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From Set to Cat.

From group
action to
Kontsevich

Swiss-Cheese

conjecture Deﬁ n |t|0n

pichadl A category C consists of a set of objects of Ob(C) and for any
a,b € C the set C(a, b) (morphisms between a and b). It is
equipped with an associative composition map

Categorification|

C(a, b) x C(b,c) — C(a,c)
a,b,c € Ob(C) and for any a € Ob(C) a map
Id:1— C(a,a),

which plays the role of an identity morphism.
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Definition

Categorification| A fu nctor

F:C—D

between two categories is given by a map Fy : Ob(C) — Ob(D)
and a family of maps F, 5 : C(a, b) — D(Fo(a), Fo(b)) which
preserve composition and identity morphisms.
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- sets and functions form a category Set;
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- vector spaces and linear operators form a category Vect;

groups and their homomorphisms form a category Gr;

monoids and their homomorphism form a category Mon.

categories and functors form a category Cat.

Observe, that Mon is a subcategory of Cat which consists of
categories which have only one object.



Decategorification

From group For a category C there is a relation ~ on its set of objects.

action to
ontsevich a~ b if there exists f : a — b and g : b — a such that
wiss-Lheese
conjecture f-g=id and g - f = id. This relation is an equivalence
Michael relation and so we can speak about classes of equivalences of

S objects of C. Let D(C) be the set of such classes.
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From group For a category C there is a relation ~ on its set of objects.

action to
ontsevich a~ b if there exists f : a — b and g : b — a such that
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conjecture f-g=id and g - f = id. This relation is an equivalence
Michael relation and so we can speak about classes of equivalences of

S objects of C. Let D(C) be the set of such classes.

Categorification|

This gives a functor
D : Cat — Set
called

Decategorification.

Example:

m Let FinSet be the category of finite sets then
D(FinSet) = N.



Categorification

From group
action to
Kontsevich
Swiss-Cheese

conjecture Most of modern mathematics is done inside the category Set.
The functor of decategorification shows that above Set there is
a much bigger universe. Any mathematics we do in Set is a
shadow of some more complicated mathematics in Cat.

Categorification|



Categorification

From group
action to
Kontsevich
Swiss-Cheese

conjecture Most of modern mathematics is done inside the category Set.
Michae The functor of decategorification shows that above Set there is
a much bigger universe. Any mathematics we do in Set is a
shadow of some more complicated mathematics in Cat.

Categorification|

Categorification is an art of reconstructing such a
mathematics !



Categorification

From group
action to
Kontsevich
Swiss-Cheese

conjecture Most of modern mathematics is done inside the category Set.

Michael The functor of decategorification shows that above Set there is
a much bigger universe. Any mathematics we do in Set is a

shadow of some more complicated mathematics in Cat.

Categorification|

Categorification is an art of reconstructing such a
mathematics !

It is a difficult task since there are no precise rules for doing it
(no "good" inverse functor) . For example,
D(FinSet) = D(Vects) = N.
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Categorification of algebraic structures.
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conjecture

Michael Categorification: take any algebraic structure on a set or
S family of sets. Replace sets by categories and maps by
ST functors. But what about relations?

The source of complication: Cat is unusual category, it is a
2-category. It means that functors from A to B form a
category Cat(A, B)! So relations should be replaced by
isomorphisms not by equalities. And these isomorphism should
satisfy some further relations (coherence relations).



Functor categories.

From group
action to
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conjecture Definition

e Let F, G : A — B be two functors. A natural transformation
“mm ¢ : F — G consists of a family of maps
Sl 0, F(x) — G(x),x € Ob(A) such that for any f : x — y in A
the following square commutes:

(o
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and a special object | € M, such that ® is associative up to
coherent isomorphism and / plays the role of unit with respect
to ® again up to coherent isomorphisms.
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and a special object | € M, such that ® is associative up to
coherent isomorphism and / plays the role of unit with respect
to ® again up to coherent isomorphisms.

Examples:

m Set with cartesian product x and one element set 1 as
unit.
m Vecty, with tensor product ® and basic field k as unit.
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s Definition

Michael An action of a monoid M on a set X is a function

Batanin

Categorification —— Mx X=X

such that (mn) - x=m-(n-x) and e- x = x.

An action of M on X is the same as monoid homomorphism

M — Set(X, X).
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conjecture isomorphism (bijection)
Michael

Batanin Set(X X \/7 Z) ~ Set(X, Set(Y, Z))

Categorification|

This property is fundamental. In categorical language: the
category Set is closed monoidal category.
Other examples of closed monoidal categories:

m Vect,

m Cat with respect to cartesian product of categories.
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e Categorifying monoid action we obtain an action of a monoidal
Batanin category M on a category V. Since Cat is closed monoidal
category we have the following:

Categorification|

Theorem

An action of a monoidal category M on a category X is the
same as monoidal functor

M — Cat(X, X).
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: M(x,%) = k and X(x,*) = A are monoids.
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k has also a second multiplication generated by ®. and this
multiplication

— R —:kxk—k

is a homomorphism of monoids!

It means that k is a commutative monoid by classical
Eckman-Hilton argument.
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Unpacking the axioms for action of M on X we see that they
are equivalent to the statement that A is a monoid in the
monoidal category of k-sets.

Categorification|

Linear version: replace Set by the category of abelian groups
and cartesian product by their tensor product. Then k is a
commutative ring and A is just a ring. The axiom of action
means that A is not just a ring but a k-algebra.
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Batanin The objects of this category are functors F : X — X i.e.
homomorphisms of monoids
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f:A— A

A natural transfromation ¢ : F — G is given by a family of
morphisms F(a) — G(a) of X indexed by objects of X. Since
X has only one object and morphisms are elements of A such a
family is just an element x € A.
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conjecture

Michael X
Batanin * [E— k
Categorification|
f(y) &g(y)
X
* EE—— *

for any y € C.
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e Any functor F : M — Cat(X, X) picks up a homomorphism
e f = F(x): A— A. Moreover, it maps k = M(x, ) to the set of
Michael . . .
Batanin natural transformations from F to F that is to the submonoid
of y € A such that xf(y) = f(y)x.

Categorification|

If F is also monoidal it must preserve the monoidal unit. Since
M has only one object this monoidal unit is the single object of
M but the monoidal unit of Cat(X, X) is the identity functor
Id : X — X. So, such a monoidal functor amounts to a monoid
map from k to

Z(C)={xe C|xy=yx, y € C}.
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Let k be a commutative monoid and A be a monoid. Then a
structure of a k-algebra on A is equivalent to a map of
commutative monoids:

Categorification|

k — Z(A).

As we will see later this version is actually a decatigorification
of the original Kontsevich Swiss-Cheese conjecture.
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Michael

Batanin Analogously, categories form a new kind of structure: the
2-category Cat. In general a 2-category is a category whose
Going to hom sets are not sets but categories. So, a 2-category itself is a

infinity.

categorification of the notion of category.

The 2-categories form a 2-category Cat,. And we have a
2-functor of next decategorification

D : Cat, — Cat; = Cat.

We again can ask about categorification as a "lifting” of
structures from Cat to Cats.
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It can be promoted to a 3-category, so we can continue the
process of categorification until infinity.

Going to
infinity.



From Cat, to Cat.

From group
action to
Kontsevich
Swiss-Cheese

conjecture Caty is an unusual 2-category ( like Cat was unusual category).
Michael It can be promoted to a 3-category, so we can continue the
S process of categorification until infinity.

e As in Set = Catg and Cat = Cat; we can try to equipped Cat,
with a product x, with respect to which Cat, is closed
monoidal n-category i.e.

Catp(X x Y, Z) =~ Catys(X, Catp(Y, Z))

(but equivalence should be understood in more and more weak
sense).
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gt  An action of a monoidal n-category M on an n-category X is
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M — Catq(X, X).

Going to
infinity.

Theorem ( SC-conjecture, one object case)

Let k be a braided monoidal n-category and A be a monoidal
n-category. Then a structure of a k-algebra on A is equivalent
to a map of braided monoidal n-categories:

k — Z(A).
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SC-conjecture, more degeneration.
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conjecture Theorem (SC-conjecture with m degeneration)
Michael

Batanin Let k be an m + 1-monoidal n-category and A be an

m-monoidal n-category. Then a structure of an k-algebra on A
@i e is equivalent to a map of m + 1-monoidal n-categories:
infinity.
k — Z(A),

where Z(A) is the m 4+ 1-monoidal center of the m-monoidal
n-category A.

In general it is not very well understood yet for n > 3.
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Kontsevich Instead of Cat let consider its subcategory of groupoids Grp. A

Swiss-Cheese

conjecture category is a groupoid if all its morphisms are isomorphisms.
Michael
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We still have a decategorification functor
D : Grp — Set

Homotopy and we can ask about categorification in this sense.
theory and
categorifica-

tion

One can continue and ask about oco-groupoidofication. An
advantage of this is that the category of co-groupoids is much
better understood. It turned out that this is equivalent to the
classical homotopy category. So, co-groupoidofication amounts
to introducing topology and constructing homotopy theory
analogues of familiar structures (" homotopification” of
mathematics).
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m Homotopification of commutative monoids: Ep-algebras (

Homotopy algebras of little n-disks operad.)
theory and . . « L.
categorifica- m Homotopification of an associative k-algebras: Algebras of

tion .
Swiss-Cheese operads.

m Homotopification of the centre of an A.-algebra A:
Hochschild complex CH(A);
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m The homotopy centre CH(A) of an Ax-algebra A is a
Ey-algebra (Deligne’s conjecture) (many proofs exist);

m The algebra A is a CH(A)-algebra, that is there is an
action of the Swiss-Cheese operad on (CH(A), A)

(Dolgushev, Tamarkin, Tsigan 2009)
Kontsevich m For a Ey-algebra k a structure of a k-algebra on A is
Swiss-Cheese

oI equivalent (up to homotopy) to a map of Ey-algebras
k — CH(A).
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Conjecture (Kontsevich 1999)
m For an E,-algebra A the homotopy category of
E.1-algebras with an action on A has a terminal object
CH(A) ;

Kontsevich This terminal object is unique up to homotopy and called
Swiss-Cheese

conjecture Hochschild complex of E,-algebra A.
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(00, 1)-categorization

From group
action to

Kontsevich This is a mixture of co-groupoidofication and categorization.

S?:ﬁﬁff The idea is that we first apply oo-groupoidofication then we
Michael categorify. As a result we replace Cat by Caty, 1 that is
S categories whose hom-sets are equipped with topology (

(00, 1)-categories otherwise known as A..-categories).

Such categories have all properties necessary to categorify. In
particular, they form next category the so called
(00, 2)-category Cats 2 (Tamarkin 2006).

Moreover, there is a product of (0o, 1)-categories which is

oot closed (this follows from combination of Tamarkin's technics

and Batanin-Cisinski-Weber results). So we can repeat a story
with categorification of monoid action.
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SC-conjecture (oo, 1)-version.

From group
action to
Kontsevich Theorem
Swiss-Cheese
coniecire An action of a monoidal (oo, 1)-category M on an
Michael o 5
Batanin (00, 1)-category X is the same as monoidal (oo, 1)-functor

M — Catso1(X, X).

Corollary

Kontsevich Sweese-Cheese conjecture for n = 2.

Sketch of a .. . . . .
- Proof. This is one object version of the previous theorem which

is obtained immediately by applying Batanin's symmetrization
theorem for Swiss-Cheese 2-operad (Batanin 2008).
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SC-conjecture (oo, n)-version.

From group

et (o Theorem (Work in progress with Berger, Cisinski, Markl,
Kontsevich W b
Swiss-Cheese S er)

conjecture

An action of a monoidal (oo, n)-category M on an
(00, n)-category X is the same as monoidal (oo, n)-functor

Michael
Batanin

M — Catoon(X, X).

Corollary

Kontsevich Sweese-Cheese conjecture for arbitrary n

Sketch of a
proof. Proof. This is one object , one arrow, ..., one (n — 1)-arrow

version of the previous theorem which is obtained immediately
by applying Batanin's symmetrization theorem for Swiss-Cheese
n-operad (Batanin 2008).
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