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I Which implication has the homogeneity for the geometry/curvature of a
semi-Riemannian manifold?
E.g., homogeneous and Ric = 0 implies flat [Alekseevskiı̆ & Kimel′fel′d ’75]

I Study such question for Lorentzian manifolds with special holonomy:

I Holonomy group Hol := group of parallel transports along loops
I special holonomy ⇐⇒ hol $ so(p, q) but the manifold is indecomposable, i.e.

does not (locally) decompose as a product.

I Riemannian special Holonomy
{ Berger’s list: U(p) SU(p), Sp(q) Sp(q) · Sp(1), G2 and Spin(7).

I Lorentzian special holonomy: no irreducible subalgebras of so(1, n + 1)!
=⇒

hol ⊂ stab(null line) = (R ⊕ so(n)) n Rn = sim(n).

There is a classification of Lorentzian special holonomy algebras
[Berard-Bergery & Ikemakhen ’93, L ’03, Galaev ’05]

I Study the geometry of Lorentzian manifold with special holonomy, e.g. in
relation to homogeneity.



pp-waves (plane fronted waves with parallel rays)

Lorentzian metric on Rn+2 3 (u, v , x1, . . . , xn), H = H(u, x i) ∈ C∞(Rn+1),

g = gH := 2 du dv + 2H(u, x i) du2 + δij dx i dx j (1)

Definition

A Lorentzian manifold (M, g) is a pp-wave, if g is locally of the form (1).

Question: When are pp-waves locally homogeneous?
Answer (in the best of all possible worlds): Only when H is a quadratic polynomial
in the x i ’s with u-dependent coefficients. (Not quite true.)

Definition

A pp-wave is a plane wave, if ∃ coord as in (1) such that H(u, x i) = Aij(u)x ix j .

I Equivalent definition for pp-waves: (M, g) Lorentzian manifold with
I parallel, light-like vector field V
I R(X ,Y) : V⊥ → R · V , ∀X ,Y ∈ TM.

(equivalent: R : Λ2TM→ Λ2TM has kernel Λ2V⊥, or R(X ,Y) = 0 ∀ X ,Y ∈ V⊥)

I Plane waves: ∇X R = 0 ∀X ∈ V⊥.
I Cahen-Wallach spaces: ∇R = 0 (equivalent to A constant).



Some history

I Brinkmann [’25]: conformally equivalent Einstein metrics

I GR: wavelike solutions to the Vacuum Einstein equations

Ricg = ∆(H) du2 = 0,

∆ flat Laplacian w.r.t x i-coordinates
I Einstein ’16: linearised Einstein equations
I Einstein & Rosen ’35: gravitational waves
I Penrose ’76: Every spacetime has a plane wave as “Penrose limit”.

I Parallel light-like vector field ∂
∂v = direction of propagation,

wave fronts
{
(v , u) = const

}
with induced flat metric.

{ “pp-wave=plane-fronted wave with parallel rays” [Jordan, Ehlers & Kundt
’60].

I pp-waves have no scalar invariants, i.e, all functions made from covariant
derivatives and traces of the curvature vanish.

I pp-waves have Abelian holonomy

Rn ⊂ so(n) n Rn = stabso(1,n+1)(null vector).



Locally homogeneous spaces

(M, g) is locally homogeneous ⇐⇒ ∀ p, q ∈ M

∃ nbhdsUp ,Uq and Φ : (Up , g|Up )
isometry
−→ (Uq, g|Uq ) : φ(p) = q. (2)

Equivalent: ∀ p ∈ M ∃ local Killing vector fields K1, . . . ,Kn such that

span(K1|p , . . . ,Km |p) = TpM.

Let V be a parallel vector field onM.

I Then the distribution V⊥ is parallel and hence integrable with leafs N of
codim 1.

I (M, g) is locally V⊥-homogeneous ⇐⇒ ∀ p, q ∈ N in the same leaf of V⊥

we have (2).

I Consequence: ∀ p ∈ M ∃ local Killing vector fields K1, . . . ,Km−1 such that

span(K1|p , . . . ,Km−1|p) = V⊥|p .



Killing vector fields (infinitesimal isometries)

iso := Lie algebra of Killing vector fields. K ∈ iso ⇐⇒ φ := ∇K ∈ so(TM), i.e.,

iso :=
{

K ∈ Γ(TM) | g(∇X K ,Y) + g(∇Y K ,X) = 0 ∀ X ,Y ∈ TM
}

Differential consequences: ∇Xφ = −R(K ,X), ∇K R = φ · R

I Killing vf’s define parallel sections a vector bundle

iso '


K
φ

 ∈ Γ
(
K :=

TM
⊕

so(TM)

) ∣∣∣∣∣∣∣ ∇KX
K
φ

 :=

 ∇X K − φ(X)

∇Xφ + R(K ,X)

 = 0


I dim(iso) ≤ rk(K) = 1

2 m(m + 1).

I Evaluation map at a fixed point p:

κ : iso ↪→ so(TpM, gp) n TpM ' so(r , s) n Rr ,s

K 7→ − (∇K ,K) |p

This is not a Lie algebra homomorphism!
E.g., iso(Sm) = so(m + 1) ; so(m) n Rm = iso(Rm).

I locally homogeneous =⇒ prRr ,s ◦ κ is surjective.



The Killing equation for pp-waves

The coordinates in which g = 2du(dv + H(u, x) du) + dx>dx can be chosen:

H(u, 0) ≡ 0, ∂H
∂x i (u, 0) ≡ 0.

(normal Brinkmann coordinates centred at p 7→ 0).

Proposition

Let (Mn+2, g) be as indecomposable pp-wave. K is Killing ⇐⇒

K = (c − av − Ψ̇ · x) ∂v + (Ψ + Fx)i
∂i + (au + b) ∂u, (3)

where a, b , c ∈ R, F ∈ so(n) and Ψ : u 7→ Ψ(u) ∈ Rn satisfying

Ψ̈ · x − grad(H) · (Ψ + Fx) − (au + b)Ḣ − 2aH = 0. (4)

Consequences: Differentiating w.r.t. x =⇒

Ψ̈ + Fgrad(H) − Hess(H)(Ψ + Fx) − (a u + b)grad(Ḣ) − 2agrad(H) = 0

At x = 0: Ψ̈(u) − Hess(H)(u, 0)Ψ(u) = 0.

Count: dim of Killing vf’s ≤ 2n + 3 + 1
2 n(n − 1)



Motivation: classical results in dim 4

Jordan-Ehlers-Kundt ’60:

I Complete solution of the Killing equation on 4-dim pp-wave (R4, g) with
Ric = ∆H du2 = 0 (dimensions of solution space 1, 2, 3, 5, 6).

I Observation: (R4, g) locally ∂⊥v -homogeneous, then g is a plane wave metric.

Sippel-Goenner ’86:

I Solution without assuming Ric = 0 (dim’s of Killing vf’s . . . , 7)

I Only one homogeneous example that is not a plane wave:
H(x1, x2) := ea1x1−a2x2

with a2
1 + a2

2 , 0 (5 Killing vf’s)

I Coordinate transformation x = a1x1 − a2x2, y = a2x1 + a1x2 shows that this
is a product metric (= decomposable).

Conclusion for dim 4: Indecomposable locally homogeneous pp-waves in
dimension 4 are plane waves.



An example in dim 3

Consider R3 3 (u, v , x) with pp-wave metric

g = 2dudv + 2e2xdu2 + dx2,

i.e., H(x) = e2ax .
Killing vf’s:

∂v , ∂u, K := ∂x + v ∂v − u ∂u.

I.e., g is locally homogeneous, indecomposable, but not a plane wave.

R(∂x , ∂u) = 2


0 e2x 0
0 0 −e2x

0 0 0

 , 0,

i.e. rank(R : Λ2 → Λ2) = 1.



Results in arbitrary dimensions [Globke & L ’14]

Theorem 1

Let (Mm, g) be a pp-wave that is V⊥-homogeneous. Assume that

I (M, g) is strongly indecomposable, i.e., no nbhd is decomposable,

I rk(R : Λ2TM→ Λ2TM) > 1 on an open dense subset ofM.
(Recall, Λ2V⊥ ⊂ Ker(R), i.e., rk(R) < m − 1).

Then (M, g) is a plane wave.

Corollary

A pp-wave is a plane wave if

I strongly indecomposable, locally V⊥-homogeneous, Ric = 0, or

I indecomposable, locally homogeneous & ∃p with rk(R|p) > 1, or

I indecomposable, locally homogeneous & Ric = 0 (as in dim 4).



Killing vector fields on plane waves

I For plane waves: H = 1
2 x>S(u)x for a symmetric u-dep. matrix S. Hence

grad(H) = Sx , Hess(H) = S.

I Multiplying the differentiated equation

Ψ̈ + Fgrad(H) − Hess(H)(Ψ + Fx) − (a u + b)grad(Ḣ) − 2agrad(H) = 0.

by x implies the Killing equ. (4).

I For plane waves: many solutions with F = a = b = 0, as it becomes

Ψ̈ − SΨ = 0. (5)

I Hence iso(V) contains the Heisenberg algebra hen(R):

∂v , Li := φk
i ∂k − x · Φ̇i ∂v , Ki := ψk

i ∂k − x · Ψ̇i ∂v ,

where Φi = (φk
i )k=1,...,n and Ψi = (ψk

i )k=1,...,n solutions to (5) with

Φi(0) = 0, Φ̇i(0) = ei and Ψi(0) = ei , Ψ̇i(0) = 0,

I Plane waves have commuting Killing vf’s ∂v ,K1, . . . ,Kn that span V⊥.



Homogeneous plane waves [Blau & O’Loughlin ’03]

I For homogeneous plane waves, we need an additional Killing vector field K+

such that K+|p = ∂+, i.e. with b , 0.
I Killing equation is a matrix ODE:

[S(u),F] + (au + b)Ṡ(u) + 2a S(u) = 0. (6)

Two cases:

a = 0: W.l.o.g. assume b = 1 and (6) becomes

[S(u),F] + Ṡ(u) = 0.

Solution:

S(u) = euF S0e−uF with F ∈ so(n) and S0 symmetric.

a , 0: W.l.o.g. a = 1 and (6) becomes ODE with singularity at u = −b,

(u + b)Ṡ(u) + [S(u),F] + 2 S(u) = 0.

Solution:
S(u) = 1

(u+b)2 (elog(u+b)F S0elog(−(u+b))F ), u > b .

I By our corollary, this also gives a classification of indecomposable
homogeneous pp-waves satisfying the rank condition.



Further results

Recall that plane waves have commuting Killing vector fields everywhere
spanning V⊥. We prove the converse:

Theorem 2

Let (M, g) be a strongly indecomposable pp-wave: ∀ p ∈ M ∃ nbhdUp with
Killing vf’s onUp that span V⊥|Up . Then (M, g) is a plane wave.

Theorem 3

Let (Mm, g) be a semi-Riemannian manifold with commuting Killing vector fields
that span a null distribution of rank m − 1. Then ∃ parallel null vector field V and

R(X ,Y)Z = 0 and ∇X R = 0, ∀ X ,Y ,Z ∈ V⊥.

In particular, if (M, g) is Lorentzian, then it is a plane wave.



Proof of Theorem 1: the setting

Fix p ∈ M and normal Brinkmann coordinates centred at p. Consider

isop(V) := {K ∈ iso | g(K ,V)|p = 0}.

Observe: For pp-waves, isop(V) is a Lie algebra.
Under the assumption that there are Killing vector fields Ki ∈ isop(V) such that
span(∂v ,K1, . . . ,Kn)|p = V⊥|p we have to show ∇X R = 0 ∀X ∈ V⊥.

∇∂v R = 0, and ∇Ki R = −φi · R, with φi := ∇Ki .

I.e., we have to determine φi and its action on R, which on the other hand
satisfies R(X ,Y)Z = 0 whenever X ,Y ∈ V⊥|p .



Proof of Theorem 1: the evaluation map

Recall
K = (c − av − Ψ̇ · x) ∂v + (Ψ + Fx)i

∂i + (au + b) ∂u,

Then, with e− = ∂v |p , ei = ∂i |p , e+ = ∂+|p , we have

K |p = c e− + X iei + b e+, X := (X i)n
i=1 = Ψ(0),

∇e−K |p = −a e−
∇ei K |p = −Yie− + F k

i ek , Y := (Y i)n
i=1 = Ψ̇(0)

∇e+ K |p = Y iei + a e+.

(7)

=⇒ κ : iso ↪→ sim(n) n R1,n+1 = ((R ⊕ so(n)) n Rn) n R1,n+1

K 7→




a Y 0
0 −F −Y>

0 0 −a

 ,

−c
−X
−b




Observation: When restricted to isop(V) = {b = 0} this is a Lie algebra hom!



Proof of Theorem 1: relation to Euclidean motions

I Hence, we have an injective Lie algebra homomorphism

κ : isop(V) ↪→ sim(n) n Rn+1 ' co(n) n he(n)

K 7→


 a Y 0

0 −F −Y>

0 0 −a

 ,
 −c
−X
0


 7→

 a Y> c
0 F X
0 0 0


I co(n) n he(n) contains the Abelian ideal a :=


 a Y> c

0 0 0
0 0 0




I Lie algebra homomorphism

λ : isop(V) −→ (co(n) n he(n))/a ' euc(n) = so(n) n Rn

K 7−→

 0 X 0
0 F −X>

0 0 0


Proposition

If (M, g) is locally V⊥-homogeneous, then prRn ◦ λ : isop(V)→ Rn is a surjetive
Lie algebra homomorphism, i.e., the image g := λ(isop(V)) is an indecomposable
subalgebra of the Euclidean motions euc(n).



Proof of Theorem 1: Indecomposable subalgebras of euc(n)

Berard-Bergery & Ikemakhen ’93:

Let g ⊂ euc(n) = so(n) n Rn act indecomposably on R1,n+1, i.e., without
non-degenerate invariant subspaces. Then either

(A) g contains the translations Rn, or

(B) g contains Rq for 1 < q < n, in which case there is a subalgebra h ⊂ so(q)

and a surjective linear map ϕ : h→ Rn−q such that g is of the form

g =




0 X ϕ(F) 0
0 F 0 −X
0 0 0 −ϕ(F)

0 0 0 0


∣∣∣∣∣∣∣∣∣∣∣ F ∈ h,X ∈ Rq

 . (8)

Consequences for the Killing vector fields of locally V⊥-homogeneous pp-waves:

(A) ∃ KVFs (Ki)i=1,...,n with Ki |p = ei and φi := ∇Ki |p : ej → R · e−.

(B) ∃ KVFs (KA )A=1,...,N as in (A) and (Ka)a=N+1,...,n with Ka |p = ea &

φa : eA 7→
(a)

F B
A eB + R · e−

eb 7→ R · e−



Proof of Theorem 1: case A

I From the previous slide we know that, in the basis (e−, e1, . . . , en, e+),

φi := ∇Ki |p =


−ai −Xi 0
0 0 X>i
0 0 ai

 (9)

I W.l.o.g. we may assume that a1, . . . , an−1 = 0.

Set Rij := R(e+, ei , e+, ej) and ∇k Rij := ∇ek R(e+, ei , e+, ej). Then

I ∇k Rij is symmetric in all its indices,

I With equation (9) the integrability condition ∇Ki R = −φi · R implies that

∇k Rij =
R(φk (e+), ei , e+, ej) + R(e+, φk (ei), e+, ej)

+R(φk (e+), ej , e+, ei) + R(e+, φk (ej), e+, ei)
= 2ak Rij ,

I Hence, ∇k Rij = 0 with the possible exception of ∇nRnn = 2anRnn.

I Then an , 0 implies Rij = 0 apart from Rnn contradicting the rank
assumption.



Proof of Theorem 1: case B

The proof of case B is very similar, but with the technical difficulty of dealing with
the rotational component F . This can be overcome by the specific shape of F
which allows to derive an equation

Rbc = 0, for all (b , c) , (n, n).

RcB = 0

−2anR = [
(n)

F ,R], where R = (RAB ),

The last equation implies R = 0, since F is skew and R is symmetric, yielding a
contradiction to the rank assumption. �

Many thanks for your attention!
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