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GC matters
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aaatatattc
tcgcgagata
aggaaggcaa
aattacagca
cctctggagce
aacatggtgg
aacttatttc
aaatcaagtt
caaggaggca
actgacatca
taaaattgct
gtttctccca
agggacgtgce
ccaaagtttg
attagcatct
catccttaga
gttgaggatt
atcagtcaag
acatgaaggg
ggcaaccagg

aatatggaga
ctcactaaga
gagaagaacc
gacaagagaa
aaaacaaacg
aataggaatg
gaaaaggtcg
aaaataagga
caggatgtga
gagtcacagc
cccttgatgg
gtagccggeg
tgggagcaga
attatcgctg
ctcttggaaa
cagaatccaa
agctcatctt
aaagaagaag
tatgaagaat
agattgatcc

gaataaaaga
ccactgtgga
ccgcactcag
taatggacat
atgctggatc
gcccaacaac
aaaggttgaa
ggagagttga
ttatggaagt
tggcaataac
tggcgtacat
gaacaggcag
tgtacactcc
ctagaaacat
tgtgccacag
ctgaggaaca
tcagttttgg
aagtgctaac
tcacaatggt
agttgatagt

actgagagat
ccatatggcc
aatgaagtgg
gattccagag
agaccgagtg
aagtacagtt
acatggtacc
tacaaaccct
tgttttccecca
aaaagagaag
gctagaaaga
tgtttatatt
aggaggagaa
agtaagaaga
cacacagatt
agccgtagac
tgggttcact
gggcaacctc
tgggagaaga
aagcgggaga

ctaatgtcgc
ataatcaaaa
atgatggcaa
aggaatgaac
atggtatcac
cattacccta
ttcggccecectg
ggccatgcag
aatgaagtgg
aaagaagagc
gaattggtcc
gaagtgttgce
gtgagaaatg
gcagcagtgt
ggaggagtaa
atatgcaagg
ttcaaaagga
caaacactga
gcaacagcta
gacgagcagt
7



aaatatattc
tcgcgagata
aggaaggcaa
aattacagca
cctctggagce
aacatggtgg
aacttatttc
aaatcaagtt
caaggaggca
actgacatca
taaaattgct
gtttctccca
agggacgtgce
ccaaagtttg
attagcatct
catccttaga
gttgaggatt
atcagtcaag
acatgaaggg
ggcaaccagg

aatatggaga
ctcactaaga
gagaagaacc
gacaagagaa
aaaacaaacg
aataggaatg
gaaaaggtcg
aaaataagga

rarreabrebren

gtagccggcg
tgggagcaga
attatcgctg
ctcttggaaa
cagaatccaa
agctcatctt
aaagaagaag
tatgaagaat
agattgatcc

gaataaaaga
ccactgtgga
ccgcactcag
taatggacat
atgctggatc
gcccaacaac
aaaggttgaa
ggagagttga

bbabmmranmd

gaacaggcag
tgtacactcc
ctagaaacat
tgtgccacag
ctgaggaaca
tcagttttgg
aagtgctaac
tcacaatggt
agttgatagt

actgagagat
ccatatggcc
aatgaagtgg
gattccagag
agaccgagtg
aagtacagtt
acatggtacc

tacaaaccct
bbb b b rmrmmna

GC content here 445/1000

tgtttatatt
aggaggagaa
agtaagaaga
cacacagatt
agccgtagac
tgggttcact
gggcaacctc
tgggagaaga
aagcgggaga

ctaatgtcgc
ataatcaaaa
atgatggcaa
aggaatgaac
atggtatcac
cattacccta
ttcggccecectg
ggccatgcag
aatgaagtgg
aaagaagagc
gaattggtcc
gaagtgttgce
gtgagaaatg
gcagcagtgt
ggaggagtaa
atatgcaagg
ttcaaaagga
caaacactga
gcaacagcta
gacgagcagt
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An illustration of the spatial distribution of GC content of
non-overlapping 1,024-bp windows along a fragment,
approximately 1.4 Mb in length, from human chromosome 19

al
% 55 I'”“ll‘| \ I | ‘ ’
8 45 “]l } "lw lltﬂll I " i! \ M( J”’ ‘! Ll{ ' l]} !
“as | [ ‘ M!“, Il

25 ! | . | | . | |

14,000 Kb 14,500 Kb 15,000 Kb 15,500 Kb
Location along chromosome 19

Cohen N et al. Mol Biol Evol 2005;22:1260-1272
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PCR : Polymerase Chain Reaction

30 - 40 cycles of 3 steps :

‘ "wm (‘“, m w m ( Step 1 : denaturation]

1 minut 94 °C

Ability to | [T
|
denature iy gLt - All depend on
GC content
Apility of | [T 3" Step 2 : annealing J
primers : 3 LI LT 5
to anneal ‘ % 45 seconds 54 °C
.',' 7 3’ i
| forward and reverse
JIRKL 5  primers
Rate and

fidelity of ’ T | | 3" Step 3 : extension ]
extension N I S B o (TR IvTTRVauIAT b '

reaction AN N | '\ _| 7 N7 | 2 minutes 72 °C
’ ] (s - | \I N only dNTP's

’ s gy -
J ‘ [ I | I | | || | 5 Andy Vierstraete 1999) h




lllumina short-read DNA sequencing
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lllumina Sequencing Technology

Sample preparation
usually involves PCR
and size selection

Image acquisition

|

06009020900259500259908

Sequencing

Slide courtesy of G Schroth, lllumina




chr12:58,145445-58,145,490
p1332 pl3.2 pl23  pl2l pIl.21 ql2 ql3.11 q13.2 qld2 ql5 q21.2 q2132 q22 q23.2 q2411 q24.22 q24.32
- 47 bp -
58,145,450 bp 58,145,460 bp 58,145,470 bp 58,145,480 bp 58,145,490 by
| | | | | | | | |
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Our original motivation:
DNA copy number estimation

«  Amplifications and losses occur in most genomes, relative to a
reference, especially in tumor genomes, which are our focus.

« These can be seen at different scales, from one or a few base-
pairs to entire chromosomes (in cases of aneuploidy).

« We would like to measure (count) the number of times a region
appears in a genome using DNA-seq data on that genome,
ideally without using reference or matched normal data.

14



24 color

karyotypes

of 6 breast

cancer cell
" lines

Davidson et al
BrdCa, 2000




OPEN @ ACCESS Freely available online ="PLoS onhe

Sensitivity of Noninvasive Prenatal Detection of Fetal
Aneuploidy from Maternal Plasma Using Shotgun
Sequencing Is Limited Only by Counting Statistics

H. Christina Fan, Stephen R. Quake*

Department of Bioengineering, Stanford University and Howard Hughes Medical Institute, Stanford, California, United States of America

Abstract

We recently demonstrated noninvasive detection of fetal aneuploidy by shotgun sequencing cell-free DNA in maternal
plasma using next-generation high throughput sequencer. However, GC bias introduced by the sequencer placed a
practical limit on the sensitivity of aneuploidy detection. In this study, we describe a method to computationally remove GC
bias in short read sequencing data by applying weight to each sequenced read based on local genomic GC content. We
show that sensitivity is limited only by counting statistics and that sensitivity can be increased to arbitrary precision in
sample containing arbitrarily small fraction of fetal DNA simply by sequencing more DNA molecules. High throughput

shotgun sequencing of maternal plasma DNA should therefore enable noninvasive diagnosis of any type of fetal
aneuploidy.

Citation: Fan HC, Quake SR (2010) Sensitivity of Noninvasive Prenatal Detection of Fetal Aneuploidy from Maternal Plasma Using Shotgun Sequencing Is Limited
Only by Counting Statistics. PLoS ONE 5(5): 10439, doi:10.1371/journal.pone.0010439

Editor: Joanna Mary Bridger, Brunel University, United Kingdom
Received January 22, 2010; Accepted April 6, 2010; Published May 3, 2010
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Gounts are normalized in 20 kb bins with Gé-dependent weights.

Then each chromosome is compared to all others using counts - C:';
45 1 & chr
from{normalized 50 kb bins and forming z-statistics. = chr3
35 - -
30 chr 4
25 1 o ° + chrb
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Our story proper begins here
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GC content biases first noted

Published online 26 July 2008 Nucleic Acids Research, 2008, Vol. 36, No. 16 el05
doi:10.1093 nar/gkn425

Substantial biases in ultra-short read data sets from
high-throughput DNA sequencing

Juliane C. Dohm’', Claudio Lottaz?, Tatiana Borodina' and Heinz Himmelbauer'*

"Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin and “Institute for Functional Genomics,
Computational Diagnostics, University of Regensburg, Josef-Engert-Str. 9, 93053 Regensburg, Germany

Received December 21, 2007; Revised June 16, 2008; Accepted June 18, 2008

They used Illumina 1G data.
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From Dohm et al 2008

Roughly linear GC effect on reads

Reads per kb
Reads per kb

GC corﬁent | ) éC csz)nte;t
0.2 0.45 0.2 0.45

Beta Vulgaris 1kb bins  Helicobacter 1kb bins



Another view: a human data set

Reads mapped to Chrom. 2 (both ends mapped)

80

Number of reads
40
|

20

10Kb

* Position of reads on forward strand of chr 2
 Binned to 10 kb intervals

21



Count

The GC bias is non-linear in human data

(5 kb bins below, but it looks similar for all bin sizes)

GC

Data — M. Robinson

Horizontal axis: fraction GC; lines are loess curves in all cases

Count

80

60

40

20

GC

Data — D. Chiang

Count

GC

Data — P. Spellman
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Our goals

To study the nature of the GC content effect
Find how best to correct for it

Try to understand relation between the effect
and study design, i.e. its causes

Perhaps identify designs that minimize it.

Analyzing and minimizing PCR amplification bias in lllumina
sequencing libraries. Aird D, Ross MG, Chen WS, Danielsson M,
Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Genome
Biol. 2011 Feb 21;12(2):R18.

Systematic bias in high-throughput sequencing data and its
correction by BEADS. Cheung MS, Down TA, Latorre |, Ahringer J.
Nucleic Acids Res. 2011 Jun 6. [Epub ahead of print]



Our goal today

 To study the nature of the GC content effect
* Find how best to correct for it

24



Digression: mappability

« Some % of reads not mapped due to ambiguity
(depends on read length & mapping criteria)

« Mappability = the probability that a read
beginning in region can be successfully mapped.

« Can take a simple 0-1 approach (as here), and
bin.

Count
0 20 40 o0
| ] 1 | ] | |

proportion mappable 5



Our data

Two samples of DNA from an ovarian patient: one sample
from the tumor, the other matched normal from their white
blood cells.

Each sample was turned into two separate fragment libraries,
differing in fragment length distribution.

Fragments were sequenced to 75bp at both ends using the
standard lllumina procedure.

Each sequenced read pair was mapped back to the human
reference genome using bwa (version0.4.9). [A few more
details are omitted here.]



Most of the time we present results
for just one chromosome

But it doesn’t matter....
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Estimated fragment count

200 300 400 500 600 700

100

GC loess curves for

chromosomes 1-5, 10kb bins

-

___ Lib1
(Corrected)
—— Lib2

- ———

| | |
0.4 0.5 0.6

Fraction GC

0.7

0.8

Counts for
library 1
scaled to
match those
for library 2
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Is the GC-bias specific to a lab, protocol, sample,
library preparation, sequencing machine,....?

E.g. can we adjust binned tumor counts by those of a
matched normal sample, or, in a Chip-seq experiment,
|IP-counts by input of other control counts?

29



Count

1000 1500 2000 2500 3000

500

GC effect of different Normal libraries (10 kb)

—— Normal Lib1
=#  NMormal Lib2

A . .

GC

Count

1000 1500 2000 2500 3000

500

GC effect of Tumor and Normal (10 kb)

—— NMormal Lib1
=& TumorLib1

0.3

GC

Conclusion: the effect seems largely to be run specific.




Is there a right bin size?
People have used 100bp, 5 kb, 10 kb, 20 kb, 100 kb.

31



Variation about loess curve for
different bin sizes

Loess bin size (kb) 10 5 2 1 0.5
Library 1 (MAD) 49.1 47.8 45.1 43.4 43.4
Library 2 (MAD) 26.0 24.7 22.5 21.7 23.6

0.2
52.2
41.6

32



Avoiding binning: single position analyses
(also done by Cheung et al, 2011)

We work with a random sample of ~10M mappable locations
on the genome locations denoted by x. All paired end,
and forward strand, unless otherwise stated.

The fragment count at location x may depend on the GC
content of the window W, , = [x+a, x+a+l), which we will
denote by gc = GC(x+a,l).



A) Random sample locations  B) Partition by GC window C) Count reads and read-rate

: 11 1 1 A
o o
o o) o o o o o o) o
TAGCTGGCTATTGCACGTGATTAAGCTACTTGCCCACGTCGAACACGTAGTGGCTACTGAAC
(I [ \ ] I
Window Size=4 GC=3 GC=2 GC=3 GC=3
\. y,
’ : D) Plot GC curve
/ G C 0 1 2 3 4\ Reads by GC, 32bp Window
ﬂLocations e sl s i L : — ness e
Q
c :
© Reads - | - 1 59 I 8 | ;> .
O i1, A
8 2 28 .
\ Rate = - 1 0.66 "/ as g 1 | /_‘\ .

Rate = reads G+C (of 32)

# locations

Here the window begins at the base of interest. It need not do so. =



What'’s interesting about these
read rate vs GC-content curves
as we vary window size and location?

Superficially: their shape, that is, their deviation
from flatness, which is GC-independence.

More interestingly, their ability to help explain
variation in read depth. We return to this later.

Let’s keep it superficial for now, and measure
deviation from flatness.



Total variation distance from GC independence.

A surrogate measure of how much is explained by conditioning
on GC.

Reads by GC, 32bp Window

012

= Read Mean
~—— GCdensity

0.08 010

Read rate

0.04 0.06

0.02

0.00

G+C (of 32)

TV distance = a weighted average of the brown lengths,



In symbols,

A FC A F
)Lgc =— ’ A=—
N n
gc
l «N,. ~ &
TVIW )=—% A=Al
( a,l) 2)Lgcz=0n 8¢

where W, is the window [x +a,x + a+1).

Next we look at some TV values. We can vary a
and /, and we do so, separately here, for simplicity



TV Score

0.05 010 015 0.20 0.25

0.00

Varying the window size from a fixed point
(here the 5’-end of the fragment)

TV of models from fragment 5' end

—— Library 1
—— Library 2
Fragment Lengths
| | | | |
0 100 200 300 400

GC window length (1)



TV Score

0.05 010 015 0.20 0.25

0.00

Varying the window size from a fixed point
(here the 5’-end of the fragment)

TV of models from fragment 5' end

Fragment Lengths

—— Library 1
—— Library 2

GC window length (1)

300

400

Fragment Rate

0.02 0.04 0.06 0.08 010

0.00

GC Curve for best window (a=2, |=176)

B — Fragment Rate

_ Frac. Locations
(scaled)

0.0 0.2 0.4 0.6 0.8 1.0

GC




Varying the location of a fixed size window

0.05 0.10 015

0.00

o.10 015 0.20 0.25 0.30

0.05

(here 50 bp; library 1)

GC before fragment GC overlaps read GC at fragment center
o T3]
s | 5 ]
A TV = 0.12 B TV = 0.20 C TV = 0.29
o | 2
o o

0.05
0.05

=] =]
=] =]

I ] I I | =] | I I I I I L=} I | I I I I
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
TV Scores, stratified by GC windows of 50 bp

TV scores
GC windows I - I
A B c
Fragment i I
| I I I I | I I I I
-500 -400 -300 -200 -100 o 100 200 300 400 500



Interim conclusion from many such plots

The “best” interval is in the middle of the fragment,
excluding the bits at the very ends (see later).

Next steps: dealing with both strands, and fragment size.



Forward and reverse strands behave similarly

TV Scores of each strand (50 bp windows)

0.20 0.25 0.30
| |

TV Score

015

010
|

-500 -300 100 0 100 300 200

Window Lag



Forward and reverse strands behave similarly

TV Score

015 0.20 0.25 0.30

010

TV Scores of each strand (50 bp windows)

A /'/HF —— Forward

L1
f lli — Reverse
1| === |nv Rev

100 0 100 300 200

Window Lag

Rate

0.02 0.04 0.06 0.08 010

0.00

GC curve of each strand

——  Forward
-=-=- Reverse

GC




Stratifying by fragment size s

A FSC
)Lgc - Ngs

gc
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Fragment length

Fragment size matters

Rates by fragment length and GC Single length GC curves

A

220 240

200

180

160

140

120

0 30 100 150 0.0 0.2 0.4 0.6 0.8 1.0

GC count in fragment GC fraction

Conclusion: GC bias of not simply determined by the
ratio GC count/fragment length: there is an interaction.



And now for some predictions
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Predicted rates at a given mappable position
VaN AS
‘ux = CE )\’GC(x+a,s—m)
S
luB = Elux
x&EB

Here cis a scaling constant to equalize the predicted and the
observed median. From now on, our window is the fragment
minus 2 bp at each end, i.e. a=2, I=s-2.



Predicted and observed bin
counts for bins of different sizes

o
@)
o
o
Al
T T T T T T T
(0 14 (014 Sl ol S 0
sjuno)
0
X
~—
T T T T T T T
Ock 00} 08 09 (014 (014 0
sjuno)
-
o |
X .
o .
1 . ae®
DY

000t 008 009 ooy 00¢ 0

sjuno)

0.8

0.6

0.4

0.2

0.8

0.4 0.5 0.6 0.7

0.3

0.6

0.5

0.4

0.3

%GC in bin

%GC in bin

%GC in bin

Lowess lines are based on the observed points.

ing.

to be work

the predictions seem

Conclusion



Some other biases/models

49



0.27 0.29 0.31

0.25

0.27 0.29 0.31

0.25

0.21 0.23 0.25

0.19

0.21 0.23 0.25

0.19

Breakpoint effects

A Fragment rate by dinucleotide at breakpoint

GG

CG

TG

AG

50 100 150 200 GC

cc
TC

AC

GT

GA

CA

TA

AA

CT

TT
50 100 150 200

AT

50 100 150 200 0.00 0.02

-50

50 100 150 200

Breakpoint model: uses GC(x-2,x+4)

0.04

0.06
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Fragment Rate

GC before fragment

End effects

GC overlaps read

GC at fragment center

C

L1 =0.29

Yo} Yo} To}
o A o B o
L1 =0.12 L1 =0.20

e o 2 o 2
S g S g S

c c

(0] (0]

3 3
0 [0 0 o o
o = o = o
S L s L s
o o o
S S S
© | | | | | I © | | | | | I © |

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0
GC GC

Slight AT preference

Two ends model: uses GC(x,))+GC(x+s-1,1).

We use s=180, I=30 below.
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40 60 80 100 120

20

Some other predictions
(all aggregated to 1kb bins)

Read model Two-end model Fragmentation model

120
|
120
|

60 100
| |

40 60 100
|

40

20

0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction GC in all cases
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Conclusion: These predictions don’t work too well.



How well does our correction work?

Theory
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Spread of observed counts around predictions

o

N p—

" Quantiles 0.1 and 0.9
—— Mappability Only

S _ —— Loess

80
I

1kb bins

Fragment
Poisson Dist
Mean-line

A

Observed Counts
40 60

20

0 20 40 60 80 100

Predicted Counts

Conclusion: we don’t “explain” everything...



How well does our correction work?

Practice
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Copy number: corrections to normal samples

Observed counts 1 kb {(normalized) Histogram
5 ] B
| —— Median
e — Loess
— Fragment

E —d

o

o

o _|

(]

g

=]

2

Slight improvement
over loess.




Copy number: crude corrections to
tumor samples

Tumor observed counts (1 kb) Histogram

Caorrected by fragment maodel

. i More work to be
o | Db ST done here.




Summary

We seem to have ruled out GC-content of the read parts of the
fragment as producing the GC bias.

Similarly we seem to have ruled out GC content on a scale more
“global” than just the fragment.

Base composition (not just GC-content) around the two fragment
break points plays a noticeable role, but not enough to explain
everything.

Speculation over causes is left for another day. There now
seems little doubt that PCR amplification bias accounts for the
majority, as shown in a beautiful recent paper by D. Aird et al
(2011) in the Feb 21 issue of Genome Biology.



Many thanks to

* Yuval Benjamini

« Oleg Mayba, Pierre Neuvial, Henrik Bengtsson,
and Su Yeon Kim

* Paul Spellman and Mark Robinson for data
« Leath Tonkin for discussions on the bias
« The whole Berkeley NGS group

And to you...
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Aada

20

1.0

[ak=}

ChlP-seq data (A. thaliana)

Here two initially incompatible technical replicates

Uncorrected ratios GC curves (a=2, [=122) Corrected ratios
: 248 .
1kb bins — e 1kb bins

~ — --;T:le-:l!

i

¥
E_ =]

GC GC GC

Problem mainly solved (cf Cheung et al, 2011)



Other examples and phenomena
(if time)
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Plots for ChiP-seq sample rep 1, A. thaliana

GC effect TV of models from fragment 5" end
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Plots for one 1,000 genomes sample
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