Why would a pure mathematician work in biology?

Andrew Francis

School of Computing and Mathematics University of Western Sydney

April 2011

4 Reflections

April 2011

- Mark Tanaka: "how might one assess the severity of an outbreak of tuberculosis using molecular data".
- TB is a major disease:
 - Caused by the bacterium *Mycobacterium tuberculosis*, transmitted through the air;
 - 1.6 million die each year from TB;
 - A third of the world's population carries the pathogen.
- It was exciting because it is clearly so important, and
- I thought it sounded like a graph theory problem.

Andrew Francis (UWS)

 $\mathsf{Pure}\;\mathsf{Maths}\to\mathsf{Biology}$

April 2011 3 / 32

Graph theory?

- One can think of an outbreak as a directed graph.
- I imagined data might be able to be represented something like this (with arrows):

• An index of severity from the graph?

- Work questions:
 - Am I allowed to do this?
 - What is my job?
 - Will my employers be disappointed if I stray from the path?

• Moral imperatives?

- Did I have a moral obligation to algebra? After all, it seemed I was trained for that.
- Research issues?
 - Will I lose whatever credibility I have among algebraists?
 - Will I be able to maintain two disjoint branches of research?

```
Andrew Francis (UWS)
```

 $\mathsf{Pure}\;\mathsf{Maths}\to\mathsf{Biology}$

April 2011 5 / 32

Answers?

- Work:
 - **1** Nothing in my contract said I had to do only algebra research.
- Moral imperatives?
 - 1 did feel a certain betrayal.
- Research issues?
 - Credibility?
 - Maintaining output in algebra?

These were serious: it is hard enough trying to stay at the cutting edge of algebra when it's one's only research area.

- Conclusions:
 - Hedonism? It was pleasant and satisfying research to do, and people to do it with, so I did it.
 - I would do my best to continue to work in both.

What the TB data look like

- The molecular data in general breaks the sample into clusters with an identical genotype.
- Genotyping data look like this:

Interpreting data

• How can you use data like these to tell how "bad" an outbreak is?

Type n°	Spoligotype description (binary)	Total n°	G	M	С	Н
12		2	2	0	0	0
13		2	2	0	0	0
14		22	21	1	0	0
92		2	0	0	2	0
70		6	2	0	0	4
91		5	0	0	0	5
71		5	0	0	5	(
53		44	20	4	16	4
119		4	0	3	0	
51		5	5	0	0	(
60		3	0	0	3	(
81		10	0	0	10	
20		10	3	2	4	
17		19	9	2	3	
93		8	3	0	0	1
33		11	0	0	11	
42		28	9	0	14	1
5		4	1	2	0	
80		6	0	0	6	
45		10	4	6	0	
47		8	1	0	7	(
2		3.5	7	2	15	4

Some of the spoligotypes from Duchene et al., 2003

- Some assumptions have been common, for example,
 - homoplasy is rare enough to ignore,
 - the mutation process is slow enough to ignore.
- These imply each "cluster" arises from a single re-activated source, and so remaining cases result from recent transmission.

A recent transmission index

- The proportion of recent cases according to this model is often used as a measure of the severity of the outbreak.
- If there are *n* isolates, *g* genotypes and *n_i* cases of genotype *i*, this proportion is

$$\frac{1}{n}\sum_{1\leq i\leq g}(n_i-1)=\frac{n-g}{n}=1-\frac{g}{n}.$$

- Is it really likely that this reflects anything like the "severity" of an outbreak?
 - It is sensitive to additional re-activated cases (singleton clusters), and
 - it does not account for mutation within the outbreak:
 - a high mutation rate may produce many small clusters.

Andrew Francis (UWS)

Pure Maths \rightarrow Biology

April 2011 9 / 32

What is severity?

- Is "severity"
 - the reproductive number (the average number of cases each individual infects)?
 - the rate of growth of the population?
- The former of these is the average out-degree of the (unknown) directed graph representing the outbreak, whose nodes are the individual cases and where edges represent transmission.
- The latter is difficult to establish with flat data (without a time reference).
- We developed an alternative index incorporating mutation, based on the MLE for the reciprocal of the generation time.
 - It did better in tests, but not well enough. (for instance, it was sensitive to sample size).

[Tanaka & Francis, Infection, Genetics and Evolution, 2005]

Alternatives to indices:

- parameter estimation using approximate Bayesian computation (ABC).
- *velative* growth rates of individual clusters.

- Construct a simple model of an outbreak that incorporates both transmission and mutation: an extension of the linear birth-death process.
- Input parameters are the mutation rate μ , birth rate α , death rate δ per case per year.
 - Events occur stochastically.
 - Assume some things mutation rate, transmission rate are constant during an outbreak.
- Run the model simulation with different parameter values, selecting those parameters that better fit the observed data (according to some chosen summary statistics).
- (involve an ABC expert: Scott Sisson, UNSW).

April 2011 12 / 32

1. ABC parameter estimates

- Compound parameters estimated:
 - nett transmission rate $\alpha \delta$: 0.68 per case per year (median)
 - doubling time $\ln 2/(\alpha \delta)$: 1.02 years
 - reproductive value α/δ : 3.43

[Tanaka, Francis, Luciani, Sisson, Genetics, 2006]

• These are consistent with other estimates obtained with different (epidemiological) methods.

Andrew Francis (UWS)	Pure Maths $ ightarrow$ Biology	April 2011	13 / 32

1. ABC: studying drug resistance

This idea can be extended to model the evolution of drug resistance.

Not shown: δ = rate of death or natural recovery; μ = marker mutation rate. [Luciani, Sisson, Jiang, Francis, Tanaka, *PNAS*, 2009]

- We used eleven summary statistics, and studied three data sets.
- The data were consistent with the drug resistant strains being at least as fit as the sensitive strains.

• Over 90% of drug resistant cases arose from transmission rather than treatment failure.

Aside: impact of results

- These ABC papers (*Genetics* 2006, *PNAS* 2009) have had greater impact, in terms of citations, than anything else l've been involved with.
- In pure mathematics, such "impact" is usually the result of the solution of a difficult and important problem.
- In this case, while we did address ("solve" is not the right word) difficult and significant problems, many citations have been to do with our use of ABC in epidemiology.
- In other words, our *methods* generated as much buzz as the results. (the methods were a result of the cross-disciplinary collaboration: biology, mathematics, statistics).
- [Disclaimer: this is an observation, not an endorsement of these measures of impact.]

April 2011 16 / 32

2. Relative growth rates

- With *spoligotyping*, more information about the mutation process is available.
- Spoligotypes (spacer oligo-nucleotide types) are essentially binary strings of length 43.

Some of the spoligotypes from Duchene et al., 2003

- Mutation occurs through deletions of adjacent blocks ightarrow
 - can identify genotypes (possibly) related by a single mutation, and
 - can infer the direction of the mutation.

Andrew Francis	(UWS)	Pure Maths $ ightarrow$ Biology	April 2011	17 / 32		
2 Relative growth rates						
Mutations mark time						

- Large clusters could be a result of rapid spread, or simply age.
- Heuristic:
 - given the mutation rate is fixed, the number of mutations a genotype has experienced indicates time.
 - therefore, the ratio of cluster-size to out-degree indicates rate of growth.

• We developed a method that identifies relatively fast spreading strains, correcting for multiple testing.

[Tanaka & Francis, PNAS, 2006]

Emerging strains

Applying this technique to some published data sets, several strains were identified as "emerging", including the W-Beijing strain.

p is the probability of observing fewer out-edges than actually observed.

Horizontal line represents the threshold under the Dunn-Sidak correction for multiple testing, significance level 0.25

```
Andrew Francis (UWS)Pure Maths → BiologyApril 2011
```

Reflections on doing TB research

- This research programme:
 - has been very satisfying, contributing to an important area (especially the drug resistance work)
 - contained some neat ideas (especially the emerging strains)
 - was a lot of fun because of the people I was working with.
- According to some modern measures, it was also successful probably more so than my algebra work:
 - Papers in well-ranked journals,
 - Grants.

19 / 32

There were some downsides...

• While I was pleased with some clever ideas, the mathematical theory was not very deep.

(There was some tricky stats, and we did use some ideas from graph theory and combinatorics).

• Opportunity cost: difficult to raise the depth and breadth of my algebra output.

I have stayed in a algebraic research groove.

 Results that relate to a specific molecular marker are rather impermanent, because technologies are improved and new markers are developed.

```
Andrew Francis (UWS)
```

Pure Maths ightarrow Biology

April 2011 21 / 32

Impermanence

 In 2008 we wrote The number of tuberculosis papers referring to IS6110 or spoligotyping is growing.

(Numbers from PubMed)

Luciani, Francis, Tanaka, Infection, Genetics & Evolution, 2008

• But since then:

	2007	2008	2009	2010
IS <i>6110</i>	64	73	58	59
Spoligotypes	64	77	72	79
both	23	26	17	21

- Quite a lot of the current papers referring to spoligotypes are using an extension involving *VNTR*.
- Some of our best ideas will soon be redundant.

April 2011

- There is a trade-off between immediacy and permanence:
 - On the one hand, one can develop ideas that help resolve immediate topical questions for a particular purpose.
 - On the other, one can address fundamental questions about the nature of living organisms.
- The latter are more permanent, and closer ontologically to mathematics.
- We are now studying processes giving rise to genome structures observed in bacteria.
- Evaluating hypotheses explaining such structure might be a more lasting contribution.

Andrew Francis (UWS)	Pure Maths $ ightarrow$ Biology	April 2011	23 / 32
<u> </u>			

Genome organisation Understanding what we see

- All bacteria have their DNA on a circular genome
- We are learning more about the structure of this DNA all the time.
- For instance, we know that genes on the same pathway are often located in the same region of the genome.
- We also know some of the evolutionary mechanisms that occur:
 - segments of DNA can be moved around (often "inverted")
 - segments can be "horizontally transferred" from a neighbouring organism
 - segments can be deleted, or duplicated.

April 2011 24 / 32

- One hypothesis asserts that *horizontal transfer* explains pathway clustering
- Another describes *cryptic variation*, in which a pathway is acquired despite a cost to the organism in carrying a partial pathway.
- These cannot be tested in the lab because of the timeframe, but can through models and simulations.
- These models generally involve quite a bit of combinatorics, and often simulations (deterministic or stochastic).

- Note that in none of the problems I have described has algebra reared its head.
- I will briefly describe some significant problems in bacterial evolution that *do* involve algebra.

DNA from near and afar

Local and topological evolution

 DNA up close is just a sequence of paired nucleotides {A, C, G, T} on a double helix.

- Locally, inversions are a major player in bacterial evolution.
 - These cut a segment of DNA and re-insert it with the opposite orientation.

inversions, etc

DNA Configurations

forget sequence data

topoisomerase

Topologies

forget knotting

Sequences

- *Topologically*, the actions of some enzymes known as *topoisomerase* cause knotting through cutting and rejoining at crossings of the strands.
 - These have been successfully studied using *tangle algebras*, even successfully predicting distributions of knots.

Andrew Francis (UWS)	Pure Maths $ ightarrow$ Biology	April 2011	27 / 32
Local evolution			
Inversions and Weyl groups			
, <u>, , , , , , , , , , , , , , , ,</u>			

- Inversions are not just permutations of regions of DNA.
- Because of the orientation on DNA nucleotides, they are signed permutations, and hence can be thought of as the action of a type B Weyl group.
- Would like to better understand evolutionary distance based on inversions, and reconstruct phylogenies based on inversions.
- Incorporating other evolutionary processes such as deletion gives rise to other algebraic models involving monoids.

- Tangle algebras, used to study knotting in DNA, are closely related to the family of diagram algebras including the Temperley-Lieb algebras and the Brauer centralizer algebras.
- These are connected to braid group algebras and Iwahori-Hecke algebras.

Andrew Francis (UWS)	Pure Maths $ ightarrow$ Biology	April 2011	29 / 32

Reflections

Pure and applied mathematics

- What distinguishes "pure" and "applied" mathematics?
 - Motivation?
- "Applied mathematics is mathematics that is applied"

(Jacqui Ramagge, Wollongong)

- She also said "I find these distinctions frustrating and divisive".
- My fellowship was listed by the ARC as "pure". I thought it was applied.
- Is there a distinction between what one is doing, and what one's aim is?
 - If one solves a mathematical problem that is motivated by an application, is that solution pure or applied? (Does it have to be "of independent interest" to be pure?)

30 / 32

- Why research?
 - Curiosity?
 - Desire to prove oneself?
 - To be significant or make a significant contribution?
 - To be immortal?
 - To solve problems (for the satisfaction)?
 - To fulfil an obligation to make use of our abilities?
- "I want to find neat math problems"

(Seth Sullivant 2008, Harvard/NC State).

- I wanted to find problems of real importance to biology.
- I reflect on my move to mathematical biology.
 - Does the Universe miss my contribution to algebra?
 - Or poetry? Politics?
- Aside from those considerations, if one doesn't feel a hunger to solve something, one is unlikely to succeed, or be satisfied.

Andrew Francis (UWS)	Pure Maths $ ightarrow$ Biology	April 2011	31 / 32

Thank you

More questions than answers...

April 2011 32 / 32