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What is geometric topology?

Geometric topology is essentially “rubber-sheet geometry”.

Two topological objects are considered equivalent if we can
“bend or stretch” one to make the other.

Examples from 2-manifolds (2-dimensional surfaces):

=

Sphere Klein bottle

=

Torus
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What is geometric topology (ctd.)
Examples from knot theory:

=

Unknot Figure 8

=

Trefoil

Much research is driven by decision problems:
Are the 2-manifolds M,N equivalent? . . . Easy!
Are the knots K , L equivalent? . . . Difficult
Are the 3-manifolds M,N equivalent? . . . Very difficult

Are the 4-manifolds M,N equivalent? . . . Undecidable!
[Markov, 1960]

We study the simplest cases: Does M ≡ sphere? Does K ≡ unknot?
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2-sphere recognition

Is the 2-manifold (surface) M equivalent to the 2-sphere?

Theorem
For every triangulation of the 2-sphere:

vertices − edges + faces = 2.

For any triangulation of any other 2-manifold:

vertices − edges + faces < 2. 6 − 12 + 8 = 2

2-sphere recognition algorithm
Triangulate M and test whether vertices − edges + faces = 2.

Simple to implement and very fast (small polynomial time).
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Unknot and 3-sphere recognition

Is the knot K equivalent to the unknot?

First algorithm based on normal surface theory [Haken, 1961]
Later algorithm based on diagram simplification [Dynnikov, 2003]

Is the 3-manifold M equivalent to the 3-sphere?

First algorithm used almost normal surfaces [Rubinstein, 1992]
Later algorithm based on Pachner moves [Mijatović, 2003]

Most are messy to implement.

All have at least exponential time in the worst case.
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Complexity classes

Do these algorithms need to run in exponential time?

What do we know?

Unknot recognition is in NP [Hass-Lagarias-Pippenger, 1999]
3-sphere recognition is in NP [Schleimer, 2004]
Knot genus in an arbitrary 3-manifold is NP-complete

[Agol-Hass-Thurston, 2002]

There are hints that unknot / 3-sphere recognition might lie in P . . .
Unknot recognition also in co-NP (needs GRH) [Kuperberg, 2011]
. . . as is 3-sphere recognition [Hass-Kuperberg, 2012]
Bad cases are extremely rare [B., 2010]
Several “near miss” polynomial-time algorithms, with
linear programming as a key tool
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Approach #1: Normal surface theory

The key idea is to look for interesting surfaces within a 3-D space.

Haken’s unknot recognition algorithm:
Find the 2-dimensional disc that the
unknot surrounds.

Input: A triangulation of a 3-D space (e.g., drill out the knot from R3)
Glue together faces of n tetrahedra (n is the input size).
Tetrahedra may be “bent” and/or self-identified.
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Searching for normal surfaces

We look for embedded normal surfaces.

These slice through tetrahedra in triangles and quadrilaterals with
no self-intersections.
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Normal surfaces as integer vectors

A normal surface can be described by a sequence of 7n integers.
These count the discs of each type in each tetrahedron.

This vector uniquely identifies the normal surface.

Theorem (Haken, 1961)
A vector x ∈ Z7n represents an embedded normal surface if & only if:

x is non-negative;
x satisfies a series of linear homogeneous matching equations;
x uses at most one quadrilateral type per tetrahedron
(the quadrilateral constraints).
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The magic
The projective solution space is a cross-section of the
cone described by x ≥ 0 and the matching equations.

This is a rational polytope.

Theorem (Haken, 1961; Jaco-Tollefson, 1984)
If the knot spans a disc, then it spans a normal disc that projects to
a vertex of the projective solution space.

Unknot recognition algorithm
Enumerate the vertices of the projective solution space.
If a vertex satisfies the quadrilateral constraints, reconstruct the
surface and test whether it is the disc that we are looking for.

3-sphere recognition uses similar techniques.

11 / 27



Can we do this in polynomial time?
We cannot enumerate all vertices in polynomial time:
Pathological cases exist with O(17n/4) vertices that all
satisfy the quadrilateral constraints. [B., 2010]

Lemma
For every polygonal decomposition of a disc,

vertices − edges + faces = 1.
For any polygonal decomposition of any other bounded surface,

vertices − edges + faces ≤ 0.

Observation: vertices − edges + faces is linear on the solution space!

Corollary
We have the unknot if and only if max(vertices − edges + faces) > 0
under the quadrilateral constraints.

12 / 27



Linear programming and the projective solution space

This sounds like a job for linear programming!

The problem is the quadrilateral constraints, which are non-linear and
have a non-convex solution set.

Workarounds:
Run 3n distinct linear programs on the 3n convex pieces
that make up this solution set. [Casson, ∼2002]

This is always slow, since all 3n steps are necessary
if the input knot is non-trivial.

Add integer and binary variables to enforce the
quadrilateral constraints. [B.-Ozlen, 2011]

This is fast in practice, but requires integer programming
which is non-polynomial in general.

13 / 27



Approach #2: Diagram simplification

Try to monotonically simplify a knot diagram / triangulation into its
simplest possible form.

Grid diagrams for knots:
Constructed from n horizontal rods and
n vertical rods.
Vertical rods always cross above horizontal rods.

Theorem (Dynnikov, 2003)
Any two grid diagrams of the same knot can be related by elementary
moves.
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Simplifying grid diagrams
Some elementary moves reduce n:

Some elementary moves leave n unchanged:

Theorem (Dynnikov, 2003)
For any grid diagram of the unknot, there is a non-strict monotonic
sequence of simplification moves that reduces the diagram to the
trivial square.

If non-strict could be made strict, this would yield a polynomial time
algorithm!
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3-sphere recognition by Pachner moves

Any two triangulations of the same 3-manifold
can be related by Pachner moves: [Pachner, 1991]

2-3 / 3-2 move 1-4 / 4-1 move

The same is true if we consider only
one-vertex triangulations and 2-3 / 3-2 moves. [Matveev, 1988]
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Simplifying by Pachner moves

In theory: Triangulations might become much larger along the way.

Current best bound: 6 · 106n222·104n2 moves [Mijatović, 2003]

In practice:

Computer theorem (B., 2011)
For all n = 3, . . . ,9, any 3-sphere triangulation of size n
can be simplified in ≤ 9 moves, and by passing through
≤ 2 extra tetrahedra.

This was shown by enumerating and analysing all 149, 676, 922
distinct 3-manifold triangulations of size n ≤ 9.
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Does this help?

If we could turn these experimental bounds into theoretical bounds. . .

3-sphere recognition algorithm
Try all possible sequences of ≤ B moves, where B is our theoretical
bound.

If this simplifies the triangulation, repeat. If not, “read off” whether we
have a 3-sphere.

If B grows slower than O(n/ log n), this yields a sub-exponential time
algorithm.

If B grows like O(1), this yields a polynomial time algorithm!
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Approach #3: Integer programming over homology
New problem: Least area surface bounded by a knot

SOURCE: DUNFIELD AND HIRANI, 2010

Consider a discrete version:
triangulate the space so the knot follows edges;
find a least area surface built from faces of the triangulation.
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Finding the least area surface

Theorem (Dunfield-Hirani, 2010)
In this discrete setting, the least area surface can be found in
polynomial time.

Basic idea:
Describe a surface as a sum of faces (triangles).
If our triangulation has n faces, this gives an integer vector in Zn.
Express “the triangles form a surface” using linear constraints:
Each triangle going into an edge must meet some triangle going
out of an edge.
Express area as a linear functional on Zn.
Minimise this linear functional using integer programming.
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Achieving polynomial time

Theorem (Dey-Hirani-Krishnamoorthy, 2010)
In this setting, the constraint matrix for the integer program is
totally unimodular.

This means that we can relax the integer program to a linear program,
which can be solved in polynomial time.

Unfortunately:

Theorem (Hass-Snoeyink-Thurston, 2003)
Even if the knot spans a disc, the least area surface might
not be a disc.

If only we could express vertices − edges + faces as a linear functional
on triangles, we could recognise the unknot in polynomial time!
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Generic complexity

If at first you fail . . .

Generic complexity: ignore a few bad cases, where
Pr(bad) → 0 as n → ∞.

Exhaustive analysis of all 1, 537, 582, 427 closed 1-vertex
triangulations with n ≤ 10 suggests:

Pr(bad) ∈ O(1/nc) for all c > 0,

where “bad” means “does not simplify immediately”. That is:

Experimental observation
Generic triangulations simplify immediately!
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Triangulations that do NOT simplify immediately
1, 537, 582, 427 closed 1-vertex triangulations, log-log scale:
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Triangulations that do NOT simplify immediately
1, 537, 582, 427 closed 1-vertex triangulations, linear-log scale:
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Aggressive simplification

In practice, simplification is an extremely
effective heuristic in 3-sphere recognition
and related problems.

To find a k -move simplification requires
O(nk ) steps.

Observation
Suppose we allow O(nk ) time to simplify from t → t − 1 tetrahedra.

As t drops, the number of moves can grow:

nk = t(k ·log n/ log t)
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Aggressive simplification (ctd.)

Observation (previous slide)
As t drops, the number of moves can grow:

nk = t(k ·log n/ log t)

That is, we can become more aggressive in our simplification as the
triangulation shrinks.

−→ The difficult small cases become simpler!

Under the right “approximate independence” assumptions:

Conjecture
Generic 3-sphere triangulations can be simplified to the
trivial case n = 2 in polynomial time.
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Want to know more?

Normal surface algorithms
Hass, Lagarias & Pippenger, The computational complexity of knot
and link problems, J. ACM 46 (1999), no. 2, 185–211
B. & Ozlen, Computing the crosscap number of a knot using integer
programming and normal surfaces, ACM TOMS, arXiv:1107.2382

Simplification-based algorithms
Dynnikov, Recognition algorithms in knot theory, Russian Math.
Surveys 58 (2003), no. 6(354), 45–92
B., The Pachner graph and the simplification of 3-sphere
triangulations, SoCG 2011, arXiv:1011.4169

Least area surface
Dunfield & Hirani, The least spanning area of a knot and the optimal
bounding chain problem, SoCG 2011, arXiv:1012.3030
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