Locally homogeneous pp-waves

Thomas Leistner
(joint work with W. Globke)

THE UNIVERSITY
OF ADELAIDE

AUSTRALIA

AMSI workshop "Differential Geometry, Complex Analysis and Lie Theory"
La Trobe University, Melbourne, December 5 —7, 2014



Which implication has the homogeneity for the geometry/curvature of a
semi-Riemannian manifold?
E.g., homogeneous and Ric = 0 implies flat [Alekseevskil & Kimel'fel’d '75]

Study such question for Lorentzian manifolds with special holonomy:

> Holonomy group Hol := group of parallel transports along loops
> special holonomy < hol < so(p, q) but the manifold is indecomposable, i.e.
does not (locally) decompose as a product.
Riemannian special Holonomy
~» Berger’s list: U(p) SU(p), Sp(q) Sp(q) - Sp(1), G2 and Spin(7).
Lorentzian special holonomy: no irreducible subalgebras of so(1, n + 1)!
e
ol c stab(null line) = (R & so(n)) < R" = sim(n).

There is a classification of Lorentzian special holonomy algebras
[Berard-Bergery & Ikemakhen 93, L 03, Galaev '05]

Study the geometry of Lorentzian manifold with special holonomy, e.g. in
relation to homogeneity.



pp-waves (plane fronted waves with parallel rays)

Lorentzian metric on R™2 5 (u, v, x',...,x"), H = H(u, x') € C*(R™"),

g =g":=2dudv+2H(u,x") du? + §; dx’ dx’ (1)

Definition
A Lorentzian manifold (M, g) is a pp-wave, if g is locally of the form (1). J

Question: When are pp-waves locally homogeneous?

Answer (in the best of all possible worlds): Only when H is a quadratic polynomial
in the x's with u-dependent coefficients. (Not quite true.)

Definition

A pp-wave is a plane wave, if 3 coord as in (1) such that H(u, x) = Aj(u)x'x/. J

» Equivalent definition for pp-waves: (M, g) Lorentzian manifold with
» parallel, light-like vector field V
» R(X.Y): VESR-V, VX,YeTM.
(equivalent: R : A°TM — A2T M has kernel A2V+, orR(X,Y) =0V X,Y € V*)
> Plane waves: VxR = 0 VX € V*.
» Cahen-Wallach spaces: VR = 0 (equivalent to A constant).



Some history

> Brinkmann ['25]: conformally equivalent Einstein metrics

> GR: wavelike solutions to the Vacuum Einstein equations
Rict = A(H) du® =0,

A flat Laplacian w.r.t x'-coordinates

» Einstein ’16: linearised Einstein equations
> Einstein & Rosen '35: gravitational waves
> Penrose '76: Every spacetime has a plane wave as “Penrose limit”.

> Parallel light-like vector field Oiv = direction of propagation,
wave fronts {(v, u) = const} with induced flat metric.

~ “pp-wave=plane-fronted wave with parallel rays” [Jordan, Ehlers & Kundt
’60].
> pp-waves have no scalar invariants, i.e, all functions made from covariant
derivatives and traces of the curvature vanish.
> pp-waves have Abelian holonomy

R" c so(n) =< R" = stabgy(1,011)(null vector).



Locally homogeneous spaces

(M, g) is locally homogeneous < V p,qe M

isometry

A nbhds U, Ugand & : (Up, glu,) — (Ug. glu,) : ¢(P) = q. 2

Equivalent: V p € M 3 local Killing vector fields Ki, ..., K, such that
span(Kilp, . .., Kmlp) = ToM.

Let V be a parallel vector field on M.

> Then the distribution V+* is parallel and hence integrable with leafs N of
codim 1.

» (M, g) is locally V*+-homogeneous <= V p,q € N in the same leaf of V*
we have (2).

» Consequence: Y p € M Jlocal Killing vector fields Ki, ..., Kn_1 such that

span(Kilp, . .., Km-1lp) = V*lp.



Killing vector fields (infinitesimal isometries)

iso := Lie algebra of Killing vector fields. K € iso < ¢ := VK € so(TM), i.e.,
iso:= [ K e [(TM) |’g(VXK, Y) +g(VyK,X) =0 \ VX.YeTM)

Differential consequences: ’ Vx¢ = -R(K,X), VKkR=¢"-R ‘

» Killing vf’s define parallel sections a vector bundle

iso = {(K)er(w - o ) VZS[K] :_[ VXK= 9(X) ]_o}
¢ s0(TM) ¢ Vx¢ +R(K, X)

> dim(iso) < tk(K) = Im(m+1).

» Evaluation map at a fixed point p:

ko iso < so(TpM, gp) < TpM = so(r,s) <xR"
K - —(VK,K)lp
This is not a Lie algebra homomorphism!
E.g., is0(S™) = so(m + 1) # so(m) x R™ = iso(R™).

> locally homogeneous = pry:s © k i surjective.



The Killing equation for pp-waves

The coordinates in which g = 2du(dv + H(u, x) du) 4+ dx" dx can be chosen:

H(u,0)=0, %(u,0)=0.
(normal Brinkmann coordinates centred at p +— 0).

Proposition

Let (M2, g) be as indecomposable pp-wave. K is Killing
K= (c—av—W-x)d, + (¥ + Fx)' 8, + (au+ b) d,,

where a,b,c e R, F e so(n) and V : u— W(u) € R" satisfying

V- x - grad(H) - (W + Fx) - (au+ b)H —2aH = 0.

Consequences: Differentiating w.r.t. x —

W + Fgrad(H) — Hess(H)(V + Fx) — (a u+ b)grad(H) — 2agrad(H)
Atx =0: W(u) — Hess(H)(u, 0)W(u)

Count: dim of Killing vf's < 2n+ 3+ In(n-1)




Motivation: classical results in dim 4

Jordan-Ehlers-Kundt '60:

» Complete solution of the Killing equation on 4-dim pp-wave (R*, g) with
Ric = AH du? = 0 (dimensions of solution space 1,2, 3,5, 6).

» Observation: (R*, g) locally d:-homogeneous, then g is a plane wave metric.

Sippel-Goenner '86:

> Solution without assuming Ric = 0 (dim’s of Killing vf’s ...,7)

> Only one homogeneous example that is not a plane wave:
H(x',x?) := edx'-2* with a? + a2 # 0 (5 Killing vf's)

» Coordinate transformation x = a;x' — a;x?, y = ap,x" 4 a;x? shows that this
is a product metric (= decomposable).

Conclusion for dim 4: Indecomposable locally homogeneous pp-waves in
dimension 4 are plane waves.



An example in dim 3

Consider R® 5 (u, v, x) with pp-wave metric
g = 2dudv + 2e®*du? + dx?,

i.e., H(x) = e?,
Killing vf’s:
dy, 0y, K:=0x+vVvad,—ud,.

l.e., g is locally homogeneous, indecomposable, but not a plane wave.

0 e 0
R(0,0) =2{0 0 —e&|20,
0 O 0

i.e. rank(R: A2 — A?) = 1.




Results in arbitrary dimensions [Globke & L '14]

Theorem 1
Let (M™, g) be a pp-wave that is V*+-homogeneous. Assume that
» (M, g) is strongly indecomposable, i.e., no nbhd is decomposable,

» k(R : A2TM — A2T M) > 1 on an open dense subset of M.
(Recall, A2V* c Ker(R), i.e., tk(R) < m —1).

Then (M, g) is a plane wave.

Corollary

A pp-wave is a plane wave if
» strongly indecomposable, locally V+-homogeneous, Ric = 0, or
» indecomposable, locally homogeneous & dp with tk(R|,) > 1, or

> indecomposable, locally homogeneous & Ric = 0 (as in dim 4).




Killing vector fields on plane waves

> For plane waves: H = 1 x™S(u)x for a symmetric u-dep. matrix S. Hence

grad(H) = Sx, Hess(H) = S.

v

Multiplying the differentiated equation
W + Fgrad(H) — Hess(H)(W + Fx) — (a u+ b)grad(H) — 2agrad(H) = 0.

by x implies the Killing equ. (4).

v

For plane waves: many solutions with F = a = b = 0, as it becomes

V- SV =0. (5)
» Hence iso( V) contains the Heisenberg algebra be,(R):
B, Li=ofdk—x- 8y, K= yko—x-; 4,

®;(0) =0, d(0)=e; and W;,(0)=e;, W;0)=0,

v

Plane waves have commuting Killing vf’s d,, K1, ..., K, that span V*.



Homogeneous plane waves [Blau & O’Loughlin ‘03]

> For homogeneous plane waves, we need an additional Killing vector field K.
such that K, |, = 0,4, i.e. with b # 0.
> Killing equation is a matrix ODE:

[S(u), F] + (au + b)S(u) +2a S(u) = 0. (6)

Two cases:
a =0: W.l.o.g. assume b = 1 and (6) becomes

[S(u), F]+ S(u) = 0.
Solution:
S(u) = e"FSpe™F  with F € so(n) and S, symmetric.
a #0: W.l.o.g. a =1 and (6) becomes ODE with singularity at u = -b,
(u+b)S(u) + [S(u), F]+2S(u) =0

Solution:
S(U) TR (elog(u+b)FSoelog(—(qub))F) u>b
u+ ? '
> By our corollary, this also gives a classification of indecomposable

homogeneous pp-waves satisfying the rank condition.



Further results

Recall that plane waves have commuting Killing vector fields everywhere
spanning V+. We prove the converse:

Theorem 2
Let (M, g) be a strongly indecomposable pp-wave: ¥ p € M 3 nbhd U, with
Killing vf's on U, that span V*|,. Then (M, g) is a plane wave.

Theorem 3
Let (M™, g) be a semi-Riemannian manifold with commuting Killing vector fields
that span a null distribution of rank m — 1. Then 3 parallel null vector field V and

R(X.Y)Z=0 and VxR =0, Y X,Y,Ze V"

In particular, if (M, g) is Lorentzian, then it is a plane wave.




Proof of Theorem 1: the setting

Fix p € M and normal Brinkmann coordinates centred at p. Consider
isop(V) :={K e iso | g(K, V)|, = O}

Observe: For pp-waves, iso, (V) is a Lie algebra.
Under the assumption that there are Killing vector fields K; € iso, (V) such that
span(dy, Ki, ..., Kn)lp = V*|, we have to show VxR = 0 VX € V*.

V@VR =0, and VK,R = —¢;- R, with ¢ = Vf(,

l.e., we have to determine ¢; and its action on R, which on the other hand
satisfies R(X, Y)Z = 0 whenever X, Y € V*|,.



Proof of Theorem 1: the evaluation map

Recall
K=(c—av—-W-x)d, + (V+ Fx)' 8, + (au+ b) d,.

Then, with e_ = 0,l,,€; = Jilp, e+ = d|p, we have

Kl, = ce_+Xe +be,, X = (X", = w(0),
Ve Klp, = -ae_
VeKl, = -Ye_+ FXe, Y = (Y, = ¥(0)
Ve.Klp = Yie, +ae,.
= kiiso = stm(n) xR = ((R@so(n)) = R") < R
a Y 0 —-C
K - 0 -F -Y" |,| X
0 o0 -a -b

Observation: When restricted to iso,(V) = {b = 0} this is a Lie algebra hom!



Proof of Theorem 1: relation to Euclidean motions

> Hence, we have an injective Lie algebra homomorphism

k:isop(V) < sim(n) =< R =~ co(n)xDbe(n)

ool (R4

a
0
0
a Y ¢
» co(n) < he(n) contains the Abelianideala:={| 0 0 0

> Lie algebra homomorphism
Atisop (V)  —  (eo(n)<De(n))/a = euc(n) = so(n) < R"

X 0
K +— F -XT
0

0
If (M, g) is locally V*+-homogeneous, then pryq o A : iso,(V) — R is a surjetive
Lie algebra homomorphism, i.e., the image g := A(iso,(V)) is an indecomposable
subalgebra of the Euclidean motions euc(n).

o O o

Proposition




Proof of Theorem 1: Indecomposable subalgebras of euc(n)

Berard-Bergery & lkemakhen '93:

Let g C euc(n) = so(n) =< R™ act indecomposably on R'™1 i.e., without
non-degenerate invariant subspaces. Then either

(A) g contains the translations R", or

(B) g contains R9 for 1 < g < n, in which case there is a subalgebra b c so(q)
and a surjective linear map ¢ : ) — R""9 such that g is of the form

0 X ¢(F) 0
_Jlo F o -x q
qg= 0o 0 0 _o(F) Feh XeR}. (8)
0 0 0 0

Consequences for the Killing vector fields of locally V+-homogeneous pp-waves:




Proof of Theorem 1: case A

> From the previous slide we know that, in the basis (e_,e1,...,e,, e ),
—a; —X,' 0
¢ :=VKlp=| 0 0 X (9)
0 0 a;
» W.l.o.g. we may assume that a;,...,a,.1 = 0.

SetR; :=R(e;,e;,e;,e) and ViR := V., R(e;,e;, e, e;). Then
> VkR; is symmetric in all its indices,

> With equation (9) the integrability condition VxR = —¢; - R implies that

R(¢k(e;).e.e;.e) +R(e,, (e e .e)

VkR(j =
+R(¢k(ey). €. e,,€) +R(ey, pk(e)).e.,e)

= 2akR,'j,

> Hence, V,R; = 0 with the possible exception of V,R,, = 2a,Rp.

> Then a, # 0 implies R; = 0 apart from R, contradicting the rank
assumption.



Proof of Theorem 1: case B

The proof of case B is very similar, but with the technical difficulty of dealing with
the rotational component F. This can be overcome by the specific shape of F
which allows to derive an equation

Rye = 0, forall(b,c)# (n,n).
R = 0
(n)
-2a,R = [F,R], where R=(Ras),

The last equation implies R = 0, since F is skew and R is symmetric, yielding a
contradiction to the rank assumption. O

Many thanks for your attention!
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