From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

From group action to Kontsevich Swiss-Cheese conjecture

Michael Batanin

3 June 2011

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Definition

A category *C* consists of a set of objects of Ob(C) and for any $a, b \in C$ the set C(a, b) (morphisms between *a* and *b*). It is equipped with an associative composition map

$$C(a,b) \times C(b,c) \rightarrow C(a,c)$$

 $a, b, c \in Ob(C)$ and for any $a \in Ob(C)$ a map

 $Id: 1 \rightarrow C(a, a),$

which plays the role of an identity morphism.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Definition

A functor

$$F: C \rightarrow D$$

between two categories is given by a map $F_0: Ob(C) \rightarrow Ob(D)$ and a family of maps $F_{a,b}: C(a,b) \rightarrow D(F_0(a), F_0(b))$ which preserve composition and identity morphisms.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Examples:

sets and functions form a category Set;

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

From group action to Kontsevich Swiss-Cheese conjecture

Categorification

Examples:

- sets and functions form a category Set;
- vector spaces and linear operators form a category Vect;

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Examples:

- sets and functions form a category Set;
- vector spaces and linear operators form a category Vect;

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

groups and their homomorphisms form a category Gr;

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Examples:

- sets and functions form a category Set;
- vector spaces and linear operators form a category Vect;
- groups and their homomorphisms form a category Gr;
- monoids and their homomorphism form a category Mon.

categories and functors form a category Cat.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Examples:

- sets and functions form a category Set;
- vector spaces and linear operators form a category Vect;
- groups and their homomorphisms form a category Gr;
- monoids and their homomorphism form a category Mon.
- categories and functors form a category Cat.

Observe, that *Mon* is a subcategory of *Cat* which consists of categories which have only one object.

Decategorification

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. For a category C there is a relation \simeq on its set of objects. $a \simeq b$ if there exists $f : a \rightarrow b$ and $g : b \rightarrow a$ such that $f \cdot g = id$ and $g \cdot f = id$. This relation is an equivalence relation and so we can speak about classes of equivalences of objects of C. Let D(C) be the set of such classes.

Decategorification

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. For a category C there is a relation \simeq on its set of objects. $a \simeq b$ if there exists $f : a \rightarrow b$ and $g : b \rightarrow a$ such that $f \cdot g = id$ and $g \cdot f = id$. This relation is an equivalence relation and so we can speak about classes of equivalences of objects of C. Let D(C) be the set of such classes.

This gives a functor

 $D: Cat \rightarrow Set$

called

Decategorification.

Decategorification

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. For a category C there is a relation \simeq on its set of objects. $a \simeq b$ if there exists $f : a \rightarrow b$ and $g : b \rightarrow a$ such that $f \cdot g = id$ and $g \cdot f = id$. This relation is an equivalence relation and so we can speak about classes of equivalences of objects of C. Let D(C) be the set of such classes.

This gives a functor

 $D: Cat \rightarrow Set$

called

Decategorification.

Example:

• Let FinSet be the category of finite sets then $D(FinSet) = \mathbb{N}$.

Categorification

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Most of modern mathematics is done inside the category *Set*. The functor of decategorification shows that above *Set* there is a much bigger universe. Any mathematics we do in *Set* is a shadow of some more complicated mathematics in *Cat*.

Categorification

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Most of modern mathematics is done inside the category *Set*. The functor of decategorification shows that above *Set* there is a much bigger universe. Any mathematics we do in *Set* is a shadow of some more complicated mathematics in *Cat*.

Categorification is an art of reconstructing such a mathematics !

Categorification

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Most of modern mathematics is done inside the category *Set*. The functor of decategorification shows that above *Set* there is a much bigger universe. Any mathematics we do in *Set* is a shadow of some more complicated mathematics in *Cat*.

Categorification is an art of reconstructing such a mathematics !

It is a difficult task since there are no precise rules for doing it (no "good" inverse functor). For example, $D(FinSet) = D(Vect_{fd}) = \mathbb{N}.$

▲□▼ ▲□▼ ▲□▼ ▲□▼ ■ ● ● ●

Categorification of algebraic structures.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Categorification: take any algebraic structure on a set or family of sets. Replace sets by categories and maps by functors. But what about relations?

Categorification of algebraic structures.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Categorification: take any algebraic structure on a set or family of sets. Replace sets by categories and maps by functors. But what about relations?

The source of complication: *Cat* is unusual category, it is a 2-category. It means that functors from A to B form a category Cat(A, B)! So relations should be replaced by isomorphisms not by equalities. And these isomorphism should satisfy some further relations (coherence relations).

Functor categories.

Definition

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Let $F, G : A \to B$ be two functors. A natural transformation $\phi : F \to G$ consists of a family of maps $\phi_x : F(x) \to G(x), x \in Ob(A)$ such that for any $f : x \to y$ in Athe following square commutes:

Monoidal categories

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Monoidal category is categorification of the concept of monoid. It is a category M equipped with a functor

 $\otimes: M \times M \to M$

and a special object $I \in M$, such that \otimes is associative up to coherent isomorphism and I plays the role of unit with respect to \otimes again up to coherent isomorphisms.

Monoidal categories

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Monoidal category is categorification of the concept of monoid. It is a category M equipped with a functor

 $\otimes: M \times M \to M$

and a special object $I \in M$, such that \otimes is associative up to coherent isomorphism and I plays the role of unit with respect to \otimes again up to coherent isomorphisms.

Examples:

- Set with cartesian product × and one element set 1 as unit.
- Vect_k with tensor product \otimes and basic field k as unit.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Definition

An action of a monoid M on a set X is a function

 $- \cdot - M \times X \to X$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

such that
$$(mn) \cdot x = m \cdot (n \cdot x)$$
 and $e \cdot x = x$.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Definition

An action of a monoid M on a set X is a function

$$- \cdot - M \times X \to X$$

such that
$$(mn) \cdot x = m \cdot (n \cdot x)$$
 and $e \cdot x = x$.

Theorem

¢

An action of M on X is the same as monoid homomorphism

$$M \rightarrow Set(X, X).$$

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. **Proof.** We use the following property of *Set* : There is an isomorphism (bijection)

$$Set(X \times Y, Z) \simeq Set(X, Set(Y, Z)).$$

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. **Proof.** We use the following property of *Set* : There is an isomorphism (bijection)

$$Set(X \times Y, Z) \simeq Set(X, Set(Y, Z)).$$

This property is fundamental. In categorical language: **the category** *Set* **is closed monoidal category**.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. **Proof.** We use the following property of *Set* : There is an isomorphism (bijection)

$$Set(X \times Y, Z) \simeq Set(X, Set(Y, Z)).$$

This property is fundamental. In categorical language: **the category** *Set* **is closed monoidal category**.

Other examples of closed monoidal categories:

- Vect_k
- Cat with respect to cartesian product of categories.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Categorifying monoid action we obtain an action of a monoidal category M on a category V. Since *Cat* is closed monoidal category we have the following:

Theorem

An action of a monoidal category M on a category X is the same as monoidal functor

$$M \rightarrow Cat(X, X).$$

▲□▼ ▲□▼ ▲□▼ ▲□▼ ■ ● ● ●

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. In the previous theorem it may happen that monoidal categories M and X has only one object *. It means that M(*,*) = k and X(*,*) = A are monoids.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. In the previous theorem it may happen that monoidal categories M and X has only one object *. It means that M(*,*) = k and X(*,*) = A are monoids.

k has also a second multiplication generated by $\otimes.$ and this multiplication

$$-\otimes -: k \times k \to k$$

is a homomorphism of monoids!

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. In the previous theorem it may happen that monoidal categories M and X has only one object *. It means that M(*,*) = k and X(*,*) = A are monoids.

k has also a second multiplication generated by $\otimes.$ and this multiplication

 $-\otimes -: \mathbf{k} \times \mathbf{k} \to \mathbf{k}$

is a homomorphism of monoids!

It means that k is a commutative monoid by classical Eckman-Hilton argument.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Unpacking the axioms for action of M on X we see that they are equivalent to the statement that A is a monoid in the monoidal category of k-sets.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Unpacking the axioms for action of M on X we see that they are equivalent to the statement that A is a monoid in the monoidal category of k-sets.

Linear version: replace *Set* by the category of abelian groups and cartesian product by their tensor product. Then k is a commutative ring and A is just a ring. The axiom of action means that A is not just a ring but a k-algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

What is Cat(X, X) when X has only one object?

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. What is Cat(X, X) when X has only one object?

The objects of this category are functors $F : X \rightarrow X$ i.e. homomorphisms of monoids

 $f: A \rightarrow A.$

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

What is Cat(X, X) when X has only one object?

The objects of this category are functors $F : X \to X$ i.e. homomorphisms of monoids

 $f: A \rightarrow A.$

A natural transformation $\phi: F \to G$ is given by a family of morphisms $F(a) \to G(a)$ of X indexed by objects of X. Since X has only one object and morphisms are elements of A such a family is just an element $x \in A$.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Naturality square

means that such an element x satisfies

xg(y) = f(y)x

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

for any $y \in C$.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Any functor $F : M \to Cat(X, X)$ picks up a homomorphism $f = F(*) : A \to A$. Moreover, it maps k = M(*, *) to the set of natural transformations from F to F that is to the submonoid of $y \in A$ such that xf(y) = f(y)x.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Any functor $F : M \to Cat(X, X)$ picks up a homomorphism $f = F(*) : A \to A$. Moreover, it maps k = M(*, *) to the set of natural transformations from F to F that is to the submonoid of $y \in A$ such that xf(y) = f(y)x.

If *F* is also monoidal it must preserve the monoidal unit. Since *M* has only one object this monoidal unit is the single object of *M* but the monoidal unit of Cat(X, X) is the identity functor $Id : X \to X$. So, such a monoidal functor amounts to a monoid map from *k* to

$$Z(C) = \{x \in C \mid xy = yx, y \in C\}.$$

Kontsevich Swiss-Cheese conjecture, baby version.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Theorem

Let k be a commutative monoid and A be a monoid. Then a structure of a k-algebra on A is equivalent to a map of commutative monoids:

$$k \rightarrow Z(A).$$

As we will see later this version is actually a decatigorification of the original Kontsevich Swiss-Cheese conjecture.

▲□▼ ▲□▼ ▲□▼ ▲□▼ ■ ● ● ●

From *Cat* to *Cat*₂

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. The first step of categorification was to recognise that the totality of all sets form a new structure: the category *Set*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

From Cat to Cat₂

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. The first step of categorification was to recognise that the totality of all sets form a new structure: the category *Set*.

Analogously, categories form a new kind of structure: the 2-category *Cat*. In general a 2-category is a category whose hom sets are not sets but categories. So, a 2-category itself is a categorification of the notion of category.

From Cat to Cat₂

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. The first step of categorification was to recognise that the totality of all sets form a new structure: the category *Set*.

Analogously, categories form a new kind of structure: the 2-category *Cat*. In general a 2-category is a category whose hom sets are not sets but categories. So, a 2-category itself is a categorification of the notion of category.

The 2-categories form a 2-category Cat_2 . And we have a 2-functor of next decategorification

$$D: Cat_2 \rightarrow Cat_1 = Cat.$$

▲□▼ ▲□▼ ▲□▼ ▲□▼ ■ ● ● ●

We again can ask about categorification as a "lifting" of structures from *Cat* to *Cat*₂.

From Cat_2 to Cat_{∞} .

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. Cat_2 is an unusual 2-category (like Cat was unusual category). It can be promoted to a 3-category, so we can continue the process of categorification until infinity.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From Cat_2 to Cat_{∞} .

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. *Cat*₂ is an unusual 2-category (like *Cat* was unusual category). It can be promoted to a 3-category, so we can continue the process of categorification until infinity.

As in $Set = Cat_0$ and $Cat = Cat_1$ we can try to equipped Cat_n with a product \times_n with respect to which Cat_n is closed monoidal *n*-category i.e.

$$Cat_n(X \times Y, Z) \simeq Cat_n(X, Cat_n(Y, Z))$$

(but equivalence should be understood in more and more weak sense).

SC-conjecture, *n*-th version.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Theorem

An action of a monoidal n-category M on an n-category X is the same as monoidal n-functor

 $M \rightarrow Cat_n(X, X).$

SC-conjecture, *n*-th version.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Theorem

An action of a monoidal n-category M on an n-category X is the same as monoidal n-functor

 $M \rightarrow Cat_n(X, X).$

Theorem (SC-conjecture, one object case)

Let k be a braided monoidal n-category and A be a monoidal n-category. Then a structure of a k-algebra on A is equivalent to a map of braided monoidal n-categories:

$$k \rightarrow Z(A).$$

SC-conjecture, more degeneration.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Theorem (SC-conjecture with *m* degeneration)

Let k be an m + 1-monoidal n-category and A be an m-monoidal n-category. Then a structure of an k-algebra on A is equivalent to a map of m + 1-monoidal n-categories:

 $k \rightarrow Z(A),$

where Z(A) is the m + 1-monoidal center of the m-monoidal n-category A.

SC-conjecture, more degeneration.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Theorem (SC-conjecture with *m* degeneration)

Let k be an m + 1-monoidal n-category and A be an m-monoidal n-category. Then a structure of an k-algebra on A is equivalent to a map of m + 1-monoidal n-categories:

 $k \rightarrow Z(A),$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where Z(A) is the m + 1-monoidal center of the m-monoidal n-category A.

In general it is not very well understood yet for n > 3.

Groupoidofication

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. One can start categorification in a little bit different way. Instead of *Cat* let consider its subcategory of groupoids *Grp*. A category is a groupoid if all its morphisms are isomorphisms.

Groupoidofication

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. One can start categorification in a little bit different way. Instead of *Cat* let consider its subcategory of groupoids *Grp*. A category is a groupoid if all its morphisms are isomorphisms.

We still have a decategorification functor

 $D: \mathit{Grp} \to \mathit{Set}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

and we can ask about categorification in this sense.

Groupoidofication

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. One can start categorification in a little bit different way. Instead of *Cat* let consider its subcategory of groupoids *Grp*. A category is a groupoid if all its morphisms are isomorphisms.

We still have a decategorification functor

 $D: \mathit{Grp} \to \mathit{Set}$

and we can ask about categorification in this sense.

One can continue and ask about ∞ -groupoidofication. An advantage of this is that the category of ∞ -groupoids is much better understood. It turned out that this is equivalent to the classical homotopy category. So, ∞ -groupoidofication amounts to introducing topology and constructing homotopy theory analogues of familiar structures ("homotopification" of mathematics).

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. ■ Homotopification of monoids: *E*₁-algebras (or *A*_∞-algebras), they are monoids up to all higher homotopies.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

- Homotopification of monoids: *E*₁-algebras (or *A*_∞-algebras), they are monoids up to all higher homotopies.
- Homotopification of commutative monoids: E_n-algebras (algebras of little n-disks operad.)

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

- Homotopification of monoids: *E*₁-algebras (or *A*_∞-algebras), they are monoids up to all higher homotopies.
- Homotopification of commutative monoids: E_n-algebras (algebras of little n-disks operad.)
- Homotopification of an associative k-algebras: Algebras of Swiss-Cheese operads.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

- Homotopification of monoids: *E*₁-algebras (or *A*_∞-algebras), they are monoids up to all higher homotopies.
- Homotopification of commutative monoids: E_n-algebras (algebras of little n-disks operad.)
- Homotopification of an associative k-algebras: Algebras of Swiss-Cheese operads.

▲□▼ ▲□▼ ▲□▼ ▲□▼ ■ ● ● ●

■ Homotopification of the centre of an A_∞-algebra A: Hochschild complex CH(A);

Original Swiss-Cheese conjecture for n = 2

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Conjecture (Kontsevich 1999)

■ The homotopy centre CH(A) of an A_∞-algebra A is a E₂-algebra (Deligne's conjecture) (many proofs exist);

Original Swiss-Cheese conjecture for n = 2

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Conjecture (Kontsevich 1999)

- The homotopy centre CH(A) of an A_∞-algebra A is a E₂-algebra (Deligne's conjecture) (many proofs exist);
- The algebra A is a CH(A)-algebra, that is there is an action of the Swiss-Cheese operad on (CH(A), A) (Dolgushev, Tamarkin, Tsigan 2009)

Original Swiss-Cheese conjecture for n = 2

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Conjecture (Kontsevich 1999)

- The homotopy centre CH(A) of an A_∞-algebra A is a E₂-algebra (Deligne's conjecture) (many proofs exist);
- The algebra A is a CH(A)-algebra, that is there is an action of the Swiss-Cheese operad on (CH(A), A) (Dolgushev, Tamarkin, Tsigan 2009)
- For a E₂-algebra k a structure of a k-algebra on A is equivalent (up to homotopy) to a map of E₂-algebras k → CH(A).

Original Swiss-Cheese conjecture for arbitrary n.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Conjecture (Kontsevich 1999)

Categorification.

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. ■ For an E_n-algebra A the homotopy category of E_{n+1}-algebras with an action on A has a terminal object CH(A) ;

Original Swiss-Cheese conjecture for arbitrary n.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Conjecture (Kontsevich 1999)

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof. ■ For an E_n-algebra A the homotopy category of E_{n+1}-algebras with an action on A has a terminal object CH(A) ;

▲□▼ ▲□▼ ▲□▼ ▲□▼ ■ ● ● ●

This terminal object is unique up to homotopy and called Hochschild complex of E_n -algebra A.

$(\infty,1)$ -categorization

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorification

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

This is a mixture of ∞ -groupoidofication and categorization. The idea is that we first apply ∞ -groupoidofication then we categorify. As a result we replace *Cat* by *Cat*_{$\infty,1$} that is categories whose hom-sets are equipped with topology ($(\infty, 1)$ -categories otherwise known as A_{∞} -categories).

$(\infty,1)$ -categorization

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

This is a mixture of ∞ -groupoidofication and categorization. The idea is that we first apply ∞ -groupoidofication then we categorify. As a result we replace *Cat* by *Cat*_{$\infty,1$} that is categories whose hom-sets are equipped with topology ($(\infty, 1)$ -categories otherwise known as A_{∞} -categories).

Such categories have all properties necessary to categorify. In particular, they form next category the so called $(\infty, 2)$ -category $Cat_{\infty,2}$ (Tamarkin 2006).

$(\infty,1)$ -categorization

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

This is a mixture of ∞ -groupoidofication and categorization. The idea is that we first apply ∞ -groupoidofication then we categorify. As a result we replace *Cat* by *Cat*_{$\infty,1$} that is categories whose hom-sets are equipped with topology ($(\infty, 1)$ -categories otherwise known as A_{∞} -categories).

Such categories have all properties necessary to categorify. In particular, they form next category the so called $(\infty, 2)$ -category $Cat_{\infty,2}$ (Tamarkin 2006).

Moreover, there is a product of $(\infty, 1)$ -categories which is closed (this follows from combination of Tamarkin's technics and Batanin-Cisinski-Weber results). So we can repeat a story with categorification of monoid action.

SC-conjecture ($\infty, 1$)-version.

From group action to Kontsevich Swiss-Cheese conjecture

Theorem

Michael Batanin

Categorification

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

An action of a monoidal $(\infty, 1)$ -category M on an $(\infty, 1)$ -category X is the same as monoidal $(\infty, 1)$ -functor

 $M \rightarrow Cat_{\infty,1}(X,X).$

SC-conjecture ($\infty, 1$)-version.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

An action of a monoidal $(\infty, 1)$ -category M on an $(\infty, 1)$ -category X is the same as monoidal $(\infty, 1)$ -functor

 $M \rightarrow Cat_{\infty,1}(X,X).$

Corollary

Theorem

Kontsevich Sweese-Cheese conjecture for n = 2.

Proof. This is one object version of the previous theorem which is obtained immediately by applying Batanin's symmetrization theorem for Swiss-Cheese 2-operad (Batanin 2008).

SC-conjecture (∞ , *n*)-version.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Theorem (Work in progress with Berger, Cisinski, Markl, Weber)

An action of a monoidal (∞, n) -category M on an (∞, n) -category X is the same as monoidal (∞, n) -functor

$$M \rightarrow Cat_{\infty,n}(X,X).$$

SC-conjecture (∞ , *n*)-version.

From group action to Kontsevich Swiss-Cheese conjecture

> Michael Batanin

Categorification.

Going to infinity.

Homotopy theory and categorifica tion

Kontsevich Swiss-Cheese conjecture

Sketch of a proof.

Theorem (Work in progress with Berger, Cisinski, Markl, Weber)

An action of a monoidal (∞, n) -category M on an (∞, n) -category X is the same as monoidal (∞, n) -functor

$$M \rightarrow Cat_{\infty,n}(X,X).$$

Corollary

Kontsevich Sweese-Cheese conjecture for arbitrary n

Proof. This is one object , one arrow, ..., one (n - 1)-arrow version of the previous theorem which is obtained immediately by applying Batanin's symmetrization theorem for Swiss-Cheese *n*-operad (Batanin 2008).