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“Die Gruppenpest”
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It has been rumoured that the group pest is gradually being cut out of
quantum physics
−H. Weyl, The Theory of Groups and Quantum Mechanics, 1930

We wish finally to make a few remarks concerning the place of the theory of
groups in the study of the quantum mechanics of atomic spectra. The
reader will have heard that this mathematical discipline is of great
importance for the subject. We manage to get along without it.

− E. U. Condon and G. H. Shortley, Theory of Atomic Spectra, 1935

· · · I dont think [Pauli] liked it particularly · · · there was a word, Die
Gruppenpest, and you have to chase away the Gruppenpest. But Johnny
Neumann, told me, “Oh these are old fogeys; in five years every student will
learn group theory as a matter of course,” and essentially he was right.

−Eugene P. Wigner, Interview with T. S. Kuhn, 1963; c©AIP.
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This is the birthplace of
WIGNER JENÖ

1902-1995
Nobel Prize in Physics

Student of the Fasori Lutheran
Secondary School

Honorary Doctorate at the Eotvos
Lorand University

Honorary Member of the Eotvos Lorand
Physics Society
Proud Hungarian

With his involvement in the Manhattan
Project and in the field of Nuclear Physics
left a lasting impression on humankind.
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The classical groups

GL(N,C) = {mi,j , 1 ≤ i , j ≤ N : det(m) 6= 0}

U(N) = {mi,j , 1 ≤ i , j ≤ N : det(m) 6= 0&m∗
ij = m−1

ji }

O(N,C) = {mi,j , 1 ≤ i , j ≤ N : mTm = I}

Sp(N,C) = {mi,j , 1 ≤ i , j ≤ N : mT Jm = J, J = −JT}

Let g ∈ G let have eigenvalues x1, x2, · · · , xN . Then the character of the defining
representation is

Tr(g) =
∑

i
xi
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The classical groups (and a not-so-classical one)

GL(N,C) = {mi,j , 1 ≤ i , j ≤ N : det(m) 6= 0}

U(N) = {mi,j , 1 ≤ i , j ≤ N : det(m) 6= 0, &m∗
ij = m−1

ji }

O(N,C) = {mi,j , 1 ≤ i , j ≤ N : mTm = I}

Sp(N,C) = {mi,j , 1 ≤ i , j ≤ N : mT Jm = J, J = −JT}

Let g ∈ G let have eigenvalues x1, x2, · · · , xN . Then the character of the defining
representation is

Tr(g) =
∑

i
xi

GL1(N,C) = {mi,j , 1 ≤ i , j ≤ N : det(m) 6= 0, &
∑

i mij = 1, ∀j}
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Group Characters 101

For g ⊗ g acting on V ⊗ V we have

Tr(g ⊗ g) = Tr(g)2 =
∑

i,j
xixj

Consider W± = V ⊗ V /〈(v ⊗ w ± w ⊗ v)〉. – taking a generating set
{ei ⊗ ej ± ej ⊗ ei} and diagonal matrices,

Tr+(g ⊗ g) =
∑

i<j
xixj +

∑

i
x2i =

∑

i≤j
xixj ,

Tr−(g ⊗ g) =
∑

i<j
xixj

Theorems
(i)(Schur-Weyl) The characters of irreducible tensor representations of
GL(N) are certain symmetric polynomials sλ(x), where λ = (λ1, λ2, · · · , λN)
is an integer partition.
(ii)The character formula can be written combinatorially via tableaux as

sλ(x) =
∑

T∈SSTλ

xT
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Symmetric functions 102

Extend C[x1, x2, · · · , xN ] to the ring Λ(X ) in an infinite alphabet
X = (x1, x2, x3, · · · ), with the Schur functions as natural basis.

We need various binary operations (products):

outer product: sλ · sµ(X ) =
∑

cνλ,µsν(X ), |ν| = |λ|+ |ν|;

inner product: sλ ∗ sµ(X ) =
∑

gν
λ,µsν(X ), |ν| = |λ| = |µ|;

· · · and their duals, expressing the expansion in composite alphabets X+Y =
(x1, x2, x3, · · · , y1, y2, · · · ),XY =(x1y1, x2y1, x3y1, · · · ; x1y1, x2y1, · · · ):

outer coproduct: sν(X + Y ) =
∑

cνλ,µsλ(X )sµ(Y );

inner coproduct: sν(XY ) =
∑

gν
λ,µsλ(X )sµ(Y );

( – generically, we write these as
f (X+Y ) =

∑

f(1)(X )f(2)(Y ), f (XY ) =
∑

f[1](X )f[2](Y ).)
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The power of plethysm

One further binary operation is plethysm, named by D E Littlewood
for the operation of composition of symmetric function maps.

Definition:
let sµ =

∑

T∈SSTµ
xT . Then sλ[sµ](X ) := sλ(Y ), where Y is the

alphabet {xT}T∈SSTµ
, and we have

plethysm: sλ[sµ](X ) =
∑

pνλ,µsν(X ), |ν| = |λ||µ|.

Often denoted multiplicatively, λ[µ] ≡ µ⊗λ (because the
underlying module is a projection of the tensor power ⊗|λ|Vµ).

(We could also have a plethysm coproduct with a compound
alphabet say XY =(xy11 , x

y1
2 , x

y1
3 , · · · ; x

y2
1 , x

y2
2 , x

y2
3 , · · · ; · · · ), so

f (XY ) =
∑

f<1>(X )f<2>(Y )).
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Example: s(12)[s(2)] in GL(3)

The semi-standard tableaux T (and monomials xT ) for are

SST =
{

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3

}

,

∴ s(2) = x21 + x1x2 + x1x3 + x22 + x2x3 + x23

– that is, the alphabet Y = {xT} ≡ (x21 , x1x2, x1x3, x
2
2 , x2x3, x

2
3 ).

Forming
∑

T<T ′ xT xT
′

gives 15 monomials,

x31 x2 + x31 x3 + x21 x
2
2 + x21 x2x3 + x21 x

2
3+

x21 x2x3 + x1x
3
2 + x1x

2
2 x3 + x1x2x

2
3 + x1x

2
2 x3+

x1x2x
2
3 + x1x

3
3 + x32 x3 + x22 x

2
3 + x2x

3
3

∴ s(12)[s(2)] = s(3,1) ↔



















1 1 1
2 ,

1 1 1
3 ,

1 1 2
2 ,

1 1 2
3 ,

1 1 3
3 ,

1 1 3
2 ,

1 2 2
2 ,

1 2 2
3 ,

1 2 3
3 ,

1 2 3
2 ,

1 3 3
2 ,

1 3 3
3 ,

2 2 2
3 ,

2 2 3
3 ,

2 3 3
3 .



















.
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Invariants of group representations

Standard problem of invariant theory is, given a space W carrying a
representation of some group, construct tensor products W , W⊗W ,
W⊗W⊗W ,· · · , ⊗nW , and study group-invariant elements.

The space of ‘polynomials in the components of W ’ is in fact C[W ∗], so the
relevant tensor spaces are the symmetric powers W , W∨W ,
W∨W∨W ,· · · , ∨nW .

Theorem (Molien):
Let hn = dimC[W ∗]Gn and define the Hilbert series h(z) =

∑∞
0 hnz

n. For G
semisimple and compact,

h(z) =

∫

dµ
1

det(I − zρ(g))

where dµ is the Haar measure, and ρ(g) is the group representation.
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Molien’s theorem via plethysms

Suppose the representation ρ is some irreducible with character sλ(x). Then
the diagonal elements of ρ(g) are {xT}T∈SSTλ

, and

1

det(I − zρ(g))
= 1+ z

∑

xT+ z2
∑

T≤T ′

xTxT
′

+ z3
∑

T≤T ′≤T ′′

xTxT
′

xT
′′

+· · ·

∴ hn =

∫

dµ s(n)[sλ](x) ≡ p
(0)
(n),λ.

We enumerate the Hilbert series term-by-term by computing the appropriate
plethysm of group characters. All evaluations are done with the software
package c©

Schur.

Consider a model space V (of dimension N) carrying the defining
representation of a matrix group G , and the tensor product W of K
isomorphic copies W = V ⊗ V ⊗ · · · ⊗ V = ⊗KV , with group
G × G × · · · × G = ×KG .
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Counting entanglement invariants

(a) Quantum pure states: V ∼= C
N , G = GL(N):

Let N ⊢ n, n = rN, and let τ be the partition (rN) (that is, with
Ferrers diagram a rectangular array of r columns of length N).
Then

hn = g
(n)
τ,τ,··· ,τ (K -fold inner product).

If N 0 n, then hn = 0.

(b) Quantum mixed states: V ∼= C
N ⊗ C

N∗, G = GL(N):

hn =
∑

|τ |=n,ℓ(τ)≤N2





∑

|σ|=n,ℓ(σ)≤N

gτ
σ,σ





2

(c) Phylogenetic pattern frequencies, general Markov model: G = GL1(N):
Let n = rN + s, s ≥ 0. Then

hn = g
(n)
τ1,τ2,··· ,τK (K -fold inner product),

for each τk of the form (rk + sk , r
(N−1)
k ).

�
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Example
model
space V

tensor
space W state

2 qubits C
2 V ⊗ V |00〉+|11〉

concurrence
(= det) 6= 0

3 qubits C
2 V⊗V⊗V

|000〉+|111〉
|001〉+|010〉+|001〉

tangle 6= 0
tangle = 0

2 qubits
(mixed) C

2 ⊗ C
∗2 V ⊗ V

∑

ρiabjei⊗f j⊗ea⊗f b (20 invariants)

1

2 3

4

1

2 3

4
1

2 3

4

C
4 V⊗V⊗V⊗V

∑

Pijkℓei⊗ej⊗ek⊗eℓ
∑

Pijkℓ = 1
(squangles)
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Warmups

S2: n = 2, (rN) = (12):

∗ = +

Concurrence (determinant function):

det(ψ) = ψ00ψ11 − ψ01ψ10

S4: n = 4, (rN) = (22):

∗ = + + ,

∗ ∗ = + + 3 .

Tangle (hyperdeterminant):

hdet(ψ) =−ψ2
011ψ

2
100+2ψ010ψ011ψ100ψ101−ψ

2
010ψ

2
101+2ψ001ψ011ψ100ψ110

+2ψ001ψ010ψ101ψ110−4ψ000ψ011ψ101ψ110−ψ
2
001ψ

2
110

−4ψ001ψ010ψ100ψ111+2ψ000ψ011ψ100ψ111+2ψ000ψ010ψ101ψ111

+2ψ000ψ001ψ110ψ111−ψ
2
000ψ

2
111.
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Molecular phylogenetics

Taxa are represented by DNA sequences
ACGTTGAACTGG · · ·

(or RYRYYRRRYYRR · · · )
Genetic information content is sparse, so we can talk about probabilities
(relative frequencies)

pA, pC , pG , pT with pA + pC + pG + pT = 1
(or p0, p1 with p0 + p1 = 1 )

Mutations are mostly ‘neutral’, so these probabilities are subject to random
changes under a Markov process – just given by matrix multiplication:

(

p0
p1

)

→

(

m00 m01

m10 m11

)(

p0
p1

)

⇔ p → M p

From the base sequences of an alignment of genes from different species, for
example with two or three species

ACGTTGAACTGG · · · ACGTTGAACTGG · · ·
AAGTCGAACACG · · · AAGTCGAACACG · · ·

AATTCGATCAGG · · ·

we form the two-way, three-way, · · · , pattern arrays (relative frequencies).
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General Markov model

Thus the number of patterns is 16, or 64, or 4# of leaves:
(pAA, pAC , pAG , pAT ; pCA, · · · ; · · · , pTG , pTT )

(pAAA, pAAC , pAAG , pAAT ; pACA, · · · ; · · · , pTTG , pTTT )

or (p00, p01, p10, p11), (p000, p001, · · · ; · · · p110, p111).

If the two sequences derive from a common ancestor, then just after
speciation, the lists are

(pA, pC , pG , pT ) → (pAA=pA, pAC ≡0, · · · ; · · · , pTG ≡0, pTT =pT )

or (p0, p1) → (p00=p0, p01≡0, p10≡0, p11=p1)

Patterns on each edge evolve independently thereafter, according to the
Markov process;

For example for quartet trees, we can construct 3 phylogenetic tensors Pabcd

by starting with any leaf as root, and decorating the pendant and internal
edges with matrices M1, M2, M3, M4, and M5:

1

2 3

4 1

2 3

4

1

2 3

4
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Stochastic tangles and quartet trees:

N = 4, n = 5, (r + s, rN−1) = (2, 13):

(2, 13) ∗ (2, 13) ∗ (2, 13) ∗ (2, 13) = 5(5) + · · ·

Under S4 (leaf permutations), these 5 invariants give 3(4) + (22). Two of
these are algebraically dependent, but the tree-informative ones are (22).

Under each of the three equivalent quartet tree isotropy groups,
S2 ≀S2 < S4, we have the branching rule (22) → (id) + (sgn). Define

q1 = sgn12|34, q2 = sgn13|24, q3 = sgn14|23

These are the squangles (stochastic quartet tangles) – degree 5 polynomials
in 256 variables, with 66,744 terms.

We have q1 + q2 + q3 = 0 and
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Entanglement invariants for mixed 2 qubit states

The Hilbert series can be evaluated via contour integration for SU(2):

H(q)

The task is to sort out algebraic dependencies amongst candidate invariants:
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There is trouble finding the right set of fundamental invariants . . .
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. . . Brian realized that this is an elementary ex-
ample of what Littlewood has called a plethysm,
which treats the symmetry of the products of
objects that themselves possess symmetry. El-
liott had used plethysms in his nuclear studies,
but no one had noticed their relevance to atomic
shell theory before. At a conference at the US
National Bureau of Standards in 1967, Brian un-
flinchingly described the details of the mathe-
matics. The audience was stunned. At the end
of Brians presentation a despairing voice asked,
‘What is a plethysm?’ We were all surprised to
hear Brian say that a full explanation would take
too much time. . .
– B R Judd, Interaction with Brian
Wybourne, 2004
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Example
model
space V

tensor
space W state

2 qubits C
2 V ⊗ V |00〉+|11〉

concurrence
(= det) 6= 0

3 qubits C
2 V⊗V⊗V

|000〉+|111〉
|001〉+|010〉+|001〉

tangle 6= 0
tangle = 0

2 qubits
(mixed) C

2 ⊗ C
∗2 V ⊗ V

∑

ρiabjei⊗f j⊗ea⊗f b (20 invariants)

1

2 3

4

1

2 3

4
1

2 3

4

C
4 V⊗V⊗V⊗V

∑

Pijkℓei⊗ej⊗ek⊗eℓ
∑

Pijkℓ = 1
(squangles)

matrix
multiplic’n C

2⊗C
∗2 V⊗V ∗⊗V ∗ µ =

∑

ei
j⊗fj

k⊗fk
i

(Strassen’s
algorithm)
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