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Topological groups

A topological group is a group G with

! a (Hausdorff) topology, such that

! group operations are continuous.

That is, G has compatible topological and algebraic structures.
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Locally compact groups

A locally compact group is a topological group G with

! a locally compact (Hausdorff) topology, such that

! group operations are continuous.

Examples

1. G = (Rn,+)

2. G = SL(2,R) =
{(

a b
c d

)∣∣∣∣ a, b, c , d ∈ R, ad − bc = 1

}
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Haar measure

G locally compact group

Theorem (Haar, Weil 1930s)

∃ countably additive measure µ on the Borel subsets of G s.t.

! µ is left-invariant: ∀g ∈ G, ∀ Borel sets E

µ(gE ) = µ(E )

! µ(K ) < ∞ for each compact K ⊂ G

! every Borel set is outer regular, every open set is inner regular

Moreover µ is unique up to positive scalar multiplication.

µ is called a left Haar measure.

Locally compact groups have compatible algebraic, topological and
analytic structures.



Examples of Haar measure

Theorem (Haar, Weil 1930s)

A locally compact group G has a countably additive measure µ s.t.

! µ is left-invariant

! µ(K ) < ∞ for each compact K ⊂ G

! every Borel set is outer regular, every open set is inner regular

Moreover µ is unique up to positive scalar multiplication.

Examples

1. Lebesgue measure on G = (Rn,+)



Haar measure

Examples

1. Lebesgue measure on G = (Rn,+)

2. Compute Haar measure on G = SL(2,R) using Iwasawa
decomposition

g = kan

where k ∈ SO(2,R), a =

(
et 0
0 e−t

)
, n =

(
1 b
0 1

)
.
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Haar measure
G locally compact group, Haar measure µ

Examples

1. Lebesgue measure on G = (Rn,+)

2. G = SL(2,R) acts on upper half-plane

U = {z ∈ C | Im(z) > 0}

by Möbius transformations

(
a b
c d

)
· z =

az + b

cz + d

Action is homogeneous, by isometries w.r.t. hyperbolic metric.

Stabiliser of i is maximal compact K = SO(2,R).

Normalise Haar measure µ to be compatible with this action.
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Lattices

G locally compact group, Haar measure µ

A subgroup Γ < G is a lattice if

! Γ is discrete

! G/Γ has finite left-invariant measure.
By abuse of notation write µ(G/Γ) < ∞.



Lattices

G locally compact group, Haar measure µ

A subgroup Γ < G is a lattice if

! Γ is discrete

! µ(G/Γ) < ∞.

A lattice Γ < G is

! uniform (or cocompact) if G/Γ is compact

! otherwise, nonuniform (or noncocompact).
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Example of a uniform lattice

Example
Zn < Rn is discrete

Rn/Zn is n–torus, has finite Lebesgue measure, is compact, so Zn

is uniform lattice in Rn
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Example
SL(2,Z) < SL(2,R) is discrete
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Example of a nonuniform lattice

Example
SL(2,Z) < SL(2,R) is discrete

Action of Γ = SL(2,Z) on upper half-plane U induces tessellation

Haar measure µ on G = SL(2,R) is normalised so that

µ(G/Γ) = area of fundamental domain =
π

3



Example of a nonuniform lattice

Example
SL(2,Z) < SL(2,R) is discrete

µ(G/Γ) = area of fundamental domain = π
3

Non-compact fundamental domain ↔ SL(2,Z) is nonuniform
lattice in SL(2,R).



Question

Given a locally compact group G , are lattices in G finitely
generated?



Examples of finitely generated lattices

Examples

1. Every lattice Γ < Rn is isomorphic to Zn, hence is finitely
generated.



Examples of finitely generated lattices

Examples

1. Every lattice Γ < Rn is finitely generated.

2. SL(2,Z) < SL(2,R) is finitely generated by

(
1 1
0 1

)
and

(
0 −1
1 0

)

(Euclidean algorithm)



Examples of finitely generated lattices

Examples

1. Every lattice Γ < Rn is finitely generated.

2. SL(2,Z) < SL(2,R) is finitely generated by

(
1 1
0 1

)
and

(
0 −1
1 0

)

Geometrically, fundamental domain is finite-sided:
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G = SL(2,R) is a Lie group, Γ = SL(2,Z) is finitely generated.

What about lattices in other Lie groups?

1. Lie groups as locally compact groups

2. Examples of lattices in Lie groups

3. Finite generation of lattices in Lie groups
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Lie groups as locally compact groups

Examples

1. G = SL(n,R) is a real Lie group, hence a connected locally
compact group.

2. “p-adic Lie groups” such as G = SL(n,Qp) or
G = SL(n,Fq((t−1))) are locally compact but totally
disconnected.
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Examples

1. Γ = SL(n,Z) is a nonuniform lattice in G = SL(n,R).
2. G = SL(n,Qp) has uniform lattices but no nonuniform

lattices.



Lattices in real and “p-adic” Lie groups

Examples

1. Γ = SL(n,Z) is a nonuniform lattice in G = SL(n,R).
2. G = SL(n,Qp) has uniform lattices but no nonuniform

lattices.

3. Γ = SL(n,Fq[t]) is a nonuniform lattice in
G = SL(n,Fq((t−1))).



Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)

Let G be a higher-rank real or “p-adic” Lie group. Then every
lattice Γ < G is finitely generated.

Examples
For n ≥ 3, SL(n,Z) and SL(n,Fq[t]) are finitely generated.
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Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)

Let G be a higher-rank real or “p-adic” Lie group. Then every
lattice Γ < G is finitely generated.

Examples
For n ≥ 3, SL(n,Z) and SL(n,Fq[t]) are finitely generated.

Proof is via representation-theoretic property, Property (T), which
played vital role in many later rigidity results e.g.

Theorem (special case of Margulis Superrigidity, 1970s)

If Γ a lattice in G as above, then any linear representation of Γ
extends to the whole of G.
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Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)

Let G be a higher-rank real or “p-adic” Lie group. Then every
lattice Γ < G is finitely generated.

Proof is via representation-theoretic property, Property (T):

G has (T) =⇒ Γ has (T) =⇒ Γ is finitely generated

These implications hold for all locally compact groups G and all
lattices Γ < G .



Kazhdan’s Property (T)

G locally compact group

π : G → U(H) unitary representation of G on Hilbert space H.

Definition
Let ε > 0 and K ⊂ G be compact. A unit vector v ∈ H is
(ε,K )–invariant if ∀g ∈ K

||π(g)v − v || < ε.
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Kazhdan’s Property (T)

G locally compact group

π : G → U(H) unitary representation of G on Hilbert space H.

Definition
Let ε > 0 and K ⊂ G be compact. A unit vector v ∈ H is
(ε,K )–invariant if ∀g ∈ K

||π(g)v − v || < ε.

The representation π almost has invariant vectors if for all (ε,K ),
there exists an (ε,K )–invariant unit vector.

Definition
G has Kazhdan’s Property (T) if any unitary representation of G
which almost has invariant vectors has nontrivial invariant vectors.



Γ has (T) =⇒ Γ is finitely generated

Definition
G has Kazhdan’s Property (T) if any unitary representation of G
which almost has invariant vectors has nontrivial invariant vectors.

Theorem (Kazhdan 1967)

A discrete group Γ with Property (T) is finitely generated.

Proof.
Enumerate Γ = {γi} and let Γn = 〈γ1, . . . , γn〉.

Let πn be rep of Γ on L2(Γ/Γn) induced by trivial rep of Γn.
Then πn contains unit vector χeΓn invariant under γ1, . . . , γn.

Hence π := ⊕πn almost has invariant vectors.

Since Γ has (T), π has a nontrivial invariant vector f ∈ ⊕L2(Γ/Γn).

Project f to each factor. Projections are invariant, and for some n
nontrivial. So for some n, πn has nontrivial invariant vector fn.

Thus Γ/Γn is finite, so Γ is finitely generated.
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Lattices in exotic groups

An “exotic group” is a locally compact group which is not a Lie
group.

What about lattices in exotic groups?

1. Tree lattices

2. Lattices for polygonal complexes
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Automorphism groups of trees

T locally finite tree e.g. T3 the 3–regular tree

Equip G = Aut(T ) with compact-open topology.

Then G is locally compact group.

G nondiscrete ⇐⇒ ∃ {gn} ⊂ G\{1} s.t. gn fixes BallT (v0, n).

Example
G = Aut(T3) is nondiscrete locally compact group.
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Motivation

! Study real Lie groups and their lattices via action on
symmetric space
e.g. upper half-plane is symmetric space for SL(2,R)

! Study “p–adic” Lie groups and their lattices via action on
building
e.g. Tq+1 is building for SL(2,Fq((t−1)))
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Lattices in Aut(T )

T locally finite tree, G = Aut(T ) compact-open topology
Γ < G is discrete ⇐⇒ Γ ! T with finite stabilisers.

Theorem (Serre)

Can normalise Haar measure µ on G so that ∀ discrete Γ < G

µ(G/Γ) =
∑

v∈Vert(T/Γ)

1

|StabΓ(ṽ)|
≤ ∞

Moreover Γ uniform ⇐⇒ the graph T/Γ is compact (finite).

So Γ < G is

! uniform lattice ⇐⇒ Γ ! T with finite stabilisers and finite
quotient

! nonuniform lattice ⇐⇒ Γ ! T with finite stabilisers and
infinite quotient, so that series above converges



Lattices in Aut(T )

T locally finite tree, G = Aut(T ) compact-open topology
Γ < G is discrete ⇐⇒ Γ ! T with finite stabilisers.

Theorem (Serre)

Can normalise Haar measure µ on G so that ∀ discrete Γ < G

µ(G/Γ) =
∑

v∈Vert(T/Γ)

1

|StabΓ(ṽ)|
≤ ∞

Moreover Γ uniform ⇐⇒ the graph T/Γ is compact (finite).

Applies to all locally compact G acting cocompactly on locally
finite tree
e.g. G = SL2(Fq((t−1))) and its building Tq+1
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Examples of tree lattices

Example
Uniform lattice in G = Aut(T3):

Γ < G which acts with finite stabilisers and finite quotient

Γ = π1(graph of groups) ∼= C3 ∗ C3

C3 C3

1

1



Examples of tree lattices

Example
Uniform lattice in G = Aut(T3):

Γ < G which acts with finite stabilisers and finite quotient

Γ = π1(graph of groups) ∼= C3 ∗ C3

µ(G/Γ) = 1
3 + 1

3 = 2
3

C3 C3

1

1



Examples of tree lattices

Example
Nonuniform lattice in G = Aut(T3):

Γ < G which acts with finite stabilisers and infinite quotient so that

µ(G/Γ) =
∑ 1

|StabΓ(ṽ)|
< ∞



Examples of tree lattices

Example
Nonuniform lattice in G = Aut(T3):

Γ < G which acts with finite stabilisers and infinite quotient so that

µ(G/Γ) =
∑ 1

|StabΓ(ṽ)|
< ∞

1 2
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Examples of tree lattices

Example
Nonuniform lattice in G = Aut(T3):

Γ < G which acts with finite stabilisers and infinite quotient so that

µ(G/Γ) =
∑ 1

|StabΓ(ṽ)|
< ∞

Γ = π1(graph of groups) ∼= C3 ∗ (· · · )

1 2

3 2 22

22

23

23

24

24

25

1



Examples of tree lattices

Example
Nonuniform lattice in G = Aut(T3):

Γ < G which acts with finite stabilisers and infinite quotient so that

µ(G/Γ) =
∑ 1

|StabΓ(ṽ)|
< ∞

Γ = π1(graph of groups) ∼= C3 ∗ (· · · )

µ(G/Γ) = 1
3 + 1

2 + 1
22 +

1
23 + · · · < ∞

1 2

3 2 22

22

23

23

24

24

25

1



Finite generation of tree lattices

A uniform tree lattice is always finite generated (fundamental
group of finite graph of finite groups).



Finite generation of tree lattices

A uniform tree lattice is always finite generated (fundamental
group of finite graph of finite groups).

But:

Theorem (Serre, Bass)

Let Γ < Aut(T ) be a nonuniform tree lattice. Then Γ is not
finitely generated.

Corollary
SL2(Fq[t]) is not finitely generated.

1 2

3 2 22

22

23

23

24

24

25

1
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A polygonal complex is a CW–complex obtained by gluing together
convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold:
S2, E2 or H2.
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Polygonal complexes

A polygonal complex is a CW–complex obtained by gluing together
convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold:
S2, E2 or H2.

Examples
Tessellations of hyperbolic plane
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Product of trees
T3 × T3 product of trees

This is the building for SL2(F2((t)))× SL2(F2((t−1))).
Apartments are:



Buildings

Building for SL(3,Fq((t−1))) has apartments



Links

X polygonal complex
v vertex of X

The link of v in X is the graph L = Lk(v ,X ) with

! Vert(L) ↔ edges of X containing v

! Edge(L) ↔ faces of X containing v

! Vertices adjacent in L ⇐⇒ corresp. edges of X share a face
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Examples of links

The link of v in X is the graph L = Lk(v ,X ) with

! Vert(L) ↔ edges of X containing v

! Edge(L) ↔ faces of X containing v

! Vertices adjacent in L ⇐⇒ corresp. edges of X share a face

Example
Product of trees T3 × T3



Examples of links

Product of trees T3 × T3

Link is complete bipartite graph K3,3



Examples of links

Building for SL(3,F2((t−1))) has apartments

and links



(k , L)–complexes

Let k ≥ 3 and let L be a graph. A (k , L)–complex is a polygonal
complex such that

! all faces are k–gons

! all vertex links are L



(k , L)–complexes

Let k ≥ 3 and let L be a graph. A (k , L)–complex is a polygonal
complex such that

! all faces are k–gons

! all vertex links are L

Examples

1. Product of trees T3 × T3 is a (4,K3,3)–complex.

2. Building for SL3(F2((t−1))) is a (3, L)–complex where L is



Bourdon’s building Ip,q

Ip,q is a (p,Kq,q)–complex such that:

! all faces are regular right-angled hyperbolic p–gons

! all vertex links are Kq,q

Hyperbolic version of product of trees



Bourdon’s building

I6,2: hexagons, links K2,2



Bourdon’s building

I6,3: hexagons, links K3,3



Bourdon’s building Ip,q

! Hyperbolic building, right-angled building

! Building for certain Kac–Moody groups over finite fields



A (k , L)–complex which is not a building

Theorem (Swia̧tkowski, 1999)

For k ≥ 4, there exists a unique simply-connected (k , L)–complex
where L is Petersen graph

or any s–arc regular connected trivalent graph, s ≥ 3.



Motivation

Theorem (Tits)

Let G be higher-rank “p-adic Lie group”
e.g. G = SL(3,Qp), SL(3,Fq((t−1))).

Let X be building for G.

Then G is finite index or cocompact in Aut(X ).



Lattices for polygonal complexes

X locally finite polygonal complex
G locally compact group acting cocompactly on X

Lattices in G characterised same way as tree lattices: Γ < G is

! uniform lattice ⇐⇒ Γ ! X with finite stabilisers and finite
quotient

! nonuniform lattice ⇐⇒ Γ ! X with finite stabilisers and
infinite quotient, so that

µ(G/Γ) =
∑

v∈X/Γ

1

|StabΓ(ṽ)|
< ∞



Finite generation of lattices for polygonal complexes

G has Kazhdan’s Property (T)

=⇒ any lattice Γ < G is finitely generated



Finite generation of lattices for polygonal complexes

G has Kazhdan’s Property (T)

=⇒ any lattice Γ < G is finitely generated

Theorem (Ballmann–Swia̧tkowski,
Cartwright–Mantero–Steger–Zappa, Zuk 1990s)

Let L be a graph satisfying a certain spectral condition. Let X be
a locally finite, simply-connected (3, L)–complex.
e.g. X = building for SL3(Fq(((t−1))).
Then any locally compact group G acting cocompactly on X has
Kazhdan’s Property (T).



Finite generation of lattices for polygonal complexes

If G does not have Kazhdan’s Property (T), lattices Γ < G may or
may not be finitely generated.

e.g. all uniform tree lattices are finitely generated, all nonuniform
tree lattices are not finitely generated.



Finite generation of lattices for polygonal complexes

If G does not have Kazhdan’s Property (T), lattices Γ < G may or
may not be finitely generated.

e.g. all uniform tree lattices are finitely generated, all nonuniform
tree lattices are not finitely generated.

Theorem (Ballmann–Swia̧tkowski 1997)

Let k ≥ 4 and let L be a graph of girth ≥ 4. Let X be a locally
finite, simply-connected (k , L)–complex. Then a locally compact
group G acting cocompactly on X does not have Kazhdan’s
Property (T).

Examples
Products of trees, Bourdon’s building, (k , L)–complexes with
Petersen graph links . . .



Irreducible lattices in products

Definition
Let G1 and G2 be locally compact groups. Let G = G1 × G2.
A lattice Γ < G is irreducible if it has dense projections to both G1

and G2.

Examples

1. Γ = SL2(Fq[t, t−1]) is an irreducible lattice in

G = SL2(Fq((t)))× SL2(Fq((t
−1)))

G has building the product of trees Tq+1 × Tq+1



Irreducible lattices in products

Definition
Let G1 and G2 be locally compact groups. Let G = G1 × G2. A
lattice Γ < G is irreducible if it has dense projections to both G1

and G2.

Examples

1. Γ = SL2(Fq[t, t−1]) is an irreducible lattice in

G = SL2(Fq((t)))× SL2(Fq((t
−1)))

G has building the product of trees Tq+1 × Tq+1

2. Kac–Moody groups over finite fields are irreducible lattices for
product of twin buildings.



Irreducible lattices in products

Definition
Let G1 and G2 be locally compact groups. Let G = G1 × G2. A
lattice Γ < G is irreducible if it has dense projections to both G1

and G2.

Examples

1. Γ = SL2(Fq[t, t−1]) in G = SL2(Fq((t)))× SL2(Fq((t−1))).

2. Kac–Moody groups over finite fields.

Theorem (Raghunathan 1989)

For i = 1, 2, let Gi be a “p-adic Lie group” whose building is a
locally finite regular or biregular tree. Then any irreducible lattice
in G = G1 × G2 is finitely generated.

Corollary
SL2(Fq[t, t−1]) is finitely generated.



Irreducible lattices in products

Definition
Let G1 and G2 be locally compact groups. Let G = G1 × G2. A
lattice Γ < G is irreducible if it has dense projections to both G1

and G2.

Theorem (Raghunathan 1989)

For i = 1, 2, let Gi be a “p-adic Lie group” whose building is a
locally finite regular or biregular tree. Then any irreducible lattice
in G = G1 × G2 is finitely generated.

Question
Let G1 and G2 be any locally compact groups which act
distance-transitively on locally finite regular or biregular trees. Is
any irreducible lattice in G = G1 × G2 finitely generated?



Nonuniform lattices for right-angled buildings

Examples
Right-angled buildings include products of trees, Bourdon’s
building, . . .



Nonuniform lattices for right-angled buildings

Examples
Right-angled buildings include products of trees, Bourdon’s
building, . . .

Definition
Γ ! X has a strict fundamental domain if there is a subcomplex
Y ⊂ X containing exactly one point from each Γ–orbit.

Theorem (T–Wortman 2010)

Let G be a locally compact group acting cocompactly on a locally
finite right-angled building X . Let Γ be a nonuniform lattice in G.
If Γ has a strict fundamental domain, then Γ is not finitely
generated.
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Definition
Γ ! X has a strict fundamental domain if there is a subcomplex
Y ⊂ X containing exactly one point from each Γ–orbit.

Theorem (T–Wortman 2010)

Let G be a locally compact group acting cocompactly on a locally
finite right-angled building X . Let Γ be a nonuniform lattice in G.
If Γ has a strict fundamental domain, then Γ is not finitely
generated.

Proof uses facts about buildings and topological criterion:
Γ is finitely generated ⇐⇒ ∃ r > 0 such that r–neighbourhood of
a Γ–orbit is connected.



Nonuniform lattices for right-angled buildings

Definition
Γ ! X has a strict fundamental domain if there is a subcomplex
Y ⊂ X containing exactly one point from each Γ–orbit.

Theorem (T–Wortman 2010)

Let G be a locally compact group acting cocompactly on a locally
finite right-angled building X . Let Γ be a nonuniform lattice in G.
If Γ has a strict fundamental domain, then Γ is not finitely
generated.

Proof uses facts about buildings and topological criterion:
Γ is finitely generated ⇐⇒ ∃ r > 0 such that r–neighbourhood of
a Γ–orbit is connected.

Question
If X is “negatively curved” (e.g. Bourdon’s building), is every
nonuniform lattice not finitely generated?



Nonuniform lattices for other (k , L)–complexes

Partial Result (T 2007)

Let k ≥ 4 and let L be the Petersen graph. Let X be the unique
simply-connected (k , L)–complex. If k has a prime divisor less than
11, then G = Aut(X ) admits a nonuniform lattice Γ, and Γ is not
finitely generated.



Nonuniform lattices for other (k , L)–complexes

Partial Result (T 2007)

Let k ≥ 4 and let L be the Petersen graph. Let X be the unique
simply-connected (k , L)–complex. If k has a prime divisor less than
11, then G = Aut(X ) admits a nonuniform lattice Γ, and Γ is not
finitely generated.

Questions
Do nonuniform lattices exist for other k?
Are all nonuniform lattices not finitely generated?
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