Locally homogeneous pp-waves

Thomas Leistner

(joint work with W. Globke)

AMSI workshop "Differential Geometry, Complex Analysis and Lie Theory" La Trobe University, Melbourne, December 5 – 7, 2014

- Which implication has the homogeneity for the geometry/curvature of a semi-Riemannian manifold?
 - E.g., homogeneous and Ric = 0 implies flat [Alekseevskiĭ & Kimel'fel'd '75]
- Study such question for Lorentzian manifolds with special holonomy:
 - Holonomy group Hol := group of parallel transports along loops
 - special holonomy → hol ⊊ so(p, q) but the manifold is indecomposable, i.e. does not (locally) decompose as a product.
- Riemannian special Holonomy

 \sim Berger's list: $\mathbf{U}(p)$ SU(p), Sp(q) Sp $(q) \cdot$ Sp(1), G₂ and Spin(7).

► Lorentzian special holonomy: no irreducible subalgebras of so(1, n + 1)!

 $\mathfrak{hol} \subset \mathfrak{stab}(\operatorname{null\,line}) = (\mathbb{R} \oplus \mathfrak{so}(n)) \ltimes \mathbb{R}^n = \mathfrak{sim}(n).$

There is a classification of Lorentzian special holonomy algebras [Berard-Bergery & Ikemakhen '93, L '03, Galaev '05]

 Study the geometry of Lorentzian manifold with special holonomy, e.g. in relation to homogeneity.

pp-waves (plane fronted waves with parallel rays)

Lorentzian metric on
$$\mathbb{R}^{n+2} \ni (u, v, x^1, \dots, x^n), H = H(u, x^i) \in C^{\infty}(\mathbb{R}^{n+1}),$$

$$g = g^H := 2 \, du \, dv + 2H(u, x^i) \, du^2 + \delta_{ij} \, dx^i \, dx^j \tag{1}$$

Definition

A Lorentzian manifold (\mathcal{M}, g) is a pp-wave, if g is locally of the form (1).

Question: When are pp-waves locally homogeneous? Answer (in the best of all possible worlds): Only when *H* is a quadratic polynomial in the x^i 's with *u*-dependent coefficients. (Not quite true.)

Definition

A pp-wave is a plane wave, if \exists coord as in (1) such that $H(u, x^i) = A_{ij}(u)x^ix^j$.

- ► Equivalent definition for pp-waves: (*M*, g) Lorentzian manifold with
 - parallel, light-like vector field V
 - ► $R(X, Y) : V^{\perp} \to \mathbb{R} \cdot V, \forall X, Y \in TM.$ (equivalent: $R : \Lambda^2 TM \to \Lambda^2 TM$ has kernel $\Lambda^2 V^{\perp}$, or $R(X, Y) = 0 \forall X, Y \in V^{\perp}$)
- Plane waves: $\nabla_X \mathbf{R} = \mathbf{0} \ \forall X \in V^{\perp}$.
- Cahen-Wallach spaces: $\nabla R = 0$ (equivalent to A constant).

Some history

- Brinkmann ['25]: conformally equivalent Einstein metrics
- GR: wavelike solutions to the Vacuum Einstein equations

$$\operatorname{Ric}^{g}=\Delta(H)\,du^{2}=0,$$

- Δ flat Laplacian w.r.t x^i -coordinates
 - Einstein '16: linearised Einstein equations
 - Einstein & Rosen '35: gravitational waves
 - Penrose '76: Every spacetime has a plane wave as "Penrose limit".
- ► Parallel light-like vector field $\frac{\partial}{\partial v}$ = direction of propagation, wave fronts {(v, u) = const} with induced flat metric.
- → "pp-wave=plane-fronted wave with parallel rays" [Jordan, Ehlers & Kundt '60].
 - pp-waves have no scalar invariants, i.e, all functions made from covariant derivatives and traces of the curvature vanish.
 - pp-waves have Abelian holonomy

 $\mathbb{R}^n \subset \mathfrak{so}(n) \ltimes \mathbb{R}^n = \mathfrak{stab}_{\mathfrak{so}(1,n+1)}(null \ vector).$

Locally homogeneous spaces

 (\mathcal{M}, g) is locally homogeneous $\iff \forall p, q \in \mathcal{M}$

$$\exists \text{ nbhds } \mathcal{U}_{p}, \mathcal{U}_{q} \text{ and } \Phi : (\mathcal{U}_{p}, g|_{\mathcal{U}_{p}}) \stackrel{\text{isometry}}{\longrightarrow} (\mathcal{U}_{q}, g|_{\mathcal{U}_{q}}) : \phi(p) = q.$$
(2)

Equivalent: $\forall p \in \mathcal{M} \exists$ local Killing vector fields K_1, \ldots, K_n such that

$$\operatorname{span}(K_1|_p,\ldots,K_m|_p)=T_p\mathcal{M}.$$

Let *V* be a parallel vector field on \mathcal{M} .

- Then the distribution V[⊥] is parallel and hence integrable with leafs N of codim 1.
- (M, g) is locally V[⊥]-homogeneous ⇔ ∀ p, q ∈ N in the same leaf of V[⊥] we have (2).
- ▶ Consequence: $\forall p \in M \exists$ local Killing vector fields K_1, \ldots, K_{m-1} such that

 $\operatorname{span}(K_1|_p,\ldots,K_{m-1}|_p)=V^{\perp}|_p.$

Killing vector fields (infinitesimal isometries)

$$\begin{split} \mathfrak{iso} &:= \mathsf{Lie} \ \mathsf{algebra} \ \mathsf{of} \ \mathsf{Killing} \ \mathsf{vector} \ \mathsf{fields}. \ K \in \mathfrak{iso} \iff \phi := \nabla K \in \mathfrak{so}(\mathcal{TM}), \mathsf{i.e.}, \\ \mathfrak{iso} &:= \left\{ \ K \in \Gamma(\mathcal{TM}) \mid \boxed{g(\nabla_X K, Y) + g(\nabla_Y K, X) = 0} \ \forall \ X, Y \in \mathcal{TM} \right\} \end{split}$$

Differential consequences:

$$abla_X \phi = -\mathbf{R}(K, X), \quad
abla_K \mathbf{R} = \phi \cdot \mathbf{R}$$

Killing vf's define parallel sections a vector bundle

$$iso \simeq \left\{ \begin{pmatrix} K \\ \phi \end{pmatrix} \in \Gamma \left(\mathcal{K} := \begin{matrix} \mathcal{T}\mathcal{M} \\ \oplus \\ so(\mathcal{T}\mathcal{M}) \end{matrix} \right) \middle| \nabla_{X}^{\mathcal{K}} \begin{pmatrix} K \\ \phi \end{pmatrix} := \begin{pmatrix} \nabla_{X} \mathcal{K} - \phi(X) \\ \nabla_{X} \phi + \mathcal{R}(\mathcal{K}, X) \end{pmatrix} = 0 \right\}$$

- dim(iso) \leq rk(\mathcal{K}) = $\frac{1}{2}m(m+1)$.
- Evaluation map at a fixed point p:

$$\begin{split} \kappa : & \mathrm{iso} & \hookrightarrow & \mathrm{so}(T_{\rho}\mathcal{M},g_{\rho}) \ltimes T_{\rho}\mathcal{M} \simeq & \mathrm{so}(r,s) \ltimes \mathbb{R}^{r,s} \\ & \mathcal{K} & \mapsto & -(\nabla \mathcal{K},\mathcal{K})|_{\rho} \end{split}$$

This is not a Lie algebra homomorphism!

E.g.,
$$iso(\mathbb{S}^m) = so(m+1) \neq so(m) \ltimes \mathbb{R}^m = iso(\mathbb{R}^m)$$
.

▶ locally homogeneous \implies pr_{ℝ^{r,s}} $\circ \kappa$ is surjective.

The Killing equation for pp-waves

The coordinates in which $g = 2du(dv + H(u, \mathbf{x}) du) + d\mathbf{x}^{\top} d\mathbf{x}$ can be chosen:

$$H(u,0) \equiv 0, \quad \frac{\partial H}{\partial x^i}(u,0) \equiv 0.$$

(normal Brinkmann coordinates centred at $p \mapsto 0$).

Proposition

Let (\mathcal{M}^{n+2},g) be as indecomposable pp-wave. K is Killing \iff

$$\mathcal{K} = (\mathbf{c} - \mathbf{a}\mathbf{v} - \dot{\Psi} \cdot \mathbf{x}) \,\partial_{\mathbf{v}} + (\Psi + F\mathbf{x})^{i} \,\partial_{i} + (\mathbf{a}\mathbf{u} + \mathbf{b}) \,\partial_{u}, \tag{3}$$

where $a, b, c \in \mathbb{R}$, $F \in \mathfrak{so}(n)$ and $\Psi : u \mapsto \Psi(u) \in \mathbb{R}^n$ satisfying

$$\ddot{\Psi} \cdot \mathbf{x} - \operatorname{grad}(H) \cdot (\Psi + F\mathbf{x}) - (au+b)\dot{H} - 2aH = 0.$$
(4)

Consequences: Differentiating w.r.t. $\mathbf{x} \implies$

$$\ddot{\Psi} + F \operatorname{grad}(H) - \operatorname{Hess}(H)(\Psi + F\mathbf{x}) - (a \, u + b) \operatorname{grad}(\dot{H}) - 2a \operatorname{grad}(H) = 0$$

At
$$\mathbf{x} = 0$$
:
 $\ddot{\Psi}(u) - \text{Hess}(H)(u, 0)\Psi(u) = 0.$

Count: dim of Killing vf's $\leq 2n + 3 + \frac{1}{2}n(n-1)$

Motivation: classical results in dim 4

Jordan-Ehlers-Kundt '60:

- Complete solution of the Killing equation on 4-dim pp-wave (\mathbb{R}^4 , g) with Ric = $\Delta H du^2 = 0$ (dimensions of solution space 1, 2, 3, 5, 6).
- \blacktriangleright Observation: (\mathbb{R}^4,g) locally $\partial_v^{\scriptscriptstyle \perp}\text{-homogeneous},$ then g is a plane wave metric.

Sippel-Goenner '86:

- Solution without assuming Ric = 0 (dim's of Killing vf's ..., 7)
- Only one homogeneous example that is *not a plane wave*: $H(x^1, x^2) := e^{a_1 x^1 - a_2 x^2}$ with $a_1^2 + a_2^2 \neq 0$ (5 Killing vf's)
- Coordinate transformation $x = a_1x^1 a_2x^2$, $y = a_2x^1 + a_1x^2$ shows that this is a product metric (= *decomposable*).

Conclusion for dim 4: Indecomposable locally homogeneous pp-waves in dimension 4 are plane waves.

An example in dim 3

Consider $\mathbb{R}^3 \ni (u, v, x)$ with pp-wave metric

$$g = 2dudv + 2e^{2x}du^2 + dx^2,$$

i.e., $H(x) = e^{2ax}$. Killing vf's:

$$\partial_v, \ \partial_u, \ K := \partial_x + v \, \partial_v - u \, \partial_u.$$

I.e., g is locally homogeneous, indecomposable, but not a plane wave.

$$R(\partial_x, \partial_u) = 2 \begin{pmatrix} 0 & e^{2x} & 0 \\ 0 & 0 & -e^{2x} \\ 0 & 0 & 0 \end{pmatrix} \neq 0,$$

i.e. rank(R : $\Lambda^2 \rightarrow \Lambda^2$) = 1.

Results in arbitrary dimensions [Globke & L '14]

Theorem 1

Let (\mathcal{M}^m, g) be a pp-wave that is V^{\perp} -homogeneous. Assume that

- (\mathcal{M}, g) is strongly indecomposable, i.e., no nbhd is decomposable,
- ► $\operatorname{rk}(R : \Lambda^2 T \mathcal{M} \to \Lambda^2 T \mathcal{M}) > 1$ on an open dense subset of \mathcal{M} . (Recall, $\Lambda^2 V^{\perp} \subset \operatorname{Ker}(R)$, i.e., $\operatorname{rk}(R) < m - 1$).

Then (\mathcal{M}, g) is a plane wave.

Corollary

A pp-wave is a plane wave if

- ▶ strongly indecomposable, locally V^{\perp} -homogeneous, Ric = 0, or
- ▶ indecomposable, locally homogeneous & $\exists p$ with $rk(R|_p) > 1$, or
- ▶ indecomposable, locally homogeneous & Ric = 0 (as in dim 4).

Killing vector fields on plane waves

For plane waves: $H = \frac{1}{2} \mathbf{x}^{T} S(u) \mathbf{x}$ for a symmetric *u*-dep. matrix *S*. Hence

$$\operatorname{grad}(H) = S\mathbf{x}$$
, $\operatorname{Hess}(H) = S$.

Multiplying the differentiated equation

 $\ddot{\Psi} + F \operatorname{grad}(H) - \operatorname{Hess}(H)(\Psi + F\mathbf{x}) - (a \, u + b)\operatorname{grad}(\dot{H}) - 2a \operatorname{grad}(H) = 0.$

by **x** implies the Killing equ. (4).

For plane waves: many solutions with F = a = b = 0, as it becomes

$$\ddot{\Psi} - S\Psi = 0. \tag{5}$$

• Hence iso(V) contains the Heisenberg algebra $\mathfrak{he}_n(\mathbb{R})$:

$$\partial_{\mathbf{v}}, \quad L_i := \phi_i^k \partial_k - \mathbf{x} \cdot \dot{\Phi}_i \partial_{\mathbf{v}}, \quad K_i := \psi_i^k \partial_k - \mathbf{x} \cdot \dot{\Psi}_i \partial_{\mathbf{v}},$$

where $\Phi_i = (\phi_i^k)_{k=1,...,n}$ and $\Psi_i = (\psi_i^k)_{k=1,...,n}$ solutions to (5) with

$$\Phi_i(0)=0, \ \dot{\Phi}_i(0)=\mathbf{e}_i \quad \text{and} \quad \Psi_i(0)=\mathbf{e}_i, \ \dot{\Psi}_i(0)=0,$$

▶ Plane waves have *commuting* Killing vf's $\partial_v, K_1, \ldots, K_n$ that span V^{\perp} .

Homogeneous plane waves [Blau & O'Loughlin '03]

- For homogeneous plane waves, we need an additional Killing vector field K₊ such that K₊|_p = ∂₊, i.e. with b ≠ 0.
- Killing equation is a matrix ODE:

$$[S(u), F] + (au + b)\dot{S}(u) + 2aS(u) = 0.$$
(6)

Two cases:

a = 0: W.I.o.g. assume b = 1 and (6) becomes

$$[S(u),F]+\dot{S}(u)=0.$$

Solution:

 $S(u) = e^{uF}S_0e^{-uF}$ with $F \in \mathfrak{so}(n)$ and S_0 symmetric.

 $a \neq 0$: W.I.o.g. a = 1 and (6) becomes ODE with singularity at u = -b,

$$(u+b)\dot{S}(u) + [S(u), F] + 2S(u) = 0.$$

Solution:

$$S(u) = \frac{1}{(u+b)^2} (e^{\log(u+b)F} S_0 e^{\log(-(u+b))F}), \quad u > b.$$

 By our corollary, this also gives a classification of indecomposable homogeneous pp-waves satisfying the rank condition. Recall that plane waves have commuting Killing vector fields everywhere spanning V^{\perp} . We prove the converse:

Theorem 2

Let (\mathcal{M}, g) be a strongly indecomposable pp-wave: $\forall p \in \mathcal{M} \exists$ nbhd \mathcal{U}_p with Killing vf's on \mathcal{U}_p that span $V^{\perp}|_{\mathcal{U}_p}$. Then (\mathcal{M}, g) is a plane wave.

Theorem 3

Let (\mathcal{M}^m, g) be a semi-Riemannian manifold with *commuting* Killing vector fields that span a null distribution of rank m - 1. Then \exists parallel null vector field V and

$$R(X, Y)Z = 0$$
 and $\nabla_X R = 0$, $\forall X, Y, Z \in V^{\perp}$.

In particular, if (\mathcal{M}, g) is Lorentzian, then it is a plane wave.

Fix $p \in M$ and normal Brinkmann coordinates centred at p. Consider

$$iso_p(V) := \{K \in iso \mid g(K, V)|_p = 0\}.$$

Observe: For pp-waves, $iso_p(V)$ is a Lie algebra.

Under the assumption that there are Killing vector fields $K_i \in iso_p(V)$ such that $span(\partial_v, K_1, \ldots, K_n)|_p = V^{\perp}|_p$ we have to show $\nabla_X R = 0 \ \forall X \in V^{\perp}$.

$$abla_{\phi_v} \mathbf{R} = \mathbf{0}, \quad \text{and} \quad
abla_{\kappa_i} \mathbf{R} = -\phi_i \cdot \mathbf{R}, \quad \text{with } \phi_i := \nabla K_i.$$

I.e., we have to determine ϕ_i and its action on R, which on the other hand satisfies R(X, Y)Z = 0 whenever $X, Y \in V^{\perp}|_{p}$.

Proof of Theorem 1: the evaluation map

Recall

$$K = (c - av - \dot{\Psi} \cdot \mathbf{x}) \partial_v + (\Psi + F\mathbf{x})^i \partial_i + (au + b) \partial_u,$$

Then, with $\mathbf{e}_{-} = \partial_{v}|_{p}, \mathbf{e}_{i} = \partial_{i}|_{p}, \mathbf{e}_{+} = \partial_{+}|_{p}$, we have

$$\begin{split} & \mathcal{K}|_{p} = c \, \mathbf{e}_{-} + X^{i} \mathbf{e}_{i} + b \, \mathbf{e}_{+}, \qquad X := (X^{i})_{i=1}^{n} = \Psi(0), \\ & \nabla_{\mathbf{e}_{-}} \mathcal{K}|_{p} = -a \, \mathbf{e}_{-} \\ & \nabla_{\mathbf{e}_{i}} \mathcal{K}|_{p} = -Y_{i} \mathbf{e}_{-} + F_{i}^{k} \mathbf{e}_{k}, \qquad Y := (Y^{i})_{i=1}^{n} = \dot{\Psi}(0) \\ & \nabla_{\mathbf{e}_{+}} \mathcal{K}|_{p} = Y^{i} \mathbf{e}_{i} + a \, \mathbf{e}_{+}. \end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\implies \qquad \kappa : \mathfrak{iso} \quad \hookrightarrow \quad \mathfrak{sim}(n) \ltimes \mathbb{R}^{1,n+1} = \left((\mathbb{R} \oplus \mathfrak{so}(n)) \ltimes \mathbb{R}^n \right) \ltimes \mathbb{R}^{1,n+1}$$
$$K \quad \mapsto \quad \left(\begin{pmatrix} a & Y & 0 \\ 0 & -F & -Y^\top \\ 0 & 0 & -a \end{pmatrix}, \begin{pmatrix} -c \\ -X \\ -b \end{pmatrix} \right)$$

Observation: When restricted to $iso_p(V) = \{b = 0\}$ this is a Lie algebra hom!

Proof of Theorem 1: relation to Euclidean motions

Hence, we have an injective Lie algebra homomorphism

$$\kappa : \operatorname{iso}_{p}(V) \hookrightarrow \operatorname{sim}(n) \ltimes \mathbb{R}^{n+1} \simeq \operatorname{co}(n) \ltimes \operatorname{be}(n)$$

$$K \mapsto \left(\begin{pmatrix} a & Y & 0 \\ 0 & -F & -Y^{\mathsf{T}} \\ 0 & 0 & -a \end{pmatrix}, \begin{pmatrix} -c \\ -X \\ 0 \end{pmatrix} \right) \mapsto \left(\begin{pmatrix} a & Y^{\mathsf{T}} & c \\ 0 & F & X \\ 0 & 0 & 0 \end{pmatrix} \right)$$

$$\operatorname{co}(n) \ltimes \operatorname{be}(n) \text{ contains the Abelian ideal } \mathfrak{a} := \left\{ \begin{pmatrix} a & Y^{\mathsf{T}} & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}$$
Lie algebra homomorphism

$$\lambda : \operatorname{iso}_{p}(V) \longrightarrow (\operatorname{co}(n) \ltimes \operatorname{be}(n))/\mathfrak{a} \simeq \operatorname{euc}(n) = \operatorname{so}(n) \ltimes \mathbb{R}^{n}$$
$$K \longmapsto \begin{pmatrix} 0 & X & 0 \\ 0 & F & -X^{\top} \\ 0 & 0 & 0 \end{pmatrix}$$

Proposition

If (\mathcal{M}, g) is locally V^{\perp} -homogeneous, then $\operatorname{pr}_{\mathbb{R}^n} \circ \lambda : \operatorname{iso}_p(V) \to \mathbb{R}^n$ is a *surjetive* Lie algebra homomorphism, i.e., the image $g := \lambda(\operatorname{iso}_p(V))$ is an *indecomposable* subalgebra of the Euclidean motions $\operatorname{euc}(n)$.

Proof of Theorem 1: Indecomposable subalgebras of euc(n)

Berard-Bergery & Ikemakhen '93:

Let $\mathfrak{g} \subset \mathfrak{euc}(n) = \mathfrak{so}(n) \ltimes \mathbb{R}^n$ act indecomposably on $\mathbb{R}^{1,n+1}$, i.e., without non-degenerate invariant subspaces. Then either

- (A) g contains the translations \mathbb{R}^n , or
- (B) g contains \mathbb{R}^q for 1 < q < n, in which case there is a subalgebra $\mathfrak{h} \subset \mathfrak{so}(q)$ and a surjective linear map $\varphi : \mathfrak{h} \to \mathbb{R}^{n-q}$ such that g is of the form

$$\mathfrak{g} = \left\{ \left(\begin{array}{cccc} 0 & X & \varphi(F) & 0 \\ 0 & F & 0 & -X \\ 0 & 0 & 0 & -\varphi(F) \\ 0 & 0 & 0 & 0 \end{array} \right) \middle| F \in \mathfrak{h}, X \in \mathbb{R}^{q} \right\}.$$
(8)

Consequences for the Killing vector fields of locally V^{\perp} -homogeneous pp-waves:

- (A) \exists KVFs $(K_i)_{i=1,...,n}$ with $K_i|_p = \mathbf{e}_i$ and $\phi_i := \nabla K_i|_p : \mathbf{e}_j \to \mathbb{R} \cdot \mathbf{e}_-$.
- (B) \exists KVFs $(K_A)_{A=1,\dots,N}$ as in (A) and $(K_a)_{a=N+1,\dots,n}$ with $K_a|_p = \mathbf{e}_a \&$

$$\phi_a: \begin{array}{ccc} \mathbf{e}_A & \mapsto & \stackrel{(a)}{F}_A{}^B \mathbf{e}_B + \mathbb{R} \cdot \mathbf{e} \\ \mathbf{e}_b & \mapsto & \mathbb{R} \cdot \mathbf{e}_- \end{array}$$

Proof of Theorem 1: case A

From the previous slide we know that, in the basis $(\mathbf{e}_{-}, \mathbf{e}_{1}, \dots, \mathbf{e}_{n}, \mathbf{e}_{+})$,

$$\phi_i := \nabla K_i|_{\rho} = \begin{pmatrix} -a_i & -X_i & 0\\ 0 & 0 & X_i^{\top}\\ 0 & 0 & a_i \end{pmatrix}$$
(9)

• W.I.o.g. we may assume that $a_1, \ldots, a_{n-1} = 0$.

Set $R_{ij} := R(\mathbf{e}_+, \mathbf{e}_i, \mathbf{e}_+, \mathbf{e}_j)$ and $\nabla_k R_{ij} := \nabla_{\mathbf{e}_k} R(\mathbf{e}_+, \mathbf{e}_i, \mathbf{e}_+, \mathbf{e}_j)$. Then

- ∇_kR_{ij} is symmetric in all its indices,
- With equation (9) the integrability condition $\nabla_{K_i} R = -\phi_i \cdot R$ implies that

$$\nabla_k \mathbf{R}_{ij} = \begin{array}{c} \mathbf{R}(\phi_k(\mathbf{e}_+), \mathbf{e}_i, \mathbf{e}_+, \mathbf{e}_j) + \mathbf{R}(\mathbf{e}_+, \phi_k(\mathbf{e}_i), \mathbf{e}_+, \mathbf{e}_j) \\ + \mathbf{R}(\phi_k(\mathbf{e}_+), \mathbf{e}_j, \mathbf{e}_+, \mathbf{e}_j) + \mathbf{R}(\mathbf{e}_+, \phi_k(\mathbf{e}_j), \mathbf{e}_+, \mathbf{e}_i) \end{array} = 2a_k \mathbf{R}_{ij},$$

- Hence, $\nabla_k R_{ij} = 0$ with the possible exception of $\nabla_n R_{nn} = 2a_n R_{nn}$.
- Then a_n ≠ 0 implies R_{ij} = 0 apart from R_{nn} contradicting the rank assumption.

The proof of case B is very similar, but with the technical difficulty of dealing with the rotational component F. This can be overcome by the specific shape of F which allows to derive an equation

$$\begin{aligned} \mathbf{R}_{bc} &= 0, \text{ for all } (b,c) \neq (n,n). \\ \mathbf{R}_{cB} &= 0 \\ -2a_{n}\mathbf{R} &= [\overset{(n)}{F},\mathbf{R}], \text{ where } \mathbf{R} = (\mathbf{R}_{AB}), \end{aligned}$$

The last equation implies $\mathbf{R} = 0$, since *F* is skew and **R** is symmetric, yielding a contradiction to the rank assumption.

Many thanks for your attention!