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Constraint and evolution equations: the general idea

(M, g) Lorentzian manifold,M ⊂M spacelike hypersurface, of the form

g = −λ2 dt2 + gt t ∈ I ⊂ R

where gt = family of Riemannian metrics onM, λ = λ(t , x) “lapse function”.
Assume we have some geometric (PDE) on g, e.g., Ric = 0.

I Constraint conditions: Conditions (Ct ) on the geometry of gt , i.e., PDEs
without ∂t derivatives,

I Evolution equations: PDEs (E) involving ∂t -derivatives that preserve the
conditions (Ct ).

I (Ct )t∈I & (E) are equivalent to (PDE).

Cauchy problem: Given (M, g0) satisfying (C0), show that for given initial
conditions the system (E) has a (unique) solution.
Then: Obtain a Lorentz metric g satisfying (PDE).



Example: Cauchy problem for Ric = 0

Let g = −λ2dt2 + gt on I ×M and T = 1
λ
∂t be the unit normal.

I W := −∇T |TM the Weingarten operator of (M, g0 =: g),
II = g(W·, ·) = − 1

2λ ġ.

I Fundamental curvature equations:

R|TM = R + II ∧ II Gauß
R(·, ·, ·,T)|TM = d∇II Codazzi

R(·,T ,T , ·)|TM = g(W2·, ·) + 1
λ

(
İI + Hess(λ)

)
Mainardi

I Ric = 0 ⇐⇒

 scal = tr(II2) − tr(II)2

d tr(II) = −div(II)

 (constraints) and

İI = λ
(

Ric +tr(II)II − 2g(W2·, ·)
)
− Hess(λ) (evolution)

Form of (E): g̈ = F(g, ġ, ∂ig, ∂i ġ, ∂i∂jg), with initial data g|t=0 = g,
ġ|t=0 = −2λII.

I λ and initial data real analytic: apply Cauchy-Kowalevski to get unique solution.
I Solution in the smooth setting: Choquet-Bruhat.
I Riemannian: solution for the analytic data, but in general no solution for smooth,

non-analytic.



Parallel spinors on Lorentzian manifolds

I (M, g) a Lorentzian spin manifold with spinor bundle S→M.

I ψ ∈ Γ(S) a parallel spinor,

∇ψ := dψ + 1
2

m∑
i,j=1

g(∇si , sj) si · sj · ψ = 0.

I ψ induces Dirac current Vψ by

g(X ,Vψ) = −〈X · ψ, ψ〉 ∀X ∈ TM

Vψ is causal (g(Vψ,Vψ) ≤ 0) and parallel (∇Vψ = 0) vf Vψ

I g(Vψ,Vψ) = −1:
(M, g) locally is a product (N , h) × (R,−dt2)

with (N , h) Riemannian, Ric = 0 & carrying a parallel spinor
{ Solve for Ric = 0 and then check that the result has parellel spinor [Ammann,
Moroianu & Moroianu, CMP ’14]

I g(Vψ,Vψ) = 0:
No induced product structure and not Ricci-flat{ Lorentzian manifold with
special holonomy, hol(M, g) ⊂ so(m − 2) n Rm−2 = stabso(1,m−1)(null vector).

I Cauchy problem for Lorentzian manifolds with parallel null vector field.



Constraint equations for a parellel null vector field

Let (M, g) = (I ×M,−λ2dt2 + gt ).
A null vector field V induces a space-like vector field

U = prTM(V) = uT − V

depending on t with u := g(U,U).

Proposition

If (M, g) admits a parallel null vector field V , then U = prTM(V) satisifies

∇U + u W = 0,

with W the Weingarten operator and u2 = g(U,U).
Moreover we have

U̇ := [∂t ,U] = u grad(λ) + λW(U).



Towards evolution equations for a parallel null vector field

Lemma
V is parallel for g if and only if for all X ,Y ∈ TM we have

R(∂t ,X ,Y ,V) = R(∂t ,X ,V , ∂t ) = 0 { evolution for g (∗)

∇∂t∇∂t V = 0 { evolution for for U = prTM(V)

∇X V |{0}×M = 0 { constraint for U

∇∂t V |{0}×M = 0 { initial condition for U̇

This leads to evolution equations in Cauchy-Kowalevski form:
g̈
Ü
ü

 = F (g, ġ, ∂ig, ∂i ġ, ∂i∂jg,U, U̇, . . . , ∂i∂ju),

however the first component of F is not necessarily symmetric!
Observation:
In the analytic case, (∗) can be replaced by R(X ,V ,V ,Y) = 0 for all X ,Y ∈ TM.



Evolution equations for a parallel null vector field

Theorem (Baum, Lischewski & L ’14)

Let (M, g) be a Riemannian mfd, II a symmetric bilinear tensor field, U a vector
field, u function onM, all real analytic, with constraints

∇iUj = −uIIij , g(U,U) = u2 > 0.

Then for any analytic fct. λ = λ(t , x) the Lorentzian metric g = −λ2dt2 + gt has
parallel null vector field V = ut

λ
∂t − Ut ⇐⇒

g̈ij = 1
u Uk

(
λ∇[k ġ(j]i) − ġ(i[j)∇k ]λ

)
+

1
2

ġik ġk
j + λ̇

λ
ġij + 2λ∇i∇jλ + 2λ2

u2 Uk U`Rik`j

Üi = 1
2u Uk Ul

(
ġl[k∇i]λ − λ∇[i ġk ]l

)
− Uk

(
ġki −

λ̇
λ2 ġki − λ∇k∇iλ − ∇kλ∇iλ

)
+ ugki∇

k λ̇ + u
2 ġki∇

kλ + 2u̇∇iλ

ü = Uk
(
gkl∇

l λ̇ + 3
2 ġkl∇

lλ
)

+ 2U̇k∇kλ − u∇kλ∇
kλ

with initial conditions


gij(0) = gij , ġij(0) = −2λIIij ,

U(0) = U, U̇i(0) = u ∇iλ + λUk IIki

u(0) = u u̇(0) = Uk∇kλ

.



Consequences

Cauchy-Kowalevski =⇒

Corollary

If (M, g, II,U, u) are real analytic satisfying the constraint equations, λ real
analytic, then (M, g) can be extended to a Lorentzian manifold with parallel null
vector field. This extension is unique when specifying the above initial conditions.

Example

λ ≡ 1, II Codazzi tensor, i.e. ∇[iIIj]k = 0 =⇒

gij(t) = gij − 2tIIij + t2IIik IIk
j

Ui(t) = Ai
k (t)Uk , mit Ai

k inverse of (δ j
i − tII j

i )

u(t) = u

solves the above system.



Constraints for a parallel spinor

Identify the spinor bundle S→M ofM with S |M if n := dim(M) even and with
S
+

|M if n is odd. Clifford multiplication:

X · ϕ = i T · X · ψ |M,

Proposition

If (M, g) admits a parallel null spinor field ψ, then (M, g) has a spinor field ϕ with

∇Xϕ = i
2 W(X) · ϕ, ∀X ∈ TM,

Uϕ · ϕ = i uϕ ϕ,
(1)

in which Uϕ is defined by g(Uϕ,X) = −i(X · ϕ, ϕ), uϕ =
√

g(Uϕ,Uϕ) = ‖ϕ‖2.

I A spinor with (1) is called imaginary W-Killing spinor.

I Uϕ = prTMVψ.

I Observe that (1) implies the constraint for a parallel null vector field

∇X Uϕ + uϕW(X) = 0



Evolution for parallel spinor

Theorem (Baum, Lischewski & L ’14)

Let (M, g) be an analytic Riemannian spin manifold with an analytic g-symmetric
endomorphism field W and ϕ an imaginary W-Killing spinor on (M, g). Then on
the Lorentzian manifold obtained in the first Theorem, and with parallel null vector
field V, there exists a parallel null spinor field φ with Dirac current V. The parallel
spinor φ is obtained by parallel transport of ϕ along the lines t 7→ (t , x).

Proof: Take the Lorentzian manifold obtained as solution with parallel null vector
field. Translate the initial spinor ϕ parallel along t-lines{ spinor ψ with ∇∂tψ = 0.

I E :=
(
T ∗M⊗ S

)
⊕

(
Λ2T ∗M⊗ S

)
−→M,

I

 A := ∇ψ

B := R(·, ·)ψ

 ∈ Γ(E)

I Check that

AB
 satisfies a PDE ∇∂t

AB
 = Q

AB
, with Q linear on E.

I A = B = 0 along initial hypersurface and hence for all t .



An example satisfying the constraints

Let (F , gF ) be a complete Riemannian spin manifold with

I a parallel spinor field and a Codazzi tensor T

I b ∈ C∞(R,R) a smooth function.

I Let A be the (1, 1)-tensor field onM := R × F given by

A =


b(s) 0

0 es
(
T −

s∫
0

b(r)e−r dr · IdTF

)  .
Then

I g := A∗(ds2 + e−2sgF ) is a complete Riemannian metric onM := R × F ,

I W := A−1 is an invertible Codazzi tensor on (M, g)

I (M, g) admits an imaginary W-Killing spinor.

All complete Riemannian spin manifolds (M, g) with imaginary W-Killing spinor
for an invertible Codazzi tensor W arise in this way [Baum & Müller ’08].
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