathbb{R}$ -structure such that the \mathfrak{h}_3 's are the J_ρ -eigenspaces, i.e. the metric is $g = 2 \left(e^1 \cdot f^1 + e^2 \cdot f^2 + e^3 \cdot f^3 \right)$.
- In order to evolve these structures we define $\kappa: I \to \mathbb{R}$:

$$\begin{array}{llll} \mathrm{SU}(3) & : & \kappa(x) = (x - \sqrt{2})^3(x + \sqrt{2}) & , & I = (-\sqrt{2}, \sqrt{2}) \\ \mathrm{SU}(1,2) & : & \kappa(x) = (x - \sqrt{2})(x + \sqrt{2})^3 & , & I = (-\sqrt{2}, \sqrt{2}) \\ \mathrm{SL}_3\mathbb{R} & : & \kappa(x) = (2 + x)^2 & , & I = \mathbb{R} \end{array}$$

Evolving half flat structures on $H_3 \times H_3$ with $\omega = \omega_1$

Theorem

Let ρ_0 be one of the stable forms compatible to $\omega = \omega_1$ defining a half flat structure on $H_3 \times H_3$ and $\kappa : I \to \mathbb{R}$ as on the previous slide. Let x be a solution to the ODE $\dot{x} = \frac{2}{\sqrt{\varepsilon \kappa(x(t))}}$. Then

$$\rho_{x} = \rho_{0} + x(e^{12}f^{3} - e^{3}f^{12}),
\omega_{x} = \frac{1}{2}(\varepsilon \kappa(x))^{-\frac{1}{2}} (\varepsilon \kappa(x) e^{1}f^{1} + \varepsilon \kappa(x) e^{2}f^{2} + 4e^{3}f^{3}),$$

give a solution to the Hitchin flow on the intervall I. The parallel stable three-form and the metric on $M \times I$ are

$$\varphi = \frac{1}{2} \sqrt{\varepsilon \kappa(x)} \, \omega_X \wedge dx + \rho_X, \qquad g_{\varphi} = g_X - \frac{1}{4} \kappa(x) dx^2,$$

and $(M \times I, g_{\varphi})$ has holonomy equal to $G_2^{(*)}$. Moreover, by varying ρ we obtain an 8-parameter family of metrics with holonomy equal to $G_2^{(*)}$.

Half flat structures on $H_3 \times H_3$ with $\omega \neq \omega_1$

What happens in the case when ω is not of the form ω_1 ? Let (ω, ρ) be a left-invariant half flat structure with $\omega \neq \omega_1$ on $G = H_3 \times H_3$ and let g be the pseudo-Riemannian metric induced by (ω, ρ) . Then

- The pseudo-Riemannian manifold $(H_3 \times H_3, g)$ is either flat or isometric to the product of
 - a two-dimensional flat factor and
 - the unique 4-dimensional simply connected para-hyper Kähler symmetric space (N, g_N) with 1-dimensional holonomy group [Alekseevsky et al '05]

In particular, the metric g is Ricci-flat.

- The Hitchin flow is defined for all times and defines a G_2^* -metric on $G \times \mathbb{R}$.
- However, this metric is either flat or isometric to a product of (N, g_N) and a 3-dim flat factor, so its holonomy is at most one-dimensional.