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Density Estimation: Motivation

Let x1, . . . , xN be independent draws from an unknown

probability density function (pdf) f .

How can we best estimate f?
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Kernel Density Estimation

General form of kernel density estimator (for data x1, . . . , xN ):

f̂(x) =
1

N

N∑

i=1

κ

(
x − xi

h

)
1

h
,

where κ is a symmetric pdf on R and h > 0 is a “bandwidth”

parameter. We will use the bandwidth parameter t = h2.
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Questions

What kernel κ should we use?

Most popular: Gaussian kernel:

κ(x) = ϕ(x) =
1√
2π
e−

1
2x2

, x ∈ R .

How should the bandwidth be chosen?

Small bandwidth: highly multimodal estimate.

Large bandwidth: irregularities are smoothed out.

How do we measure the accuracy of the estimate?

Mean integrated squared error (MISE):

Ef

∫
(f̂(x) − f(x))2dx = Ef‖f̂ − f‖2 .

Density Estimation by Diffusion – p.5/38



Problems

Automatic bandwidth selection rules can suffer from a

range of deficiencies:

boundary bias

assumption of normality

oversmoothing of well-separated modes

Literature abounds with partial solutions.

What is missing is a unified framework.
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Gaussian Rule of Thumb

Consider a Gaussian kernel density estimator. It can be shown

that asymptotically (for large N ) the MISE is of the form

1

4
t2 ‖f ′′‖2 +

1

2N
√

πt
, (AMISE)

where ‖f ′′‖2 =
∫

(f ′′(x))2 dx. The corresponding optimal value

of t is t∗ =
(

1
2N

√
π ‖f ′′‖2

)2/5

.

The Gaussian rule of thumb is to assume that f is the density of

the N(sample mean, sample variance = σ̂2) distribution. In this

case ‖f ′′‖2 = σ̂−5π−1/23/8 and

trot =

(
4 σ̂5

3N

)2/5

≈ 1.12 σ̂2 N−2/5 .
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Gaussian RoT: Separated Modes
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The estimate “oversmooths” the true density.
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Gaussian RoT: Boundary Bias
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Gaussian KDE

Pdf: f(x) = 2(1 − x), x ∈ [0, 1]. Samples: N = 100.

The estimate shows significant bias at the boundary 0.
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Wiener Process

The Wiener process (standard Brownian motion) is the stochastic

process {Wt, t ! 0} characterized by:

1. Continuous sample paths.

2. Stationary Gaussian increments: Wt+s − Wt ∼ N(0, s).

3. Independent increments.
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Wiener Process: Properties

The Wiener process has many interesting properties.

Two main properties are:

1. It is a Gaussian process: all marginal and joint distributions

are Gaussian. In particular,

Wt ∼ N(0, t) .

2. It is Markov process: Conditioned on the past {Ws, s " t},
the future behaviour of the process from time t onwards is

dependent only on the current stateWt.
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Relation with PDEs

The distribution of (Ws+t |Ws = x) is N(x, t). Hence, the

transition density is given by the Gaussian kernel

pt(x, y) =
1√
2πt

e−
1
2

(y−x)2

t , t ! 0, x, y ∈ R .

This satisfies the Kolmogorov backward equation

∂

∂t
pt(x, y) =

1

2

∂2

∂x2
pt(x, y) (heat equation) .
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Main Idea

A Gaussian KDE can be viewed as the pdf ofWt, where the

Wiener process {Wt, t ! 0} starts with probability 1/N from

each of the data points x1, . . . , xN :

f̂(x; t) =
1

N

N∑

i=1

1√
2πt

e−
1
2

(x−xi)
2

t
def
=

1

N

N∑

i=1

ϕ(x, xi; t) .

As such, f̂(x; t) satisfies the heat equation

∂

∂t
f̂(x; t) =

1

2

∂2

∂x2
f̂(x; t), t > 0, x ∈ R,

with limx→±∞ f̂(x; t) = 0 and initial condition f̂(x; 0) = ∆(x),

where ∆(x) = 1
N

∑N
i=1 δxi

(x) is the empirical density.
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Advantages

Instead of computing the Gaussian kernel density estimator

f̂(x; t) directly, it can be obtained by evolving the solution

of the heat equation up to time t.

This naturally extends to KDEs for finite-support

distributions.

The PDE can be solved efficiently using Fast Fourier

transform (FFT) techniques.

The bandwidth parameter has a natural interpretation (time)

and automatic optimal bandwidth computation can be done

efficiently.

The idea is easily extended to more general diffusion

processes.
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Finite-support Distributions

Suppose the pdf f is known to be 0 outsideX = [0, 1].

Within the PDE framework all we have to do is solve the heat

equation over the finite domain [0, 1] with initial condition

f̂(x; 0) = ∆(x) and Neumann boundary conditions

∂

∂x
f̂(x; t)

∣∣∣
x=1

=
∂

∂x
f̂(x; t)

∣∣∣
x=0

= 0 .

The boundary condition ensures that d
dt

∫
X

f̂(x; t) dx = 0, from

where it follows that
∫

X
f̂(x; t) dx =

∫
X

f̂(x; 0) dx = 1 for all

t ! 0.

Density Estimation by Diffusion – p.15/38



Solution

The analytical solution of this PDE in this case is:

f̂(x; t) =
1

N

N∑

i=1

θ(x, xi; t), x ∈ [0, 1], (KDE-θ)

where the kernel θ is the theta function

θ(x, xi; t) =
∞∑

k=−∞

ϕ(x, 2k+xi; t)+ϕ(x, 2k−xi; t), x ∈ [0, 1].
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Small time/bandwidth behaviour

We have

lim
t↓0

θ(x, xi; t)

ϕ(x, xi; t)
= 1 .

Thus, for small t, the estimator (KDE-θ) behaves like the

Gaussian kernel density estimator in the interior of [0, 1].
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Large Bandwidth Behaviour

The theta function can be written as

θ(x, xi; t) =
∞∑

k=−∞

e−k2π2t/2 cos(kπx) cos(kπxi)

= 1 + 2
∞∑

k=1

e−k2π2t/2 cos(kπx) cos(kπxi) .

(()

We see that

θ(x, xi; t) ≈ 1+2 e−π2t/2 cos(πx) cos(πxi), t → ∞, x ∈ [0, 1].

As the bandwidth becomes larger, the kernel approaches the

uniform density on [0, 1].
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Maximum Principle

An important property of the estimator (KDE-θ) is that the

number of local maxima or modes is a nonincreasing function of

t. This follows from the maximum principle for parabolic PDEs.

To see this, suppose (x0, t0) is a local maximum, and hence
∂2

∂x2 f̂(x0; t0) " 0. Since f̂(x; t) satisfies the heat equation, it

follows that ∂
∂t f̂(x0; t0) " 0, from which it follows that there

exists an ε > 0 such that f̂(x0; t0) ! f̂(x0; t0 + ε).
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Fast Evaluation of the KDE

Recall

f̂(x; t) =
1

N

N∑

i=1

θ(x, xi; t),

where

θ(x, xi; t) = 1 + 2
∞∑

k=1

e−k2π2t/2 cos(kπx) cos(kπxi) . (()

It follows that for large n

f̂(x; t) ≈
n−1∑

k=0

ak e
−k2π2t/2 cos(kπx) ,
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Fast Evaluation of the KDE

where the coefficients {ak}n−1
k=0 are given by a0 = 1 and

ak =
2

N

N∑

i=1

cos(kπxi)

= 2

∫ 1

0

cos(kπx)f̂(x; 0) dx

≈ 2
n−1∑

i=0

cos(kπ
i

n
) n f̂i

1

n
,

where f̂i is the number of points in ( i
n , i+1

n ), i = 0, . . . , n − 1.
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Fast Evaluation of the KDE

So, the {ak, k = 0, . . . , n − 1} can be calculated fast via the fast
cosine transform of the {f̂i, i = 0, . . . , n − 1}.

Moreover, f̂(i/n), i = 0, 1, . . . , n − 1 can be calculated fast with

the inverse fast cosine transform, because

f̂(x; t) ≈
n−1∑

k=0

ak e
−k2π2t/2 cos(kπx) .
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Improved Bandwidth Selection

We obtain the optimal bandwidth as a solution to a fixed-point

problem

t = g(t) ,

where g depends on f̂(·; t) and can be calculated fast via the fast
cosine transform.

Our approach does not assume normality of the data, unlike

some other methods.
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Example: Asymmetric Double Claw

Typically, the improved plug-in method is more accurate than

existing methods. For example, consider estimating the

asymmetric double claw density described by:

46

100

1∑

k=0

N

(
2k − 1,

(
2

3

)2 )
+

1

300

3∑

k=1

N

(
−

k

2
,

1

1002

)

+
7

300

3∑

k=1

N

(
k

2
,

(
7

100

)2 )
,

using N = 105 iid samples.
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Example: Asymmetric Double Claw

!2.5 !2 !1.5 !1 !0.5 0 0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

!2.5 !2 !1.5 !1 !0.5 0 0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

Old KDE

Improved KDE

Density Estimation by Diffusion – p.25/38



Example: Asymmetric Double Claw

To make a more rigorous comparison we use the error criterion

Ratio =
‖f̂( · ; t̂∗ ) − f‖2

‖f̂( · ; tLS) − f‖2
.

Table: Ratio of ISEs for the old and improved KDEs

N 104 105 106 107

Ratio 1.01 0.37 0.55 0.0083

Density Estimation by Diffusion – p.26/38



Example: Boundary Bias
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Extension: General Diffusions

Let a and p be arbitrary positive functions onX ⊂ R with

bounded second derivatives. Suppose that, instead of the Wiener

process, we run a diffusion process {Vt, t > 0} given by the
stochastic differential equation

dVt = µ(Vt) dt + σ(Vt) dWt, (SDE)

where the drift coefficient µ(x) = a′(x)
2p(x) , the diffusion coefficient

σ(x) =
√

a(x)
p(x) , the initial state V0 has distribution∆(x), and

{Wt, t > 0} is a Wiener process. Obviously, if a = 1 and p = 1,

we revert to the original case.

Density Estimation by Diffusion – p.28/38



Diffusion PDE

The pdf f̂(·; t) of Vt satisfies the linear diffusion PDE

∂

∂t
f̂(x; t) = Lf̂(x; t), x ∈ X , t > 0, (LD-PDE)

where L is the linear differential operator

L =
1

2

d

dx

(
a(x)

d

dx

(
·

p(x)

))
,

with initial condition f̂(x, 0) = ∆(x).

If the set X is bounded, we add the boundary condition

∂
∂x

(
bf(x;t)
p(x)

)
= 0 on ∂X , which ensures that the solution f̂(x; t)

integrates to unity.
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Diffusion PDE

We found that the choice a ≡ 1 (zero drift) works best.

The function p controls the smoothness of the KDE.

The theta KDE provides a good candidate for p.

When p(x) is a pdf, it is the stationary pdf of the diffusion

process, and

lim
t→∞

f̂(x; t) = p(x), x ∈ X .
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Diffusion PDE

Similar to the estimator (KDE-θ) and the Gaussian kernel density

estimator, we can write the solution of (LD-PDE) as:

f̂(x; t) =
1

N

N∑

i=1

κ(x, xi; t),

where for each fixed y ∈ X the diffusion kernel κ is the

fundamental solution to the Kolmogorov forward equation:

∂
∂tκ(x, y; t) = Lκ(x, y; t), x ∈ X , t > 0

κ(x, y; 0) = δy(x), x ∈ X .
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Example: Symmetric Double Claw

N = 105 and ISE ratio = 0.33, the blue line shows the diffusion

estimate with a pilot estimate p (a = 1). The green line shows

the Abramson estimator.

!2 !1.5 !1 !0.5 0 0.5 1 1.5 2 2.5

0.15

0.2

0.25

0.3

0.35

0.4

Density Estimation by Diffusion – p.32/38



Extension: Higher Dimensions

The two-dimensional version of the heat equation is:

∂f̂

∂t
(x; t) =

1

2

(
∂2f̂

∂x2
1

(x; t) +
∂2f̂

∂x2
2

(x; t)

)

, ∀t > 0, x ∈ X

f̂(x; 0) = ∆(x)

n ·∇f̂(x; t) = 0, ∀t > 0,

where x = (x1, x2) belongs to the set X ⊆ R2, the initial con-

dition ∆(x) is the empirical density of the data, and in the Neu-

mann boundary condition n denotes the unit outward normal to

the boundary ∂X at x.
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Example

Consider the density estimation of 600 uniformly distributed

points on the domain

X = {x : x2
1 + (4x2)

2 " 4} .

We assume that the domain of the dataX is known prior to the

estimation.

Existing methods could not handle such two-dimensional

(boundary) density estimation problems either because the

geometry of the setX is too complex, or because the resulting

estimator is not a bona-fide pdf.
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Example
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Conclusions

The (standard) Gaussian kernel density estimate can be

viewed as a solution to the Heat Equation onR.

Solving the heat equation on [0, 1] gives a kernel density

estimate in terms of theta functions.

This formulation allows for fast computation of the

bandwidth and the density estimate itself.

We found a more accurate bandwidth selection rule.

By considering the Kolmogorov PDE of a general diffusion

process one can obtain even more accurate kernel density

estimators.

The same idea works in higher dimensions.
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Thank You!
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