Locally homogeneous pp-waves

Thomas Leistner
(joint work with W. Globke)

AMSI workshop "Differential Geometry, Complex Analysis and Lie Theory" La Trobe University, Melbourne, December 5-7, 2014

- Which implication has the homogeneity for the geometry/curvature of a semi-Riemannian manifold?
E.g., homogeneous and Ric $=0$ implies flat [Alekseevskiĭ \& Kimel'fel'd '75]
- Study such question for Lorentzian manifolds with special holonomy:
- Holonomy group Hol := group of parallel transports along loops
- special holonomy $\Longleftrightarrow \mathfrak{h o l} \subsetneq \mathfrak{s o}(p, q)$ but the manifold is indecomposable, i.e. does not (locally) decompose as a product.
- Riemannian special Holonomy
\sim Berger's list: $\mathbf{U}(p) \mathbf{S U}(p), \mathbf{S p}(q) \mathbf{S p}(q) \cdot \mathbf{S p}(1), \mathbf{G}_{2}$ and $\mathbf{S p i n}(7)$.
- Lorentzian special holonomy: no irreducible subalgebras of $\mathfrak{s o}(1, n+1)$!
\qquad

$$
\mathfrak{h o l} \subset \mathfrak{s t a b}(\text { null line })=(\mathbb{R} \oplus \mathfrak{s o}(n)) \ltimes \mathbb{R}^{n}=\mathfrak{s i n}(n)
$$

There is a classification of Lorentzian special holonomy algebras [Berard-Bergery \& Ikemakhen '93, L '03, Galaev '05]

- Study the geometry of Lorentzian manifold with special holonomy, e.g. in relation to homogeneity.

pp-waves (plane fronted waves with parallel rays)

Lorentzian metric on $\mathbb{R}^{n+2} \ni\left(u, v, x^{1}, \ldots, x^{n}\right), H=H\left(u, x^{i}\right) \in C^{\infty}\left(\mathbb{R}^{n+1}\right)$,

$$
\begin{equation*}
\mathrm{g}=\mathrm{g}^{H}:=2 d u d v+2 H\left(u, x^{i}\right) d u^{2}+\delta_{i j} d x^{i} d x^{j} \tag{1}
\end{equation*}
$$

Definition

A Lorentzian manifold $(\mathcal{M}, \mathrm{g})$ is a pp-wave, if g is locally of the form (1).
Question: When are pp-waves locally homogeneous? Answer (in the best of all possible worlds): Only when H is a quadratic polynomial in the x^{i} 's with u-dependent coefficients. (Not quite true.)

Definition

A pp-wave is a plane wave, if \exists coord as in (1) such that $H\left(u, x^{i}\right)=A_{i j}(u) x^{i} x^{j}$.

- Equivalent definition for pp-waves: $(\mathcal{M}, \mathrm{g})$ Lorentzian manifold with
- parallel, light-like vector field V
- $\mathrm{R}(X, Y): V^{\perp} \rightarrow \mathbb{R} \cdot V, \quad \forall X, Y \in T \mathcal{M}$. (equivalent: $\mathrm{R}: \Lambda^{2} T \mathcal{M} \rightarrow \Lambda^{2} T \mathcal{M}$ has kernel $\Lambda^{2} V^{\perp}$, or $\mathrm{R}(X, Y)=0 \forall X, Y \in V^{\perp}$)
- Plane waves: $\nabla_{X} \mathrm{R}=0 \forall X \in V^{\perp}$.
- Cahen-Wallach spaces: $\nabla \mathrm{R}=0$ (equivalent to A constant).

Some history

- Brinkmann ['25]: conformally equivalent Einstein metrics
- GR: wavelike solutions to the Vacuum Einstein equations

$$
\operatorname{Ric}^{\mathrm{g}}=\Delta(H) d u^{2}=0
$$

Δ flat Laplacian w.r.t x^{i}-coordinates

- Einstein '16: linearised Einstein equations
- Einstein \& Rosen '35: gravitational waves
- Penrose '76: Every spacetime has a plane wave as "Penrose limit".
- Parallel light-like vector field $\frac{\partial}{\partial v}=$ direction of propagation, wave fronts $\{(v, u)=$ const $\}$ with induced flat metric.
\sim "pp-wave=plane-fronted wave with parallel rays" [Jordan, Ehlers \& Kundt '60].
- pp-waves have no scalar invariants, i.e, all functions made from covariant derivatives and traces of the curvature vanish.
- pp-waves have Abelian holonomy

$$
\mathbb{R}^{n} \subset \mathfrak{s v}(n) \ltimes \mathbb{R}^{n}=\operatorname{stab}_{\mathfrak{s o}(1, n+1)}(\text { null vector }) .
$$

Locally homogeneous spaces

$(\mathcal{M}, \mathrm{g})$ is locally homogeneous $\Longleftrightarrow \forall p, q \in \mathcal{M}$

$$
\begin{equation*}
\exists \text { nbhds } \mathcal{U}_{p}, \mathcal{U}_{q} \text { and } \Phi:\left(\mathcal{U}_{p}, \mathrm{~g} \mid \mathcal{U}_{p}\right) \xrightarrow{\text { isometry }}\left(\mathcal{U}_{q}, \mathrm{~g} \mid \mathcal{U}_{q}\right): \phi(p)=q \text {. } \tag{2}
\end{equation*}
$$

Equivalent: $\forall p \in \mathcal{M} \exists$ local Killing vector fields K_{1}, \ldots, K_{n} such that

$$
\operatorname{span}\left(\left.K_{1}\right|_{p}, \ldots,\left.K_{m}\right|_{p}\right)=T_{p} \mathcal{M}
$$

Let V be a parallel vector field on \mathcal{M}.

- Then the distribution V^{\perp} is parallel and hence integrable with leafs \mathcal{N} of codim 1.
- $(\mathcal{M}, \mathrm{g})$ is locally V^{\perp}-homogeneous $\Longleftrightarrow \forall p, q \in \mathcal{N}$ in the same leaf of V^{\perp} we have (2).
- Consequence: $\forall p \in \mathcal{M} \exists$ local Killing vector fields K_{1}, \ldots, K_{m-1} such that

$$
\operatorname{span}\left(\left.K_{1}\right|_{\rho}, \ldots,\left.K_{m-1}\right|_{p}\right)=\left.V^{\perp}\right|_{\rho} .
$$

Killing vector fields (infinitesimal isometries)

$\mathfrak{i s v}:=$ Lie algebra of Killing vector fields. $K \in \mathfrak{i s o} \Longleftrightarrow \phi:=\nabla K \in \mathfrak{s o}(T \mathcal{M})$, i.e.,

$$
\mathfrak{i s v}:=\left\{K \in \Gamma(T \mathcal{M}) \mid \mathrm{g}^{\left.\left(\nabla_{X} K, Y\right)+\mathrm{g}\left(\nabla_{Y} K, X\right)=0 \forall X, Y \in T \mathcal{M}\right\}}\right.
$$

Differential consequences: $\quad \nabla_{X} \phi=-\mathrm{R}(K, X), \quad \nabla_{K} \mathrm{R}=\phi \cdot \mathrm{R}$

- Killing vf's define parallel sections a vector bundle

$$
\mathfrak{i s v} \simeq\left\{\left.\binom{K}{\phi} \in \Gamma(\mathcal{K}:=\underset{\mathfrak{s v}(\underset{T M}{T M}}{\underset{M}{\oplus}}) \right\rvert\, \nabla_{X}^{\mathcal{K}}\binom{K}{\phi}:=\binom{\nabla_{X} K-\phi(X)}{\nabla_{X} \phi+\mathrm{R}(K, X)}=0\right\}
$$

- $\operatorname{dim}(\mathfrak{i s o}) \leq \operatorname{rk}(\mathcal{K})=\frac{1}{2} m(m+1)$.
- Evaluation map at a fixed point p :

$$
\begin{aligned}
\kappa: \mathfrak{i s o} & \hookrightarrow \mathfrak{s o}\left(T_{p} \mathcal{M}, \mathrm{~g}_{p}\right) \ltimes T_{p} \mathcal{M} \simeq \mathfrak{s o}(r, s) \ltimes \mathbb{R}^{r, s} \\
K & \mapsto-\left.(\nabla K, K)\right|_{p}
\end{aligned}
$$

This is not a Lie algebra homomorphism!

$$
\text { E.g., } \mathfrak{i s v}\left(\mathbb{S}^{m}\right)=\mathfrak{s v}(m+1) \neq \mathfrak{s v}(m) \ltimes \mathbb{R}^{m}=\mathfrak{i s v}\left(\mathbb{R}^{m}\right)
$$

- locally homogeneous $\Longrightarrow \mathrm{pr}_{\mathbb{R}^{r, s}} \circ \kappa$ is surjective.

The Killing equation for pp-waves

The coordinates in which $g=2 d u(d v+H(u, \mathbf{x}) d u)+d \mathbf{x}^{\top} d \mathbf{x}$ can be chosen:

$$
H(u, 0) \equiv 0, \quad \frac{\partial H}{\partial x^{\prime}}(u, 0) \equiv 0 .
$$

(normal Brinkmann coordinates centred at $p \mapsto 0$).

Proposition

Let $\left(\mathcal{M}^{n+2}, \mathrm{~g}\right)$ be as indecomposable pp-wave. K is Killing \Longleftrightarrow

$$
\begin{equation*}
K=(c-a v-\dot{\Psi} \cdot \mathbf{x}) \partial_{v}+(\Psi+F \mathbf{x})^{i} \partial_{i}+(a u+b) \partial_{u} \tag{3}
\end{equation*}
$$

where $a, b, c \in \mathbb{R}, F \in \mathfrak{s v}(n)$ and $\psi: u \mapsto \Psi(u) \in \mathbb{R}^{n}$ satisfying

$$
\begin{equation*}
\ddot{\Psi} \cdot \mathbf{x}-\operatorname{grad}(H) \cdot(\Psi+F \mathbf{x})-(a u+b) \dot{H}-2 a H=0 \tag{4}
\end{equation*}
$$

Consequences: Differentiating w.r.t. $\mathbf{x} \Longrightarrow$

$$
\begin{array}{lr}
\ddot{\Psi}+F \operatorname{grad}(H)-\operatorname{Hess}(H)(\Psi+F \mathbf{x})-(a u+b) \operatorname{grad}(\dot{H})-2 \operatorname{agrad}(H) & =0 \\
\underline{\operatorname{At} \mathbf{x}=0:} & \ddot{\Psi}(u)-\operatorname{Hess}(H)(u, 0) \Psi(u)
\end{array}=0 .
$$

Count: dim of Killing vf's $\leq 2 n+3+\frac{1}{2} n(n-1)$

Motivation: classical results in dim 4

Jordan-Ehlers-Kundt '60:

- Complete solution of the Killing equation on 4-dim pp-wave $\left(\mathbb{R}^{4}, \mathrm{~g}\right)$ with Ric $=\Delta H d u^{2}=0$ (dimensions of solution space 1,2,3,5,6).
- Observation: $\left(\mathbb{R}^{4}, \mathrm{~g}\right)$ locally ∂_{v}^{\perp}-homogeneous, then g is a plane wave metric.

Sippel-Goenner '86:

- Solution without assuming Ric $=0$ (dim's of Killing vf's $\ldots, 7$)
- Only one homogeneous example that is not a plane wave: $H\left(x^{1}, x^{2}\right):=\mathrm{e}^{a_{1} x^{1}-a_{2} x^{2}}$ with $a_{1}^{2}+a_{2}^{2} \neq 0 \quad$ (5 Killing vf's)
- Coordinate transformation $x=a_{1} x^{1}-a_{2} x^{2}, y=a_{2} x^{1}+a_{1} x^{2}$ shows that this is a product metric (= decomposable).

Conclusion for dim 4: Indecomposable locally homogeneous pp-waves in dimension 4 are plane waves.

An example in dim 3

Consider $\mathrm{R}^{3} \ni(u, v, x)$ with pp-wave metric

$$
\mathrm{g}=2 d u d v+2 \mathrm{e}^{2 x} d u^{2}+d x^{2}
$$

i.e., $H(x)=e^{2 a x}$.

Killing vf's:

$$
\partial_{v}, \partial_{u}, K:=\partial_{x}+v \partial_{v}-u \partial_{u} .
$$

I.e., g is locally homogeneous, indecomposable, but not a plane wave.

$$
\mathrm{R}\left(\partial_{x}, \partial_{u}\right)=2\left(\begin{array}{ccc}
0 & \mathrm{e}^{2 x} & 0 \\
0 & 0 & -\mathrm{e}^{2 x} \\
0 & 0 & 0
\end{array}\right) \neq 0,
$$

i.e. $\operatorname{rank}\left(\mathrm{R}: \Lambda^{2} \rightarrow \Lambda^{2}\right)=1$.

Results in arbitrary dimensions [Globke \& L'14]

Theorem 1

Let $\left(\mathcal{M}^{m}, \mathrm{~g}\right)$ be a pp-wave that is V^{\perp}-homogeneous. Assume that

- $(\mathcal{M}, \mathrm{g})$ is strongly indecomposable, i.e., no nbhd is decomposable,
- $\operatorname{rk}\left(\mathrm{R}: \Lambda^{2} T \mathcal{M} \rightarrow \Lambda^{2} T \mathcal{M}\right)>1$ on an open dense subset of \mathcal{M}. (Recall, $\Lambda^{2} V^{\perp} \subset \operatorname{Ker}(\mathrm{R})$, i.e., $\left.\operatorname{rk}(R)<m-1\right)$.

Then $(\mathcal{M}, \mathrm{g})$ is a plane wave.

Corollary

A pp-wave is a plane wave if

- strongly indecomposable, locally V^{\perp}-homogeneous, Ric $=0$, or
- indecomposable, locally homogeneous \& $\exists p$ with $\mathrm{rk}\left(\left.\mathrm{R}\right|_{p}\right)>1$, or
- indecomposable, locally homogeneous \& Ric $=0$ (as in dim 4).

Killing vector fields on plane waves

- For plane waves: $H=\frac{1}{2} \mathbf{x}^{\top} S(u) \mathbf{x}$ for a symmetric u-dep. matrix S. Hence

$$
\operatorname{grad}(H)=S \mathbf{x}, \operatorname{Hess}(H)=S .
$$

- Multiplying the differentiated equation

$$
\ddot{\Psi}+F \operatorname{grad}(H)-\operatorname{Hess}(H)(\Psi+F \mathbf{x})-(a u+b) \operatorname{grad}(\dot{H})-2 \operatorname{agrad}(H)=0
$$

by \mathbf{x} implies the Killing equ. (4).

- For plane waves: many solutions with $F=a=b=0$, as it becomes

$$
\begin{equation*}
\ddot{\psi}-S \psi=0 . \tag{5}
\end{equation*}
$$

- Hence $\operatorname{iso}(V)$ contains the Heisenberg algebra $\mathfrak{h e}_{n}(\mathbb{R})$:

$$
\partial_{v}, \quad L_{i}:=\phi_{i}^{k} \partial_{k}-\mathbf{x} \cdot \dot{\Phi}_{i} \partial_{v}, \quad K_{i}:=\psi_{i}^{k} \partial_{k}-\mathbf{x} \cdot \dot{\Psi}_{i} \partial_{v},
$$

where $\Phi_{i}=\left(\phi_{i}^{k}\right)_{k=1, \ldots, n}$ and $\Psi_{i}=\left(\psi_{i}^{k}\right)_{k=1, \ldots, n}$ solutions to (5) with

$$
\Phi_{i}(0)=0, \quad \dot{\phi}_{i}(0)=\mathbf{e}_{i} \quad \text { and } \quad \Psi_{i}(0)=\mathbf{e}_{i}, \quad \dot{\Psi}_{i}(0)=0,
$$

- Plane waves have commuting Killing vf's $\partial_{v}, K_{1}, \ldots, K_{n}$ that span V^{\perp}.

Homogeneous plane waves [Blau \& O'Loughlin '03]

- For homogeneous plane waves, we need an additional Killing vector field K_{+} such that $\left.K_{+}\right|_{p}=\partial_{+}$, i.e. with $b \neq 0$.
- Killing equation is a matrix ODE:

$$
\begin{equation*}
[S(u), F]+(a u+b) \dot{S}(u)+2 a S(u)=0 \tag{6}
\end{equation*}
$$

Two cases:
$a=0$: W.l.o.g. assume $b=1$ and (6) becomes

$$
[S(u), F]+\dot{S}(u)=0
$$

Solution:

$$
S(u)=\mathrm{e}^{u F} S_{0} \mathrm{e}^{-u F} \text { with } F \in \mathfrak{s v}(n) \text { and } S_{0} \text { symmetric. }
$$

$a \neq 0$: W.l.o.g. $a=1$ and (6) becomes ODE with singularity at $u=-b$,

$$
(u+b) \dot{S}(u)+[S(u), F]+2 S(u)=0
$$

Solution:

$$
S(u)=\frac{1}{(u+b)^{2}}\left(\mathrm{e}^{\log (u+b) F} S_{0} \mathrm{e}^{\log (-(u+b)) F}\right), \quad u>b
$$

- By our corollary, this also gives a classification of indecomposable homogeneous pp-waves satisfying the rank condition.

Further results

Recall that plane waves have commuting Killing vector fields everywhere spanning V^{\perp}. We prove the converse:

Theorem 2

Let $(\mathcal{M}, \mathrm{g})$ be a strongly indecomposable pp-wave: $\forall p \in \mathcal{M} \exists$ nbhd \mathcal{U}_{p} with Killing vf's on \mathcal{U}_{p} that span $\left.V^{\perp}\right|_{\mathcal{U}_{p}}$. Then $(\mathcal{M}, \mathrm{g})$ is a plane wave.

Theorem 3

Let $\left(\mathcal{M}^{m}, \mathrm{~g}\right)$ be a semi-Riemannian manifold with commuting Killing vector fields that span a null distribution of rank $m-1$. Then \exists parallel null vector field V and

$$
\mathrm{R}(X, Y) Z=0 \text { and } \nabla_{X} \mathrm{R}=0, \quad \forall X, Y, Z \in V^{\perp}
$$

In particular, if $(\mathcal{M}, \mathrm{g})$ is Lorentzian, then it is a plane wave.

Proof of Theorem 1: the setting

Fix $p \in \mathcal{M}$ and normal Brinkmann coordinates centred at p. Consider

$$
\mathfrak{i s o}_{p}(V):=\left\{K \in \mathfrak{i s o}|\mathrm{~g}(K, V)|_{p}=0\right\}
$$

Observe: For pp-waves, $\mathfrak{i s o}_{p}(V)$ is a Lie algebra.
Under the assumption that there are Killing vector fields $K_{i} \in \mathfrak{i s o}_{p}(V)$ such that $\left.\operatorname{span}\left(\partial_{V}, K_{1}, \ldots, K_{n}\right)\right|_{p}=\left.V^{\perp}\right|_{p}$ we have to show $\nabla_{X} \mathrm{R}=0 \forall X \in V^{\perp}$.

$$
\nabla_{\partial_{v}} \mathrm{R}=0, \quad \text { and } \quad \nabla_{K_{i}} \mathrm{R}=-\phi_{i} \cdot \mathrm{R}, \quad \text { with } \phi_{i}:=\nabla K_{i} .
$$

I.e., we have to determine ϕ_{i} and its action on R , which on the other hand satisfies $\mathrm{R}(X, Y) Z=0$ whenever $X,\left.Y \in V^{\perp}\right|_{p}$.

Proof of Theorem 1: the evaluation map

Recall

$$
K=(c-a v-\dot{\psi} \cdot \mathbf{x}) \partial_{v}+(\Psi+F \mathbf{x})^{i} \partial_{i}+(a u+b) \partial_{u},
$$

Then, with $\mathbf{e}_{-}=\left.\partial_{v}\right|_{p}, \mathbf{e}_{i}=\partial_{\left.i\right|_{p}}, \mathbf{e}_{+}=\left.\partial_{+}\right|_{p}$, we have

$$
\begin{align*}
& \left.K\right|_{p}=c \mathbf{e}_{-}+X^{i} \mathbf{e}_{i}+b \mathbf{e}_{+}, \quad X:=\left(X^{i}\right)_{i=1}^{n}=\Psi(0), \\
& \left.\nabla_{\mathrm{e}_{-}} K\right|_{p}=-\mathbf{a} \mathbf{e}_{-} \\
& \left.\nabla_{\mathbf{e}_{i}} K\right|_{p}=-Y_{i} \mathbf{e}_{-}+F_{i}{ }^{k} \mathbf{e}_{k}, \quad Y:=\left(Y^{i}\right)_{i=1}^{n}=\dot{\Psi}(0) \tag{7}\\
& \left.\nabla_{\mathbf{e}_{+}} K\right|_{\rho}=\quad Y^{i} \mathbf{e}_{i}+a \mathbf{e}_{+} . \\
& \Longrightarrow \quad \kappa \text { : iso } \quad 山 \operatorname{sim}(n) \ltimes \mathbb{R}^{1, n+1}=\left((\mathbb{R} \oplus \mathfrak{s o}(n)) \ltimes \mathbb{R}^{n}\right) \ltimes \mathbb{R}^{1, n+1} \\
& K \mapsto\left(\left(\begin{array}{ccc}
a & Y & 0 \\
0 & -F & -Y^{\top} \\
0 & 0 & -a
\end{array}\right),\left(\begin{array}{c}
-c \\
-X \\
-b
\end{array}\right)\right)
\end{align*}
$$

Observation: When restricted to $\operatorname{iso}_{p}(V)=\{b=0\}$ this is a Lie algebra hom!

Proof of Theorem 1: relation to Euclidean motions

- Hence, we have an injective Lie algebra homomorphism

$$
\kappa: \mathfrak{i s o}_{p}(V) \quad \hookrightarrow \quad \operatorname{sim}(n) \ltimes \mathbb{R}^{n+1} \quad \simeq \operatorname{co}(n) \ltimes \mathfrak{h e}(n)
$$

$$
K \mapsto\left(\left(\begin{array}{ccc}
a & Y & 0 \\
0 & -F & -Y^{\top} \\
0 & 0 & -a
\end{array}\right),\left(\begin{array}{c}
-c \\
-X \\
0
\end{array}\right)\right) \mapsto\left(\begin{array}{ccc}
a & Y^{\top} & c \\
0 & F & X \\
0 & 0 & 0
\end{array}\right)
$$

- $\mathfrak{c o}(n) \ltimes \mathfrak{h e}(n)$ contains the Abelian ideal $\mathfrak{a}:=\left\{\left(\begin{array}{ccc}a & Y^{\top} & c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right\}$
- Lie algebra homomorphism

$$
\begin{aligned}
\lambda: \mathfrak{i s o}_{p}(V) & \longrightarrow(\mathfrak{c o}(n) \ltimes \mathfrak{h e}(n)) / \mathfrak{a} \simeq \mathfrak{e u c}(n)=\mathfrak{s o}(n) \ltimes \mathbb{R}^{n} \\
K & \longmapsto\left(\begin{array}{ccc}
0 & X & 0 \\
0 & F & -X^{\top} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Proposition

If $(\mathcal{M}, \mathrm{g})$ is locally V^{\perp}-homogeneous, then $\operatorname{pr}_{\mathbb{R}^{n}} \circ \lambda: \mathfrak{i s o}_{p}(V) \rightarrow \mathbb{R}^{n}$ is a surjetive Lie algebra homomorphism, i.e., the image $\mathfrak{g}:=\lambda\left(\mathfrak{i s o}_{p}(V)\right)$ is an indecomposable subalgebra of the Euclidean motions $\operatorname{euc}(n)$.

Proof of Theorem 1: Indecomposable subalgebras of $\mathfrak{e u c}(n)$

Berard-Bergery \& Ikemakhen '93:

Let $\mathfrak{g} \subset \mathfrak{e u c}(n)=\mathfrak{s o}(n) \ltimes \mathbb{R}^{n}$ act indecomposably on $\mathbb{R}^{1, n+1}$, i.e., without non-degenerate invariant subspaces. Then either
(A) \mathfrak{g} contains the translations \mathbb{R}^{n}, or
(B) \mathfrak{g} contains \mathbb{R}^{q} for $1<q<n$, in which case there is a subalgebra $\mathfrak{h} \subset \mathfrak{s v}(q)$ and a surjective linear map $\varphi: \mathfrak{h} \rightarrow \mathbb{R}^{n-q}$ such that \mathfrak{g} is of the form

$$
\mathfrak{g}=\left\{\left.\left(\begin{array}{cccc}
0 & X & \varphi(F) & 0 \tag{8}\\
0 & F & 0 & -X \\
0 & 0 & 0 & -\varphi(F) \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, F \in \mathfrak{h}, X \in \mathbb{R}^{a}\right\} .
$$

Consequences for the Killing vector fields of locally V^{\perp}-homogeneous pp-waves:
(A) $\exists \mathrm{KVFs}\left(K_{i}\right)_{i=1, \ldots, n}$ with $\left.K_{i}\right|_{p}=\mathbf{e}_{i}$ and $\phi_{i}:=\left.\nabla K_{i}\right|_{p}: \mathbf{e}_{j} \rightarrow \mathbb{R} \cdot \mathbf{e}_{-}$.
(B) $\exists \operatorname{KVFs}\left(K_{A}\right)_{A=1, \ldots, N}$ as in (A) and $\left(K_{a}\right)_{a=N+1, \ldots, n}$ with $\left.K_{a}\right|_{p}=\mathbf{e}_{a}$ \&

$$
\phi_{a}: \begin{array}{lll}
\mathbf{e}_{A} & \mapsto & \stackrel{(a)}{F_{A}}{ }^{B} \mathbf{e}_{B}+\mathbb{R} \cdot \mathbf{e}_{-} \\
\mathbf{e}_{b} & \mapsto & \mathbb{R} \cdot \mathbf{e}_{-}
\end{array}
$$

Proof of Theorem 1: case A

- From the previous slide we know that, in the basis $\left(\mathbf{e}_{-}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}, \mathbf{e}_{+}\right)$,

$$
\phi_{i}:=\left.\nabla K_{i}\right|_{p}=\left(\begin{array}{ccc}
-a_{i} & -X_{i} & 0 \tag{9}\\
0 & 0 & X_{i}^{\top} \\
0 & 0 & a_{i}
\end{array}\right)
$$

- W.I.o.g. we may assume that $a_{1}, \ldots, a_{n-1}=0$.

Set $\mathrm{R}_{i j}:=\mathrm{R}\left(\mathbf{e}_{+}, \mathbf{e}_{i}, \mathbf{e}_{+}, \mathbf{e}_{j}\right)$ and $\nabla_{k} \mathrm{R}_{i j}:=\nabla_{\mathbf{e}_{k}} \mathrm{R}\left(\mathbf{e}_{+}, \mathbf{e}_{i}, \mathbf{e}_{+}, \mathbf{e}_{j}\right)$. Then

- $\nabla_{k} \mathrm{R}_{i j}$ is symmetric in all its indices,
- With equation (9) the integrability condition $\nabla_{K_{i}} \mathrm{R}=-\phi_{i} \cdot \mathrm{R}$ implies that

$$
\nabla_{k} \mathrm{R}_{i j}=\begin{gathered}
\mathrm{R}\left(\phi_{k}\left(\mathbf{e}_{+}\right), \mathbf{e}_{i}, \mathbf{e}_{+}, \mathbf{e}_{j}\right)+\mathrm{R}\left(\mathbf{e}_{+}, \phi_{k}\left(\mathbf{e}_{i}\right), \mathbf{e}_{+}, \mathbf{e}_{j}\right) \\
+\mathrm{R}\left(\phi_{k}\left(\mathbf{e}_{+}\right), \mathbf{e}_{j}, \mathbf{e}_{+}, \mathbf{e}_{i}\right)+\mathrm{R}\left(\mathbf{e}_{+}, \phi_{k}\left(\mathbf{e}_{j}\right), \mathbf{e}_{+}, \mathbf{e}_{i}\right)
\end{gathered}=2 a_{k} \mathrm{R}_{i j},
$$

- Hence, $\nabla_{k} \mathrm{R}_{i j}=0$ with the possible exception of $\nabla_{n} \mathrm{R}_{n n}=2 a_{n} \mathrm{R}_{n n}$.
- Then $a_{n} \neq 0$ implies $\mathrm{R}_{i j}=0$ apart from $\mathrm{R}_{n n}$ contradicting the rank assumption.

Proof of Theorem 1: case B

The proof of case B is very similar, but with the technical difficulty of dealing with the rotational component F. This can be overcome by the specific shape of F which allows to derive an equation

$$
\begin{aligned}
\mathrm{R}_{b c} & =0, \text { for all }(b, c) \neq(n, n) \\
\mathrm{R}_{c B} & =0 \\
-2 a_{n} \mathbf{R} & =[\stackrel{(n)}{F}, \mathbf{R}], \quad \text { where } \mathbf{R}=\left(\mathrm{R}_{A B}\right),
\end{aligned}
$$

The last equation implies $\mathbf{R}=0$, since F is skew and \mathbf{R} is symmetric, yielding a contradiction to the rank assumption.

Many thanks for your attention!

