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R  (reducible subgroups of SO(2, n)
A naive question

For a given n, what are all possible connected subgroups of SO(n)
that act irreducibly on R"? J

@ No general answer because of Weyl's trick.
@ All the more remarkable is

Classification of holonomy groups of Riemannian mf’s [Berger '55]

The connected component of an irreducible holonomy group of a
Riemannian manifold of dimension n is conjugated to

@ SO(n), for arbitrary n,
@ U(n/2) or SU(n/2), for n even,
@ Sp(n/4) or Sp(n/4) - Sp(1), for n divisible by 4,
@ Gy, forn=7, Spin(7), for n =8, or
the isotropy group of an irreducible Riemannian symmetric space.
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A better question

For given nand p + g = n, 0 < p < n, what are possible connected
subgroups of SO(p, q) that act irreducibly on RP9?

Theorem (Berger '55, Di Scala/Olmos ’00, Benoist/de la Harpe '04)

The only connected subgroup of the Lorentz group SO(1, n — 1) that
acts irreducible on the n-dimensional Minkowski space is its
connected component SO°(1,n —1).

@ A Lorentzian manifolds admits no parallel tensors/spinors
unless it is a product or admits a parallel null line bundle.

@ A Riemannian conformal manifold has generic conformal
holonomy unless it is locally conformally equivalent to a
product of Einstein metrics or locally conformally Einstein.
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Irreducible subgroups of SO(2, n)

Theorem (Di Scala/L ’11)

Every connected Lie group that acts irreducibly on R?>" is
conjugated to one of the following:

@ for arbitrary n > 1: SO°(2, n),
@ forn=2p even: U(1,p), SU(1,p), orU(1)-SO°(1,p) ifp > 1,

@ forn=3:50°1,2) € SO(2,3).

@ The last group in (2) uses the inclusion SO(1, p) c SU(1, p),
the U(1) factor makes it irreducible (no Berger algebra).

@ The group in (3) corresponds to the symmetric space
M® := SL3R/SO°(1,2) which is of signature (2, 3) w.r.t. the

Killing form of SLsR. Hence, SO°(1, 2) = Hol(M®) ¢ SO(2,3).
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Symmetric spaces (of non-compact type)

(M, g) Riemannian symmetric space (simply conected)
© VYpeM3ipe G :=Iso(M): dp, =-Id
& K c G closed: Jinvolution o Fix°(c) ¢ K c Fix(o).
& g=tem, [Lf ct, [mm] ct [f,m] cm, ad(¥)], c gl(m) comp.
& Lie triple system T=(m, R,(.,.)), R curvature, R(x,y) € aut(T)
of non-compact type < not flat and sec <0
& G := Iso(M) is non compact and semisimple, K max. compact
< no flat and no compact factor in De Rham decomposition
& g =t mis Cartan decomposition.
N totally geodesic submanifold in M = G/K
& geodesics starting tangent to N remain in N
& VpeN: ¢(N)cN.
< sub-Lie triple system n c m: Rl : 1 — 1t
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The Karpelevich - Mostow - Theorem

Geometric version [Karpelevich ’53]

Let M be a Riemannian symmetric space of noncompact type and
G c Iso(M) connected and semisimple. Then G has a totally
geodesic orbit in M.

Algebraic version [Mostow '55]

Let g be a real semisimple, non-compact Lie algebraand g c § a
semisimple subalgebra. If g = t® m is a Cartan decomposition for
g, then there exists a Cartan decomposition § = & 1 for § such
that f c tand m c n.

@ Not true for compact symmetric spaces (e.g., take S" and
G c SO(n + 1) irreducible).

@ Implies uniqueness of symmetric pairs: If M = G/K is
non-compact type with G c Iso(M), then G and K are unique.
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|dea for proving the theorems geometrically

Consider symmetric spaces associated to

G =S0°1,n): H"= %&;Q), hyperbolic space,

G= SU(1,n): CH" = S%((L)") : complex hyperbolic space

G=50%2.n): L0:=5xE0 Lieball
and find their totally geodesic submanifolds!
Problems:
@ G c Gis not assumed to be semisimple, only irreducible.
Q@ GcG might not act effectively on totally geodesic
submanifolds M in H" or £".

Idea: When G is simple, then it must act effectively, as
{AeG|A|y=Ildy}is normal.
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Proof for SO(1, n)

Lemma
Let G c SO°(1, n) act irreducibly. Then G is simple unless n = 1. J

Hence, we can apply Karpelevich-Mostow:
@ Totally geodesic submanifold in H" are given by

H" NV, with V c R"" subspace.

@ Since G is irreducible, V = R"" and H" = G/K.
@ Uniqueness of symmetric pairs implies G = SO°(1, n). m|

Lemma

Let G c SO°(2, n) act irreducibly on R®". Then G is simple unless
n=2orGcU(1,3).
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N  rcdlucible subgroups of SO(2. n)

Case 1: G c U(1,n)

Proposition
If G < U(1, 2) act irreducibly on R**", then G is equal to
SU(1,n), U(1,n), orU(1)-S0°(1,n).

Proof: Complex hyperbolic space

CH'={zeC"||zI? <1} = S%((L)n) = UE()TI’?()H)'

has the following totally geodesic submanifolds M [e.g. Goldman]:

@ M totally real, M = H" real hyperbolic,

@ M totally complex, M = CH* = CH" n V¥, VXK c C" subspace.

Then split G = Z - S into centre and semisimple part and apply
Karpelevich-Mostow to S:

Q@ M=H"= S =S0°1,n)
@ CH"n VK = Siirreducible, hence k = n.
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Case 2: G simple:
Totally geodesic submanifolds of the Lie ball

Set q(x) = -x§ — X2+ x5+ ...+ X5,

0
L= S lzo: ... : 20i4] € CP™ | ¢(2) < 0.9°(2) = O)

Based on the classification of tot. geod.submanifolds of the complex

quadric Q" = SO—”SEZ()M [Chen/Nagano 77, Klein *08] and duality

we obtain tot. geod. submf’s in £" and their isometry groups:

£Lr, CHf =0, He= S8 HP x Ha, CH' x H',

form < n, k <2n, p+ g < n, and one exceptional H?> c L3, which
corresponds to SO°(1,2) c SO(2, 3).



R  (reducible subgroups of SO(2, n)
Applications to conformal holonomy

Conformal structure (M, [g]) ~ unique normal conformal Cartan
connection w with values in so(p + 1,9+ 1).
@ If the corresponding vector bundle connection admits a parallel
line bundle, then [g] contains a local Einstein metric.
@ Hol(w) c U(p,q) = Hol(w) c SU(p,q) [Leitner' 06, Cap/Gover'06]

Proposition (Alt/Di Scala/L, in progress)
If the holonomy of a 3-dim Lorentzian conformal manifold (M, [g]) is
contained in SO°(1,2)  SO(2,3), then (M, [g]) is conformally flat.

v

Corollary

If the conformal holonomy of a Lorentzian manifold is irreducible,
then it is equal to SU(1, p) or SO°(2, n).

Hol not irreducible = [g] > Einstein, product of Einstein, or aligned
pure radiation metric [L 06].
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