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Constraint and evolution equations: the general idea

(ﬂ, g) Lorentzian manifold, M c M spacelike hypersurface, of the form

g=-Fdf+g | teIcR

where g; = family of Riemannian metrics on M, 1 = A(t, x) “lapse function”.
Assume we have some geometric (PDE) on g, e.g., Ric = 0.

» Constraint conditions: Conditions (C;) on the geometry of g, i.e., PDEs
without 9; derivatives,

> Evolution equations: PDEs (E) involving d;-derivatives that preserve the
conditions (C).

> (Ct)ter & (E) are equivalent to (PDE).

Cauchy problem: Given (M, go) satisfying (Cy), show that for given initial
conditions the system (E) has a (unique) solution.
Then: Obtain a Lorentz metric g satisfying (PDE).



Example: Cauchy problem for Ric = 0

Letg = —A2dt? + gron 7 x Mand T = 14, be the unit normal.

» W := -V T|r the Weingarten operator of (M, g0 =: g),
I =g(W,)=-Lg

» Fundamental curvature equations:

Rirm = RA4IIAI GauB
RGN = d'II Codazzi
R(-T.T.)lrm = g(W2.-)+ 1 (I1+ Hess(1)) Mainardi

tr(I1%) — tr(I1)?
—div(I1)

scal
dtr(1I)

» Ric=0 { } (constraints) and

= /l( Ric +tr(IN)II — 2g(W?., )) —Hess(1) (evolution)

Form of (E) g = F(g, g, 6,-g, 6,g,6,6/vg), with initial data glt:O =g,
8li—o = —24IL
» A and initial data real analytic: apply Cauchy-Kowalevski to get unique solution.
> Solution in the smooth setting: Choquet-Bruhat.
> Riemannian: solution for the analytic data, but in general no solution for smooth,
non-analytic.



Parallel spinors on Lorentzian manifolds

» (M,g) a Lorentzian spin manifold with spinor bundle S — M.

» € I(S) a parallel spinor,

m

Vy = dz//—&—%Zg(Vs,-,sj)s,-sj~w:0.

ij=1

> s induces Dirac current V,, by

X, V) = (X gy ¥XeTM

V, is causal (g(V,, V,) < 0) and parallel (VV,, = 0) vf V,

> g(Vy. Vy) = -1
(M, ) locally is a product (A, h) x (R, —dt?)
with (N, h) Riemannian, Ric = 0 & carrying a parallel spinor
~> Solve for Ric = 0 and then check that the result has parellel spinor [Ammann,
Moroianu & Moroianu, CMP ’14]

> g(Vy, Vy) =0
No induced product structure and not Ricci-flat ~ Lorentzian manifold with
special holonomy, hol(M, g) C so(m —2) x R™2 = stabyo(1,m—1) (Null vector).

> Cauchy problem for Lorentzian manifolds with parallel null vector field.



Constraint equations for a parellel null vector field

Let (M, g) = (I x M, —A%dt? + g,).
A null vector field V induces a space-like vector field

U=prrm(V)=uT -V
depending on t with u := g(U, U).
Proposition
If (M, g) admits a parallel null vector field V, then U = prry( V) satisifies
VU+uW =0,

with W the Weingarten operator and v = g(U, U).
Moreover we have
U := [8;, U] = ugrad(2) + AW(U).




Towards evolution equations for a parallel null vector field

Lemma
V is parallel for g if and only if for all X, Y € TM we have

R(3:.X.Y.V) = R(0,X,V.3;)=0  ~> evolutionforg ()
Vs VaV =0 ~» evolution for for U = prr(V)
Vx Vlojxm =0 ~» constraint for U

Vo, Vliosm =0 ~> initial condition for U

This leads to evolution equations in Cauchy-Kowalevski form:

i s

Ul =7 (g & dig,dig. 0i9;2, U, U, ..., 8i0,u),

[}

however the first component of ¥ is not necessarily symmetric!
Observation:
In the analytic case, (*) can be replaced by R(X, V,V,Y) = 0forall X, Y € TM.



Evolution equations for a parallel null vector field

Theorem (Baum, Lischewski & L ’14)

Let (M, g) be a Riemannian mfd, II a symmetric bilinear tensor field, U a vector
field, u function on M, all real analytic, with constraints

ViU = -ully, g(U,U)=u?>0.

Then for any analytic fct. A = A(t, x) the Lorentzian metric g = —A%dt? + g; has
parallel null vector field V = %(% - U =

.. . . 1. . 3. 2
g = %,UK (ﬁV[kg(/]i) - g(f[,‘)Vk]/l) + Egikgkj + 43 +2AViVia+ & U*U’ Ry
U = LU (@Yl - V) - UF (g — &k — AVkVid - ViaVid)
+ ng[Vk/'l + ‘E’gk,-Vk/l + 2UV,1
i o= U(guV'a+2 gk,v’a) + 2UfVid — uv,avia
gi(0) = g &(0) = -2l

with initial conditions {  U(0)

u(0)

U, UI(O) u V,ﬂ + /1UkHK,‘ .
u U(O) == Uka/l




Consequences

Cauchy-Kowalevski —

Corollary

If (M, g,11, U, u) are real analytic satisfying the constraint equations, A real
analytic, then (M, g) can be extended to a Lorentzian manifold with parallel null
vector field. This extension is unique when specifying the above initial conditions.

v

Example

A =1, 1 Codazzi tensor, i.e. Vjilljxy =0 =

gi(t) = gj— 2t + I
Uty = Al ()U", mit A’y inverse of (5/ — t11/)
u(t) = wu

solves the above system.




Constraints for a parallel spinor

Identify the spinor bundle S — M of M with S, if n := dim(M) even and with
§;A if nis odd. Clifford multiplication:

Xog=iT-X-4lm

Proposition

If (M, g) admits a parallel null spinor field v, then (M, g) has a spinor field ¢ with
Vg = FW(X)-p, YXeTM, )
U-o = iUy,

in which U, is defined by g(U,, X) = —i(X - ¢, ¢), u, = /g(U,, U,) = llgl.

> A spinor with (1) is called imaginary W-Killing spinor.
> Uq, = Prrm Vw.
> Observe that (1) implies the constraint for a parallel null vector field

VxU, + u,W(X) =0



Evolution for parallel spinor

Theorem (Baum, Lischewski & L *14)

Let (M, g) be an analytic Riemannian spin manifold with an analytic g-symmetric
endomorphism field W and ¢ an imaginary W-Killing spinor on (M, g). Then on
the Lorentzian manifold obtained in the first Theorem, and with parallel null vector
field V, there exists a parallel null spinor field ¢ with Dirac current V. The parallel
spinor ¢ is obtained by parallel transport of ¢ along the lines t — (t, x).

Proof: Take the Lorentzian manifold obtained as solution with parallel null vector
field. Translate the initial spinor ¢ parallel along t-lines ~» spinor ¢ with varlﬁ =0.

&:=(T"M&5)e(NT"M&5) — M,
[ A:=Vy
Bi=R(.)

v

v

] er(&)

v

A — (A A
Check that (B] satisfies a PDE V,, (B] =Q (BJ with Q linear on &.

v

A = B = 0 along initial hypersurface and hence for all t.



An example satisfying the constraints

Let (F, g7) be a complete Riemannian spin manifold with
> a parallel spinor field and a Codazzi tensor T
» b e C*(R,R) a smooth function.

> Let A be the (1, 1)-tensor field on M := R x ¥ given by
b(s) 0
S
0 eS(T— fb(r)e*’dr-ldw)
0

Then
> g:= A*(ds?® + e*g) is a complete Riemannian metric on M :=RX F,
» W := A 'is an invertible Codazzi tensor on (M, g)
» (M, g) admits an imaginary W-Killing spinor.

All complete Riemannian spin manifolds (M, g) with imaginary W-Killing spinor
for an invertible Codazzi tensor W arise in this way [Baum & Mdller '08].
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