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GC matters!

2 



First, note base pairing:!
A with T, C with G!
G with C, T with A!
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Three hydrogen bonds!
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Two hydrogen bonds!



GC content here = 2/4 = 50%!
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GC content here 445/1000!



An illustration of the spatial distribution of GC content of     
non-overlapping 1,024-bp windows along a fragment, 

approximately 1.4 Mb in length, from human chromosome 19  

Cohen N et al. Mol Biol Evol 2005;22:1260-1272 

© The Author 2005. Published by Oxford University Press on behalf of the Society for Molecular 
Biology and Evolution. All rights reserved. For permissions, please e-mail: 
journals.permissions@oupjournals.org 
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Ability to !
denature!

Ability of 
primers 
to anneal!

Rate and  
fidelity of  
extension  
reaction 

All depend on!
GC content!
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Illumina short-read DNA sequencing!
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Illumina Sequencing Technology 

Slide courtesy of G Schroth, Illumina  
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35+ bp reads!

Reads mapped to the reference genome!



Our original motivation:  
DNA copy number estimation!

•  Amplifications and losses occur in most genomes, relative to a 
reference, especially in tumor genomes, which are our focus.!

•  These can be seen at different scales, from one or a few base-
pairs to entire chromosomes (in cases of aneuploidy).!

•  We would like to measure (count) the number of times a region 
appears in a genome using DNA-seq data on that genome, 
ideally without using reference or matched normal data.!
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Davidson et al 
BrJCa, 2000 

24 color!
karyotypes!
of 6 breast!
cancer cell!
lines!
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17 From Fig 3 of Fan & Quail, PLoS One 2010 !

Counts are normalized in 20 kb bins with GC-dependent weights. !
Then each chromosome is compared to all others using counts    
from normalized 50 kb bins and forming z-statistics. !



Our story proper begins here!
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GC content biases first noted!

19 

They used Illumina 1G data.!



From Dohm et al 2008 !

         Roughly linear GC effect on reads!

0.2 0.2 0.45 0.45 

Beta Vulgaris  1kb bins Helicobacter 1kb bins 
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Another view: a human data set!

•  Position of reads on forward strand of chr 2!
•  Binned to 10 kb intervals!
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The GC bias is non-linear in human data  
(5 kb bins below, but it looks similar for all bin sizes)!

Data – M. Robinson Data – D. Chiang Data – P. Spellman 
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Horizontal axis: fraction GC; lines are loess curves in all cases!



Our goals!

•  To study the nature of the GC content effect!
•  Find how best to correct for it!
•  Try to understand relation between the effect 

and study design, i.e. its causes!
•  Perhaps identify designs that minimize it.!

     Analyzing and minimizing PCR amplification bias in Illumina 
sequencing libraries. Aird D, Ross MG, Chen WS, Danielsson M, 
Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Genome 
Biol. 2011 Feb 21;12(2):R18.!

     Systematic bias in high-throughput sequencing data and its 
correction by BEADS. Cheung MS, Down TA, Latorre I, Ahringer J. 
Nucleic Acids Res. 2011 Jun 6. [Epub ahead of print]!
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Our goal today!

•  To study the nature of the GC content effect!
•  Find how best to correct for it!
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Digression: mappability!

•  Some % of reads not mapped due to ambiguity 
(depends on read length & mapping criteria)!

•  Mappability = the probability that a read 
beginning in region can be successfully mapped.!

•  Can take a simple 0-1 approach (as here), and 
bin.!
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Our data!

Two samples of DNA from an ovarian patient: one sample 
from the tumor, the other matched normal from their white 
blood cells. !

Each sample was turned into two separate fragment libraries, 
differing in fragment length distribution. !

Fragments were sequenced to 75bp at both ends using the 
standard Illumina procedure.!

Each sequenced read pair was mapped back to the human 
reference genome using bwa (version0.4.9). [A few more 
details are omitted here.]   !
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Most of the time we present results  
for just one chromosome!

But it doesnʼt matter….!
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GC loess curves for  
chromosomes 1-5, 10kb bins !

28 Fraction GC!
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library 1 !
scaled to !
match those!
for library 2!



Is the GC-bias specific to a lab, protocol, sample,  
library preparation, sequencing machine,….? !

E.g. can we adjust binned tumor counts by those of a 
matched normal sample, or, in a Chip-seq experiment, 

IP-counts by input of other control counts?!
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Figure 2: GC curves (10 kb bins). Observed fragment counts and loess lines plotted against
GC of (A) two libraries from the same normal sample, and (B) the tumor library (red) with its
matched normal sample library (blue). Counts and curves of all libraries are scaled to fit median
counts of normal library 1. Bins were randomly sampled from chromosome 1, and counts include
fragments from both strands.

computed for each group the observed 0.1 and 0.9 quantiles. Plotted against the estimated rate
of the group, each quantile level forms a curve. The distance between the curves reflects the
variation around predicted means. When this distance is considerably larger than that of the
Poisson, this indicates that different rates where assigned to the same predicted value, meaning
that much variation remains unexplained by the model.

4 Results

4.1 Bin Counts

The GC effect for human genomes is largely unimodal. In AT rich regions, coverage increases with
increasing GC. In GC rich regions, coverage decreases with increasing GC. The peak coverage
can be different for different data sets (and bin sizes), but is usually located between 0.4 to 0.55
GC. That 10 kb bins with GC > 0.5 are rare in the human genome is perhaps the reason for
calling GC effect “linear”. This unimodal relation can be seen at almost any scale, from 50 bp
to above 100 kb. While in the AT rich region the increase in coverage is quite linear with GC,
it is less linear (and more variable) in GC rich regions.

The curves of difference samples are all unimodal, but not the same: The slopes, location of mode,

8

Conclusion: the effect seems largely to be run specific. 



Is there a right bin size? 
People have used 100bp, 5 kb, 10 kb, 20 kb, 100 kb.!
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Variation about loess curve for  
different bin sizes!
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Loess bin size (kb) 10 5 2 1 0.5 0.2 
Library 1 (MAD) 49.1 47.8 45.1 43.4 43.4 52.2 
Library 2 (MAD) 26.0 24.7 22.5 21.7 23.6 41.6 



Avoiding binning: single position analyses 
(also done by Cheung et al, 2011) 

We work with a random sample of ~10M mappable locations 
on the genome locations denoted by x. All paired end, 
and forward strand, unless otherwise stated. !

The fragment count at location x may depend on the GC 
content of the window Wa,l = [x+a, x+a+l), which we will 
denote by gc = GC(x+a,l).!
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34 Here the window begins at the base of interest. It need not do so.!



Whatʼs interesting about these  
read rate vs GC-content curves  

as we vary window size and location?!

Superficially: their shape, that is, their deviation 
from flatness, which is GC-independence. !
More interestingly, their ability to help explain 
variation in read depth.  We return to this later.!
Letʼs keep it superficial for now, and measure 
deviation from flatness.!
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Total variation distance from GC independence. 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A surrogate measure of how much is explained by conditioning 
on GC. 

TV distance = a weighted average of the brown lengths!
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In symbols, !

37 

! 
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whereWa,l is the window [x + a, x + a + l).

Next we look at some TV values. We can vary a 
and l, and we do so, separately here, for simplicity !



Figure 3: Single position models. (A) The top curves represent TV scores for GC windows of
different lengths, all beginning at 0 (a=0). The bars on the bottom mark the median fragment
lengths (and 0.05, 0.95 quantiles). For each library, the strongest GC windows are those that
encompass the full fragment. For library 1, we mark the optimal model (W0,180), and show its
resulting GC curve on the left panel (B). (We actually showW2,176, removing 2 bp from each
side of the fragment). The GC curve measures the fragment rate given the fraction of GC in
the window. Vertical bars represent 1 std-dev. For comparison we plot the distribution of GC
(dotted line) in our sample from chromosome 1 (scaled).

TV-scores for both libraries increase as the window size increases, with the strongest effects for
windows almost matching the median fragment length: strongest effect for window of length
180 (W0,180) for library 1 (median length = 174), and length 295 (W0,295) for library 2 (median
length 293). For windows longer than that, the scores decrease.

The GC-curve that is estimated from the window W2,176 is extremely sharp, see Figure 3 (this
is W0,180 after removing 2 bp on each end). In fact, strong unimodality can be seen on even
smaller scales. Smaller windows (l = 50 bp) allow us to contrast a GC window that overlaps the
read with a GC window that does not (W0,50 vs W75,50). (Figure 4, B and C). The GC-effect
estimated from both windows has a unimodal shape, but the curve of the window overlapping
the read is not as sharp as that of the window from the fragment center. If read-composition
were driving the GC-effect we would expect the first window to generate the sharper curve. That
this is not the case, may imply that the GC effect is not driven by base calling or sequencing
effects, but by the composition of the full fragment. (Rather, the sharper curves in the center
imply a second weak bias near fragment ends, see below). For contrast, panel A shows the GC
curve estimated from the 50 bp located just outside the fragment (W−50,50). The curve is not
unimodal, and has a noticeably lower TV score.

To further illuminate this (Panel D), we compute TV scores for other 50 base-pair GC windows
with different lags. The TV curve traces the shape of the fragments: It ascends sharply for
windows completely within the fragment, and then dips considerably for windows outside the 3’
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Varying the window size from a fixed point 
(here the 5ʼ-end of the fragment)!
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Varying the window size from a fixed point 
(here the 5ʼ-end of the fragment)!



Figure 4: Different lags (A) GC curve of the window before the fragment - W−50,50, (B) within
the read - W0,50, and (C) in the fragment center, not overlapping the read - W75,50. (D) A plot
of TV scores for 50 bp sliding windows. The x-axis marks a, the location of the window 5’ end
relative to 5’ end of the fragment. On the bottom we mark a fragment and its reads in relation
to the GC windows from the top panels.

end. The line is mostly symmetric around half the median-fragment length, decreasing as the
windows extend over the 3’ ends of fragments. In fact, enumerating over many positions a and
lengths l, the strongest windows are those overlapping most of the fragment but excluding the
fragment ends. (Note that the 5’ end is perfectly aligned, the 3’ is not, due to varying fragment
lengths).

In Supp. Figure 16 we contrast the TV plots generated from the forward strand with TV plots
of the reverse strand. While the reads have exactly the same location (no matter the strand), the
forward strand fragments extend to the 3’ end of the read while reverse strand fragments extend
to the 5’ end. The TV score lines trace these shapes. After the proper inversion and shift, both
GC curves estimated on the reverse strand and their TV scores match those from the forward
strand.

11

Varying the location of a fixed size window 
(here 50 bp; library 1)!



Interim conclusion from many such plots!

The “best” interval is in the middle of the fragment, 
excluding the bits at the very ends (see later).!

Next steps: dealing with both strands, and fragment size.!
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Figure 16: [[Supp Materials]] GC effect on the strands. (A) TV Score of 50 bp GC
windows, based on forward strand fragments(blue, same as Figure 4, (D)) and reverse strand
fragments (black, dot-dash). The dashed line marks the TV scores of the reverse strand after
proper inversion (dashed line). (B) Fragment GC curve estimated from each of the strands
separately (after accounting for the direction of the fragment)
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Forward and reverse strands behave similarly!
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Stratifying by fragment size s!
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Figure 5: Fragment rate by length and GC. (A) A heat map describes rates for each (GC,
length) pair. Each dotted line represents a single length. In (B), GC curves for fragments of
specific lengths are drawn (corresponding to the dotted lines in (A)). Blue / dark curves represent
longer fragments than red / bright. Here x-axis is the fraction of GC. All fragment length models
here have a margin of 2 from both fragment ends (a = 2, m = 2).

4.3 Effect of fragment length

Within a library, we find that the length of fragments influences the shape of the GC curve. If
GC depends on fragments and not reads, the GC is a quotient of two fragment parameters: the
number of G and C bases, and the length of the fragment. We might expect the two parameters
to interact to determine the rate of fragments. This is indeed the case. Within a single library,
GC curves estimated on longer fragments peak at higher GC’s.

Figure 5 (A) displays a surface describing fragment rates for all (GC, length) pairs. We use the
GC count of the full fragment excluding the first 2 bp on each end, corresponding to W s

2,s−4.
Each horizontal cut of this surface represents a GC curve for fragments of a specific length.

Models restricted to long fragments (top) tend to reach highest rates at higher GC counts (right).
The shift toward high GC in longer curves persists in the rescaled curves (B). The curves displayed
here are represented by the dotted lines on (A), rescaled so that the x-axis is the fraction GC,
not the count. We have seen similar patterns of GC-length interactions in other data sets from
different sequencing centers, though not all.

4.4 Local biases near fragment ends

While the unimodal effect is the strongest inhomogeneity in coverage, it is not the only one. We
will discuss two (perhaps partially related) effects that are found near the fragment ends, and
argue they are not driving the GC effects at larger bin sizes.

12

Rates by fragment length and GC!
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GC count in fragment! GC fraction!

Single length GC curves!

Fragment size matters  

Conclusion: GC bias of not simply determined by the  
ratio GC count/fragment length: there is an interaction.  



And now for some predictions!
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Predicted rates at a given mappable position!

47 ! 

ˆ µ x = c ˆ " GC (x+a, s#m )
s

s
$

ˆ µ B = ˆ µ x
x%B
$

Here c is a scaling constant to equalize the predicted and the 
observed median. From now on, our window is the fragment !
minus 2 bp at each end, i.e. a=2, l=s-2. !
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Lowess lines are based on the observed points. !

Conclusion: the predictions seem to be working.!

      10kb                                   1kb                                    200bp!



Some other biases/models!
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Breakpoint effects!
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End effects!
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Some other predictions 
(all aggregated to 1kb bins)!

52 

0.2 0.3 0.4 0.5 0.6 0.7

20
0

40
0

60
0

80
0

10
00

Fragment model (10 kb)

GC of bin

!

!

Observed Bin
Observed−Loess
Predicted Bin

A

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

40
60

80
10

0
12

0

Fragment model (1 kb)

GC of bin

C
ou

nt
s

B

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
5

10
15

20
25

30

Fragment model (200 bp)

GC of bin

C
ou

nt
s

C

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

40
60

80
10

0
12

0

Read model (1 kb)

D

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

40
60

80
10

0
12

0

2−side model (1 kb)

C
ou

nt
s

E

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

40
60

80
10

0
12

0

Fragmentation model (1 kb)

C
ou

nt
s

F

Fraction GC in all cases!

Read model! Fragmentation model!Two-end model!

Conclusion: These predictions don’t work too well. 



How well does our correction work?!

Theory!
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Spread of observed counts around predictions!

54 

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

Spread of observed counts around prediction (1 kb bins)

Predicted Counts

O
bs

er
ve

d 
C

ou
nt

s
Quantiles 0.1 and 0.9

Mappability Only
Loess
Fragment
Poisson Dist
Mean−line

Conclusion: we don’t “explain” everything. 

1kb bins 



How well does our correction work?!

Practice!
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Figure 8: Corrected counts of normal sample. (A) Counts in 1 kb bins not corrected for GC
(top), corrected by loess (center), and corrected by fragment model (bottom), positions 7,000-
12,000 kb of chromosome 1. (B) Histograms of the corrected counts (random sample of 1 kb
bins). Each point represents counts from both libraries (forward strand).

model does not considerately change the prediction quality (MAD=9.1). Because adding length
did not improve the results considerably, we use the parsimonious fragment model for the rest
of this work.

We visualize the correction in a region of chromosome 1 which has no copy number (CN) changes
(Figure 8). On the left, uncorrected (but scaled) 1 kb bin counts display large low-frequency
variations, which can be mistaken for CN events. The fragment model removes these variations
better than the loess model. In (B), a histogram of corrected counts shows that the fragment
correction produces tighter distribution of counts around 1 compared to the loess model.

A similar correction on the tumor data reveals a hidden CN (both libraries, forward strand) in
Figure 9. GC-curves (for both the loess and fragment models) were estimated from chromosome
1, and corrected counts for a CN gain on chromosome 2 are shown. The CN gain is hidden
in the uncorrected data due to low-frequency count variation driven by GC-content. Both the
fragment model correction and the loess correction reveal the CN gain. The fragment correction
provides better separation between bands (see histograms in (B)). Also, it successfully corrects
for different binning resolutions (see Supp Figure 17). Note that chromosome 1 was used for GC
estimation because it does not seem to have large CN changes (as seen in Figure 2).
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Copy number: corrections to normal samples!

Slight improvement  
over loess.  



Figure 9: Copy number (CN) gain from tumor sample Counts and corrected counts at
position 29,000 kb on chromosome 2. (A) Unnormalized counts at 1 kb bins (top), corrected by
loess (center), and corrected by fragment model (bottom). GC curves estimated on chromosome
1 (which has no large CN changes). (B) Histogram of normalized counts at 28-30 mb (underlined
on left plots).

4.6 Poisson and other variation

The estimated GC-effect and mappability explain most the variation in the fragment coverage
of the normal genome (though not all of it). In Table 3 we compute the residual variance
after removing the GC-effect in 1 kb bins. The GC model removes most of the variability in
the binned counts, much more so than corrections based only on mappability. The residual
variance of the fragment models is considerably smaller than that of the loess model. It is still
larger than Poisson, though small areas with extremely high coverage cause most of this extra
variance.

For a comparison more robust to these high-coverage regions, we compare quantiles rather than
variances. In Figure 10, we compare the 0.1 and 0.9 quantiles of observed counts grouped by
the estimated fragment rates of different models (see Methods). The variation in bins with very
low observed counts is largely explained by mappability. However, mappability cannot explain
variation of higher counts, and the spread between the quantiles is approximately double that
of the Poisson. Models taking GC-content into account produce much tighter spreads. The
fragment-length model (the green curve) consistently leaves less variation around the estimated
rates than the loess model (blue).

16

Copy number: crude corrections to 
tumor samples!

More work to be  
done here. 



Summary!

We seem to have ruled out GC-content of the read parts of the 
fragment as producing the GC bias. !

Similarly we seem to have ruled out GC content on a scale more 
“global” than just the fragment.!

Base composition (not just GC-content) around the two fragment 
break points plays a noticeable role, but not enough to explain 
everything.!

Speculation over causes is left for another day. There now 
seems little doubt that PCR amplification bias accounts for the 
majority, as shown in a beautiful recent paper by D. Aird et al 
(2011) in the Feb 21 issue of Genome Biology.  !
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Figure 14: [[Supp Materials]] Coverage ratios between two ChIP-seq techinical repli-
cates. (A) Uncorrected count ratios (R1 count/ R2 count) by GC; (B) GC curves of Replicate
1 (blue) and Replicate 2 (magenta); (C) Ratios of corrected counts. Bin counts are from both
strands, based on sample of chromosome 1 bins. Replicate 2 GC curve was adjusted to match
total fragments in Replicate 1.

These were obtained by running sub-sample of the same library on different flow cells, sequenced
at intervals of at least several weeks. Fragments in the library were size selected to approx 100
bp, and 36 bp single-ended reads were sequenced and mapped back to TAIR9 genome release.
GC effects were estimated on sampled locations (n = 10 million) from chromosome 1, using data
from both strands. For the fragment model, fragment size (126 bp) was recovered based on TV
scores of models starting at fragment 5’ end (a=0).

A.2 Alternative models

The following is a detailed description of the prediction procedures for the two alternative models
described in 4.5 and in Figure 7, (E) and (F). The first is the two-ends (paired-reads) model that
assumes fragment rate is determined by the GC of both ends of the fragment, but not from the
fragment center. The second is the fragmentation model that assumes an aggregation of location
specific biases around the fragment ends cause the GC bias.

For both models our goal is to predict µx, the mean fragment count for a genomic position
x. The predicted mean count for a bin b is the sum of predictions for positions x in that bin,
µ̂b =

∑
x∈b µ̂x. As with contiguous GC windows described above, we stratify the positions in

the sample according to some function of the sequence surrounding them, and then estimate the
fragment rate for each stratum.

A.2.1 Two-ends model

Again, let GC(x + a, l) be the GC count of the l bp starting at x + a. Under our two-ends
model, the fragment count at x depends on GC(x, l) and GC(x+ s− l, l), where s represents the
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ChIP-seq data (A. thaliana)  
Here two initially incompatible technical replicates!

    Uncorrected ratios          GC curves (a=2, l=122)         Corrected ratios 

  GC                                          GC                                           GC        

1kb bins 1kb bins 

Problem mainly solved (cf Cheung et al, 2011) 



Other examples and phenomena 
(if time)!
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Figure 12: GC plots for Dataset 2. (A) GC effect for 10 kb (chromosome 1). (B) TV scores for
GC windows of different lengths with a=0 (comparable to Figure 3). (C) GC curve at fragment
model (W2,500). (D) Observed (blue) and predicted (black) counts against GC for 10 kb bins
(chromosome 2).

4.8 Additional data sets

In the above analysis we described a single tumor-normal pair produce from a single lab, but
our results are general to many examined samples from multiple labs. In Figure 12 we show 4
descriptive plots from a different data set (based on HCC1569 cell line, see Table 1 for details).
The GC has a strong effect on fragment counts, and this relation is unimodal (A). The highest TV
score is for a window of approximately fragment length (B), resulting in a sharp GC curve (shown
in C) which predict the GC trends (D). A distinct difference is the lack of length-dependence
of the fragments (not shown). The AT preference near fragment ends is also missing, further
evidence that it is not the major source of the GC bias.

5 Discussion

Large biases in fragment counts related to the GC composition of regions were found in the
data sets we examined. These observed effects have a recurring unimodal shape, but varied
considerably between different samples.

We have shown that this GC effect is mostly driven by the GC composition of the full fragment.
Conditioning on the GC of the fragments captures the strongest bias, and removing this effect

19

Plots for a BrCa tumor!



fragment model (from TV scores, see (B)), we can see traces of unimodality in the GC effect
(C). Correction based on this model removes the GC effect in the binned data (D).

Figure 13: [[Supp Materials]] GC plots for ChIP-seq sample (replicate 1). (A) GC
effect for 10 kb bins. (B) TV scores for GC windows of different lengths with a=0. (C) GC curve
at fragment model with 2 bp margin (W2,122), the optimal model from (B). (D) Observed (blue)
and predicted (black) counts against GC for 1 kb bins (both strands)

The importance of single sample correction for GC biases is highlighted when we compare the
coverage of the two technical replicates (Figure 14). Coverage ratio between the replicates is
greatly influenced by GC (A). After proper correction (separately for each replicate), coverage
ratios do not seem to vary with GC (B).

A.1.1 Experimental details

The above is an unpublished data set on the binding of transcription factor PIF3 in A.thaliana,
a grassy plant. In the experiment, the plant has been mutated to express a hybrid PIF3-Myc
protein, where Myc is a transcription factor absent from the wild type (WT) plants. Myc-specific
antibody is used in the IP step. WT plants were used as the control sample.

The data shown are sequencing results from two technical replicates of the WT IP samples.
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Plots for ChIP-seq sample rep 1, A. thaliana!



Figure 18: [[Supp Materials]] GC plots for HG00262 sample. (A) GC effect for 10 kb.
(B) TV scores for GC windows of different lengths with a=0 (comparable to Figure 3). (C) GC
curve at fragment model with 20 bp margin (W20,360). (D) GC curves for different fragment
lengths (W s
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4.7 Quality score of mapped reads

Quality scores from the sequencing step can help us assess the role of the sequencing itself
(rather than the library preparation) in creating the GC bias. We cannot tell these two stages
apart by comparing the sequenced fragments to the reference genome. However, if there are
no biases beyond the library preparation, sequencing quality should not reflect any biases in
GC. We use the mapping quality score [14] of a fragment (actually of the 5’ end read), an
aggregate of the phred quality scores of the bases in the read that do not match the reference.
Scores indicating low quality identify fragments (reads) that probably have sequencing errors
(Pr{Mapping error})> 10−6). By comparing the GC profile of low and high quality fragments,
we can learn about the relation between GC and sequencing success.

Lower quality scores are strongly associated with GC rich fragments. In Figure 11, we partition
the fragments based on their GC, and show the absolute (A) and relative (B) abundance of the
two quality groups. Low mapping (black) quality fragments are a much larger portion of high GC
fragments, and are very rare in high AT fragments. In fact, almost all high-GC fragments that are
mapped are of low quality. This is perhaps an indication of problems with sequencing fragments
with very high GC fragments. Surprisingly, this difference in GC composition is stronger for the
GC of the full fragments than that of the reads (not shown).

Figure 11: Fragments partitioned by quality score. (A) Number of low quality (dark grey)
and high quality (light grey) fragments mapping to sampled locations, for each GC category. (B)
Proportion of fragments with low vs. high quality for each GC category. GC is determined as in
the fragment model with a = 2, l = 176. Fragment is high quality if 5’ end read has Pr{Mapping
error}< 10−6.
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Fragments partitioned by quality score!


