Irreducible subgroups of SO(2, n)

Thomas Leistner

55th Meeting of the AustMS in Wollongong Differential Geometry Session September 27, 2011

Joint with Antonio Di Scala (Politecnico di Torino) and Jesse Alt (University of the Witwatersrand)

A naive question

For a given *n*, what are all possible connected subgroups of SO(n) that act irreducibly on \mathbb{R}^n ?

- No general answer because of Weyl's trick.
- All the more remarkable is

Classification of holonomy groups of Riemannian mf's [Berger '55]

The connected component of an irreducible holonomy group of a Riemannian manifold of dimension n is conjugated to

- SO(n), for arbitrary n,
- U(n/2) or SU(n/2), for *n* even,
- $\operatorname{Sp}(n/4)$ or $\operatorname{Sp}(n/4) \cdot \operatorname{Sp}(1)$, for *n* divisible by 4,
- G_2 , for n = 7, Spin(7), for n = 8, or

the isotropy group of an irreducible Riemannian symmetric space.

A better question

For given *n* and p + q = n, 0 , what are possible connected subgroups of SO(*p*,*q* $) that act irreducibly on <math>\mathbb{R}^{p,q}$?

Theorem (Berger '55, Di Scala/Olmos '00, Benoist/de la Harpe '04) The only connected subgroup of the Lorentz group SO(1, n - 1) that acts irreducible on the n-dimensional Minkowski space is its connected component $SO^0(1, n - 1)$.

- A Lorentzian manifolds admits no parallel tensors/spinors unless it is a product or admits a parallel null line bundle.
- A Riemannian conformal manifold has generic conformal holonomy unless it is locally conformally equivalent to a product of Einstein metrics or locally conformally Einstein.

Irreducible subgroups of SO(2, n)

Theorem (Di Scala/L '11)

Every connected Lie group that acts irreducibly on $\mathbb{R}^{2,n}$ is conjugated to one of the following:

- for arbitrary $n \ge 1$: SO⁰(2, n),
- 2) for n = 2p even: U(1, p), SU(1, p), or $U(1) \cdot SO^{0}(1, p)$ if p > 1,

3 for
$$n = 3$$
: SO⁰(1, 2) $\stackrel{lrr.}{\subset}$ SO(2, 3).

- The last group in (2) uses the inclusion SO(1, p) ⊂ SU(1, p), the U(1) factor makes it irreducible (no Berger algebra).
- The group in (3) corresponds to the symmetric space M⁵ := SL₃ℝ/SO⁰(1,2) which is of signature (2,3) w.r.t. the Killing form of SL₃ℝ. Hence, SO⁰(1,2) = Hol(M⁵) ⊂ SO(2,3).

Symmetric spaces (of non-compact type)

(M, g) Riemannian symmetric space (simply conected)

$$\Leftrightarrow \forall p \in M \exists \phi \in G := \operatorname{Iso}(M) : d\phi_p = -Id$$

- $\Leftrightarrow \mathsf{K} \subset \mathsf{G} \text{ closed: } \exists \text{ involution } \sigma \text{: } \mathsf{Fix}^0(\sigma) \subset \mathsf{K} \subset \mathsf{Fix}(\sigma).$
- $\Leftrightarrow \ \mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}, \, [\mathfrak{k},\mathfrak{k}]\subset\mathfrak{k}, \, [\mathfrak{m},\mathfrak{m}]\subset\mathfrak{k}, \, [\mathfrak{k},\mathfrak{m}]\subset\mathfrak{m}, \, \textit{ad}(\mathfrak{k})|_{\mathfrak{m}}\subset\mathfrak{gl}(\mathfrak{m}) \text{ comp.}$
- $\Leftrightarrow \text{ Lie triple system } T = (\mathfrak{m}, R, \langle ., . \rangle), R \text{ curvature, } R(x, y) \in \mathfrak{aut}(T)$ of non-compact type \Leftrightarrow not flat and $sec \leq 0$
 - \Leftrightarrow G := Iso(M) is non compact and semisimple, K max. compact
 - \Leftrightarrow no flat and no compact factor in De Rham decomposition
 - $\Leftrightarrow \ \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m} \text{ is Cartan decomposition.}$

N totally geodesic submanifold in M = G/K

- \Leftrightarrow geodesics starting tangent to N remain in N
- $\Leftrightarrow \forall p \in N : \phi(N) \subset N.$
- \Leftrightarrow sub-Lie triple system $\mathfrak{n} \subset \mathfrak{m}$: $R|_{\mathfrak{n} \times \mathfrak{n}} : \mathfrak{n} \to \mathfrak{n}$

The Karpelevich - Mostow - Theorem

Geometric version [Karpelevich '53]

Let *M* be a Riemannian symmetric space of noncompact type and $G \subset Iso(M)$ connected and semisimple. Then *G* has a totally geodesic orbit in *M*.

Algebraic version [Mostow '55]

Let \hat{g} be a real semisimple, non-compact Lie algebra and $g \subset \hat{g}$ a semisimple subalgebra. If $g = \mathfrak{t} \oplus \mathfrak{m}$ is a Cartan decomposition for g, then there exists a Cartan decomposition $\hat{g} = \hat{\mathfrak{t}} \oplus \hat{\mathfrak{m}}$ for \hat{g} such that $\mathfrak{t} \subset \hat{\mathfrak{t}}$ and $\mathfrak{m} \subset \hat{\mathfrak{m}}$.

- Not true for compact symmetric spaces (e.g., take Sⁿ and G ⊂ SO(n + 1) irreducible).
- Implies uniqueness of symmetric pairs: If M = G/K is non-compact type with G ⊂ Iso(M), then G and K are unique.

Idea for proving the theorems geometrically

Consider symmetric spaces associated to

$$\begin{split} \hat{G} &= \mathrm{SO}^0(1,n): \quad H^n = \frac{\mathrm{SO}^0(1,n)}{\mathrm{SO}(n)}, & \text{hyperbolic space}, \\ \hat{G} &= \mathrm{SU}(1,n): \quad \mathbb{C}H^n = \frac{\mathrm{SU}(1,n)}{\mathrm{U}(n)}: & \text{complex hyperbolic space} \\ \hat{G} &= \mathrm{SO}^0(2,n): \quad \mathcal{L}^n := \frac{\mathrm{SO}^0(2,n)}{\mathrm{SO}(2)\cdot\mathrm{SO}(n)}, & \text{Lie ball,} \end{split}$$

and find their totally geodesic submanifolds!

Problems:

- $G \subset \hat{G}$ is not assumed to be semisimple, only irreducible.
- ② $G \subset \hat{G}$ might not act effectively on totally geodesic submanifolds *M* in *Hⁿ* or *Lⁿ*.

Idea: When *G* is simple, then it must act effectively, as $\{A \in G \mid A|_M = Id_M\}$ is normal.

Proof for SO(1, n)

Lemma

Let $G \subset SO^0(1, n)$ act irreducibly. Then G is simple unless n = 1.

Hence, we can apply Karpelevich-Mostow:

• Totally geodesic submanifold in Hⁿ are given by

 $H^n \cap V$, with $V \subset \mathbb{R}^{1,n}$ subspace.

- Since G is irreducible, $V = \mathbb{R}^{1,n}$ and $H^n = G/K$.
- Uniqueness of symmetric pairs implies $G = SO^{0}(1, n)$.

Lemma

Let $G \subset SO^0(2, n)$ act irreducibly on $\mathbb{R}^{2,n}$. Then G is simple unless n = 2 or $G \subset U(1, \frac{n}{2})$.

Case 1: $G \subset U(1, n)$

Proposition

If $G \subset U(1, \frac{n}{2})$ act irreducibly on $\mathbb{R}^{2,2n}$, then G is equal to SU(1, n), U(1, n), or U(1) · SO⁰(1, n).

Proof: Complex hyperbolic space

$$\mathbb{C}H^{n} = \{z \in \mathbb{C}^{n} \mid ||z||^{2} < 1\} = \frac{\mathrm{SU}(1,n)}{\mathrm{U}(n)} = \frac{\mathrm{U}(1,n)}{\mathrm{U}(1)\cdot\mathrm{U}(n)}.$$

has the following totally geodesic submanifolds M [e.g. Goldman]:

) *M* totally real, $M = H^n$ real hyperbolic,

② *M* totally complex, $M = \mathbb{C}H^k = \mathbb{C}H^n \cap V^k$, $V^k \subset \mathbb{C}^n$ subspace. Then split $G = Z \cdot S$ into centre and semisimple part and apply Karpelevich-Mostow to *S*:

$$M = H^n \Rightarrow S = SO^0(1, n)$$

②
$$CH^n \cap V^k \Rightarrow S$$
 irreducible, hence $k = n$.

Case 2: *G* simple: Totally geodesic submanifolds of the Lie ball

Set
$$q(x) = -x_0^2 - x_1^2 + x_2^2 + \ldots + x_{n+1}^2$$
,

$$\mathcal{L}^{n} = \frac{\mathrm{SO}^{0}(2,n)}{\mathrm{SO}(2) \cdot \mathrm{SO}(n)} = \{ [z_{0} : \ldots : z_{n+1}] \in \mathbb{C}P^{n+1} \mid q^{h}(z) < 0, q^{\mathbb{C}}(z) = 0 \}$$

Based on the classification of tot. geod.submanifolds of the complex quadric $Q^n = \frac{SO^0(n+2)}{SO(2) \cdot SO(n)}$ [Chen/Nagano '77, Klein '08] and duality we obtain tot. geod. submf's in \mathcal{L}^n and their isometry groups:

$$\mathcal{L}^m$$
, $\mathbb{C}H^k = \frac{\mathrm{SU}(1,k)}{\mathrm{U}(k)}$, $H^k = \frac{\mathrm{SO}(1,k)}{\mathrm{SO}(k)}$, $H^p \times H^q$, $\mathbb{C}H^1 \times H^1$,

for $m \le n, k \le 2n, p + q \le n$, and one exceptional $H^2 \subset \mathcal{L}^3$, which corresponds to $SO^0(1,2) \subset SO(2,3)$.

Applications to conformal holonomy

Conformal structure $(M, [g]) \rightarrow$ unique normal conformal Cartan connection ω with values in $\mathfrak{so}(p+1, q+1)$.

- If the corresponding vector bundle connection admits a parallel line bundle, then [g] contains a local Einstein metric.
- $Hol(\omega) \subset U(p,q) \Rightarrow Hol(\omega) \subset SU(p,q)$ [Leitner'06, Cap/Gover'06]

Proposition (Alt/Di Scala/L, in progress)

If the holonomy of a 3-dim Lorentzian conformal manifold (M, [g]) is contained in $SO^0(1, 2) \subset SO(2, 3)$, then (M, [g]) is conformally flat.

Corollary

If the conformal holonomy of a Lorentzian manifold is irreducible, then it is equal to SU(1, p) or $SO^{0}(2, n)$.

Hol not irreducible \Rightarrow [g] \ni Einstein, product of Einstein, or aligned pure radiation metric [L' 06].