Lattices in exotic groups

Anne Thomas

School of Mathematics and Statistics
University of Sydney

School of Mathematical Sciences Colloquium
University of Adelaide
18 March 2011

Outline

1. Background: locally compact groups and lattices
2. Question: finite generation of lattices
3. Lattices in Lie groups
4. Lattices in exotic groups

Topological groups

A topological group is a group G with

- a (Hausdorff) topology, such that
- group operations are continuous.

That is, G has compatible topological and algebraic structures.

Locally compact groups

A locally compact group is a topological group G with

- a locally compact (Hausdorff) topology, such that
- group operations are continuous.

Locally compact groups

A locally compact group is a topological group G with

- a locally compact (Hausdorff) topology, such that
- group operations are continuous.

Examples

1. $G=\left(\mathbb{R}^{n},+\right)$

Locally compact groups

A locally compact group is a topological group G with

- a locally compact (Hausdorff) topology, such that
- group operations are continuous.

Examples

1. $G=\left(\mathbb{R}^{n},+\right)$
2. $G=S L(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c=1\right\}$

Haar measure

G locally compact group

Theorem (Haar, Weil 1930s)
\exists countably additive measure μ on the Borel subsets of G s.t.

- μ is left-invariant: $\forall g \in G, \forall$ Borel sets E

$$
\mu(g E)=\mu(E)
$$

Haar measure

G locally compact group

Theorem (Haar, Weil 1930s)
\exists countably additive measure μ on the Borel subsets of G s.t.

- μ is left-invariant: $\forall g \in G, \forall$ Borel sets E

$$
\mu(g E)=\mu(E)
$$

- $\mu(K)<\infty$ for each compact $K \subset G$

Haar measure

G locally compact group

Theorem (Haar, Weil 1930s)
\exists countably additive measure μ on the Borel subsets of G s.t.

- μ is left-invariant: $\forall g \in G, \forall$ Borel sets E

$$
\mu(g E)=\mu(E)
$$

- $\mu(K)<\infty$ for each compact $K \subset G$
- every Borel set is outer regular, every open set is inner regular

Haar measure

G locally compact group

Theorem (Haar, Weil 1930s)
\exists countably additive measure μ on the Borel subsets of G s.t.

- μ is left-invariant: $\forall g \in G, \forall$ Borel sets E

$$
\mu(g E)=\mu(E)
$$

- $\mu(K)<\infty$ for each compact $K \subset G$
- every Borel set is outer regular, every open set is inner regular Moreover μ is unique up to positive scalar multiplication.

Haar measure

G locally compact group

Theorem (Haar, Weil 1930s)
\exists countably additive measure μ on the Borel subsets of G s.t.

- μ is left-invariant: $\forall g \in G, \forall$ Borel sets E

$$
\mu(g E)=\mu(E)
$$

- $\mu(K)<\infty$ for each compact $K \subset G$
- every Borel set is outer regular, every open set is inner regular Moreover μ is unique up to positive scalar multiplication.
μ is called a left Haar measure.

Haar measure

G locally compact group
Theorem (Haar, Weil 1930s)
\exists countably additive measure μ on the Borel subsets of G s.t.

- μ is left-invariant: $\forall g \in G, \forall$ Borel sets E

$$
\mu(g E)=\mu(E)
$$

- $\mu(K)<\infty$ for each compact $K \subset G$
- every Borel set is outer regular, every open set is inner regular Moreover μ is unique up to positive scalar multiplication. μ is called a left Haar measure.

Locally compact groups have compatible algebraic, topological and analytic structures.

Examples of Haar measure

Theorem (Haar, Weil 1930s)
A locally compact group G has a countably additive measure μ s.t.

- μ is left-invariant
- $\mu(K)<\infty$ for each compact $K \subset G$
- every Borel set is outer regular, every open set is inner regular

Moreover μ is unique up to positive scalar multiplication.

Examples

1. Lebesgue measure on $G=\left(\mathbb{R}^{n},+\right)$

Haar measure

Examples

1. Lebesgue measure on $G=\left(\mathbb{R}^{n},+\right)$
2. Compute Haar measure on $G=S L(2, \mathbb{R})$ using Iwasawa decomposition

$$
g=k a n
$$

where $k \in S O(2, \mathbb{R}), a=\left(\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right), n=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$.

Haar measure

Examples

1. Lebesgue measure on $G=\left(\mathbb{R}^{n},+\right)$
2. $G=S L(2, \mathbb{R})$ acts on upper half-plane

$$
\mathcal{U}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

by Möbius transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=\frac{a z+b}{c z+d}$

Haar measure

Examples

1. Lebesgue measure on $G=\left(\mathbb{R}^{n},+\right)$
2. $G=S L(2, \mathbb{R})$ acts on upper half-plane

$$
\mathcal{U}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

by Möbius transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=\frac{a z+b}{c z+d}$
Action is homogeneous, by isometries w.r.t. hyperbolic metric.

Haar measure

G locally compact group, Haar measure μ

Examples

1. Lebesgue measure on $G=\left(\mathbb{R}^{n},+\right)$
2. $G=S L(2, \mathbb{R})$ acts on upper half-plane

$$
\mathcal{U}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

by Möbius transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=\frac{a z+b}{c z+d}$
Action is homogeneous, by isometries w.r.t. hyperbolic metric.
Stabiliser of i is maximal compact $K=S O(2, \mathbb{R})$.

Haar measure

G locally compact group, Haar measure μ

Examples

1. Lebesgue measure on $G=\left(\mathbb{R}^{n},+\right)$
2. $G=S L(2, \mathbb{R})$ acts on upper half-plane

$$
\mathcal{U}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

by Möbius transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=\frac{a z+b}{c z+d}$
Action is homogeneous, by isometries w.r.t. hyperbolic metric.
Stabiliser of i is maximal compact $K=S O(2, \mathbb{R})$.
Normalise Haar measure μ to be compatible with this action.

Lattices

G locally compact group, Haar measure μ
A subgroup $\Gamma<G$ is a lattice if

- Γ is discrete
- G / Γ has finite left-invariant measure.

Lattices

G locally compact group, Haar measure μ
A subgroup $\Gamma<G$ is a lattice if

- Γ is discrete
- G / Γ has finite left-invariant measure. By abuse of notation write $\mu(G / \Gamma)<\infty$.

Lattices

G locally compact group, Haar measure μ
A subgroup $\Gamma<G$ is a lattice if

- Γ is discrete
- $\mu(G / \Gamma)<\infty$.

A lattice $\Gamma<G$ is

- uniform (or cocompact) if G / Γ is compact
- otherwise, nonuniform (or noncocompact).

Example of a uniform lattice

Example
$\mathbb{Z}^{n}<\mathbb{R}^{n}$ is discrete

Example of a uniform lattice

Example
$\mathbb{Z}^{n}<\mathbb{R}^{n}$ is discrete

$\mathbb{R}^{n} / \mathbb{Z}^{n}$ is n-torus, has finite Lebesgue measure

Example of a uniform lattice

Example
$\mathbb{Z}^{n}<\mathbb{R}^{n}$ is discrete

$\mathbb{R}^{n} / \mathbb{Z}^{n}$ is n-torus, has finite Lebesgue measure, is compact, so \mathbb{Z}^{n} is uniform lattice in \mathbb{R}^{n}

Example of a nonuniform lattice

Example

$S L(2, \mathbb{Z})<S L(2, \mathbb{R})$ is discrete

Example of a nonuniform lattice

Example
$S L(2, \mathbb{Z})<S L(2, \mathbb{R})$ is discrete
Action of $\Gamma=S L(2, \mathbb{Z})$ on upper half-plane \mathcal{U} induces tessellation

Example of a nonuniform lattice

Example
$S L(2, \mathbb{Z})<S L(2, \mathbb{R})$ is discrete
Action of $\Gamma=S L(2, \mathbb{Z})$ on upper half-plane \mathcal{U} induces tessellation

Haar measure μ on $G=S L(2, \mathbb{R})$ is normalised so that

$$
\mu(G / \Gamma)=\text { area of fundamental domain }=\frac{\pi}{3}
$$

Example of a nonuniform lattice

Example
$S L(2, \mathbb{Z})<S L(2, \mathbb{R})$ is discrete

$\mu(G / \Gamma)=$ area of fundamental domain $=\frac{\pi}{3}$
Non-compact fundamental domain $\leftrightarrow S L(2, \mathbb{Z})$ is nonuniform lattice in $S L(2, \mathbb{R})$.

Question

Given a locally compact group G, are lattices in G finitely generated?

Examples of finitely generated lattices

Examples

1. Every lattice $\Gamma<\mathbb{R}^{n}$ is isomorphic to \mathbb{Z}^{n}, hence is finitely generated.

Examples of finitely generated lattices

Examples

1. Every lattice $\Gamma<\mathbb{R}^{n}$ is finitely generated.
2. $S L(2, \mathbb{Z})<S L(2, \mathbb{R})$ is finitely generated by

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(Euclidean algorithm)

Examples of finitely generated lattices

Examples

1. Every lattice $\Gamma<\mathbb{R}^{n}$ is finitely generated.
2. $S L(2, \mathbb{Z})<S L(2, \mathbb{R})$ is finitely generated by

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Geometrically, fundamental domain is finite-sided:

Lattices in Lie groups

$G=S L(2, \mathbb{R})$ is a Lie group, $\Gamma=S L(2, \mathbb{Z})$ is finitely generated.
What about lattices in other Lie groups?

Lattices in Lie groups

$G=S L(2, \mathbb{R})$ is a Lie group, $\Gamma=S L(2, \mathbb{Z})$ is finitely generated.
What about lattices in other Lie groups?

1. Lie groups as locally compact groups
2. Examples of lattices in Lie groups
3. Finite generation of lattices in Lie groups

Lie groups as locally compact groups

Examples

1. $G=S L(n, \mathbb{R})$ is a real Lie group, hence a connected locally compact group.

Lie groups as locally compact groups

Examples

1. $G=S L(n, \mathbb{R})$ is a real Lie group, hence a connected locally compact group.
2. "p-adic Lie groups" such as $G=S L\left(n, \mathbb{Q}_{p}\right)$ or $G=S L\left(n, \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ are locally compact but totally disconnected.

Lattices in real and "p-adic" Lie groups

Examples

1. $\Gamma=S L(n, \mathbb{Z})$ is a nonuniform lattice in $G=S L(n, \mathbb{R})$.

Lattices in real and "p-adic" Lie groups

Examples

1. $\Gamma=S L(n, \mathbb{Z})$ is a nonuniform lattice in $G=S L(n, \mathbb{R})$.
2. $G=S L\left(n, \mathbb{Q}_{p}\right)$ has uniform lattices but no nonuniform lattices.

Lattices in real and "p-adic" Lie groups

Examples

1. $\Gamma=S L(n, \mathbb{Z})$ is a nonuniform lattice in $G=S L(n, \mathbb{R})$.
2. $G=S L\left(n, \mathbb{Q}_{p}\right)$ has uniform lattices but no nonuniform lattices.
3. $\Gamma=S L\left(n, \mathbb{F}_{q}[t]\right)$ is a nonuniform lattice in $G=S L\left(n, \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$.

Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)
Let G be a higher-rank real or "p-adic" Lie group. Then every lattice $\Gamma<G$ is finitely generated.

Examples
For $n \geq 3, S L(n, \mathbb{Z})$ and $S L\left(n, \mathbb{F}_{q}[t]\right)$ are finitely generated.

Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)
Let G be a higher-rank real or " p-adic" Lie group. Then every lattice $\Gamma<G$ is finitely generated.

Examples
For $n \geq 3, S L(n, \mathbb{Z})$ and $S L\left(n, \mathbb{F}_{q}[t]\right)$ are finitely generated.
Proof is via representation-theoretic property, Property (T).

Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)
Let G be a higher-rank real or " p-adic" Lie group. Then every lattice $\Gamma<G$ is finitely generated.

Examples
For $n \geq 3, S L(n, \mathbb{Z})$ and $S L\left(n, \mathbb{F}_{q}[t]\right)$ are finitely generated.
Proof is via representation-theoretic property, Property (T), which played vital role in many later rigidity results e.g.
Theorem (special case of Margulis Superrigidity, 1970s) If Γ a lattice in G as above, then any linear representation of Γ extends to the whole of G.

Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)
Let G be a higher-rank real or " p-adic" Lie group. Then every lattice $\Gamma<G$ is finitely generated.

Proof is via representation-theoretic property, Property (T):
G has $(T) \Longrightarrow \Gamma$ has $(T) \Longrightarrow \Gamma$ is finitely generated

Finite generation for lattices in higher-rank Lie groups

Theorem (Kazhdan 1967)
Let G be a higher-rank real or " p-adic" Lie group. Then every lattice $\Gamma<G$ is finitely generated.

Proof is via representation-theoretic property, Property (T):

$$
G \text { has }(T) \Longrightarrow \Gamma \text { has }(T) \Longrightarrow \Gamma \text { is finitely generated }
$$

These implications hold for all locally compact groups G and all lattices $\Gamma<G$.

Kazhdan's Property (T)

G locally compact group
$\pi: G \rightarrow U(\mathcal{H})$ unitary representation of G on Hilbert space \mathcal{H}.
Definition
Let $\varepsilon>0$ and $K \subset G$ be compact. A unit vector $v \in \mathcal{H}$ is (ε, K)-invariant if $\forall g \in K$

$$
\|\pi(g) v-v\|<\varepsilon
$$

Kazhdan's Property (T)

G locally compact group
$\pi: G \rightarrow U(\mathcal{H})$ unitary representation of G on Hilbert space \mathcal{H}.
Definition
Let $\varepsilon>0$ and $K \subset G$ be compact. A unit vector $v \in \mathcal{H}$ is
(ε, K)-invariant if $\forall g \in K$

$$
\|\pi(g) v-v\|<\varepsilon
$$

The representation π almost has invariant vectors if for all (ε, K), there exists an (ε, K)-invariant unit vector.

Kazhdan's Property (T)

G locally compact group
$\pi: G \rightarrow U(\mathcal{H})$ unitary representation of G on Hilbert space \mathcal{H}.

Definition

Let $\varepsilon>0$ and $K \subset G$ be compact. A unit vector $v \in \mathcal{H}$ is (ε, K)-invariant if $\forall g \in K$

$$
\|\pi(g) v-v\|<\varepsilon
$$

The representation π almost has invariant vectors if for all (ε, K), there exists an (ε, K)-invariant unit vector.

Definition

G has Kazhdan's Property (T) if any unitary representation of G which almost has invariant vectors has nontrivial invariant vectors.

Γ has $(T) \Longrightarrow \Gamma$ is finitely generated

Definition

G has Kazhdan's Property (T) if any unitary representation of G which almost has invariant vectors has nontrivial invariant vectors.

Theorem (Kazhdan 1967)
A discrete group 「 with Property (T) is finitely generated.
Proof.
Enumerate $\boldsymbol{\Gamma}=\left\{\gamma_{i}\right\}$ and let $\Gamma_{n}=\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle$.
Let π_{n} be rep of Γ on $L^{2}\left(\Gamma / \Gamma_{n}\right)$ induced by trivial rep of Γ_{n}. Then π_{n} contains unit vector $\chi_{e \Gamma_{n}}$ invariant under $\gamma_{1}, \ldots, \gamma_{n}$. Hence $\pi:=\oplus \pi_{n}$ almost has invariant vectors.

Since Γ has (T), π has a nontrivial invariant vector $f \in \oplus L^{2}\left(\Gamma / \Gamma_{n}\right)$.
Project f to each factor. Projections are invariant, and for some n nontrivial. So for some n, π_{n} has nontrivial invariant vector f_{n}.

Thus Γ / Γ_{n} is finite, so Γ is finitely generated.

Lattices in exotic groups

An "exotic group" is a locally compact group which is not a Lie group.

What about lattices in exotic groups?

Lattices in exotic groups

An "exotic group" is a locally compact group which is not a Lie group.

What about lattices in exotic groups?

1. Tree lattices
2. Lattices for polygonal complexes

Automorphism groups of trees

T locally finite tree e.g. T_{3} the 3-regular tree

Automorphism groups of trees

T locally finite tree e.g. T_{3} the 3-regular tree

$G=\operatorname{Aut}(T)$ automorphism group of T

Automorphism groups of trees

T locally finite tree e.g. T_{3} the 3-regular tree

Equip $G=\operatorname{Aut}(T)$ with compact-open topology: fix basepoint $v_{0} \in T$, neighbourhood basis of 1_{G} is

$$
U_{n}=\left\{g \in G \mid g \text { fixes } \operatorname{Ball}_{T}\left(v_{0}, n\right)\right\} .
$$

Automorphism groups of trees

T locally finite tree e.g. T_{3} the 3-regular tree

Equip $G=\operatorname{Aut}(T)$ with compact-open topology: fix basepoint $v_{0} \in T$, neighbourhood basis of 1_{G} is

$$
U_{n}=\left\{g \in G \mid g \text { fixes } \operatorname{Ball}_{T}\left(v_{0}, n\right)\right\} .
$$

Then G is locally compact group.

Automorphism groups of trees

T locally finite tree e.g. T_{3} the 3-regular tree

Equip $G=\operatorname{Aut}(T)$ with compact-open topology.
Then G is locally compact group.
G nondiscrete $\Longleftrightarrow \exists\left\{g_{n}\right\} \subset G \backslash\{1\}$ s.t. g_{n} fixes $\operatorname{Ball}_{T}\left(v_{0}, n\right)$.

Automorphism groups of trees

T locally finite tree e.g. T_{3} the 3-regular tree

Equip $G=\operatorname{Aut}(T)$ with compact-open topology.
Then G is locally compact group.
G nondiscrete $\Longleftrightarrow \exists\left\{g_{n}\right\} \subset G \backslash\{1\}$ s.t. g_{n} fixes $\operatorname{Ball}_{T}\left(v_{0}, n\right)$.
Example
$G=\operatorname{Aut}\left(T_{3}\right)$ is nondiscrete locally compact group.

Motivation

- Study real Lie groups and their lattices via action on symmetric space
e.g. upper half-plane is symmetric space for $S L(2, \mathbb{R})$

Motivation

- Study real Lie groups and their lattices via action on symmetric space
e.g. upper half-plane is symmetric space for $S L(2, \mathbb{R})$
- Study "p-adic" Lie groups and their lattices via action on building
e.g. T_{q+1} is building for $S L\left(2, \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$

Lattices in $\operatorname{Aut}(T)$

T locally finite tree, $G=\operatorname{Aut}(T)$ compact-open topology $\Gamma<G$ is discrete $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers.

Lattices in $\operatorname{Aut}(T)$

T locally finite tree, $G=\operatorname{Aut}(T)$ compact-open topology
$\Gamma<G$ is discrete $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers.
Theorem (Serre)
Can normalise Haar measure μ on G so that \forall discrete $\Gamma<G$

$$
\mu(G / \Gamma)=\sum_{v \in \operatorname{Vert}(T / \Gamma)} \frac{1}{\left|\operatorname{Sta}_{\Gamma}(\tilde{v})\right|}
$$

Lattices in Aut (T)

T locally finite tree, $G=\operatorname{Aut}(T)$ compact-open topology
$\Gamma<G$ is discrete $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers.
Theorem (Serre)
Can normalise Haar measure μ on G so that \forall discrete $\Gamma<G$

$$
\mu(G / \Gamma)=\sum_{v \in \operatorname{Vert}(T / \Gamma)} \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|} \leq \infty
$$

Lattices in Aut (T)

T locally finite tree, $G=\operatorname{Aut}(T)$ compact-open topology
$\Gamma<G$ is discrete $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers.
Theorem (Serre)
Can normalise Haar measure μ on G so that \forall discrete $\Gamma<G$

$$
\mu(G / \Gamma)=\sum_{v \in \operatorname{Vert}(T / \Gamma)} \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|} \leq \infty
$$

Moreover Γ uniform \Longleftrightarrow the graph T / Γ is compact (finite).

Lattices in Aut (T)

T locally finite tree, $G=\operatorname{Aut}(T)$ compact-open topology
$\Gamma<G$ is discrete $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers.
Theorem (Serre)
Can normalise Haar measure μ on G so that \forall discrete $\Gamma<G$

$$
\mu(G / \Gamma)=\sum_{v \in \operatorname{Vert}(T / \Gamma)} \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|} \leq \infty
$$

Moreover Γ uniform \Longleftrightarrow the graph T / Γ is compact (finite).
So $\Gamma<G$ is

- uniform lattice $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers and finite quotient

Lattices in Aut (T)

T locally finite tree, $G=\operatorname{Aut}(T)$ compact-open topology
$\Gamma<G$ is discrete $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers.
Theorem (Serre)
Can normalise Haar measure μ on G so that \forall discrete $\Gamma<G$

$$
\mu(G / \Gamma)=\sum_{v \in \operatorname{Vert}(T / \Gamma)} \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|} \leq \infty
$$

Moreover Γ uniform \Longleftrightarrow the graph T / Γ is compact (finite).
So $\Gamma<G$ is

- uniform lattice $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers and finite quotient
\checkmark nonuniform lattice $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers and infinite quotient, so that series above converges

Lattices in Aut (T)

T locally finite tree, $G=\operatorname{Aut}(T)$ compact-open topology
$\Gamma<G$ is discrete $\Longleftrightarrow \Gamma \curvearrowright T$ with finite stabilisers.
Theorem (Serre)
Can normalise Haar measure μ on G so that \forall discrete $\Gamma<G$

$$
\mu(G / \Gamma)=\sum_{v \in \operatorname{Vert}(T / \Gamma)} \frac{1}{\left|\operatorname{Stab} b_{\Gamma}(\tilde{v})\right|} \leq \infty
$$

Moreover Γ uniform \Longleftrightarrow the graph T / Γ is compact (finite).

Applies to all locally compact G acting cocompactly on locally finite tree
e.g. $G=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ and its building T_{q+1}

Examples of tree lattices

Example

Uniform lattice Γ in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and finite quotient

Examples of tree lattices

Example
Uniform lattice in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and finite quotient

Examples of tree lattices

Example
Uniform lattice in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and finite quotient
$\Gamma=\pi_{1}($ graph of groups $) \cong C_{3} * C_{3}$

Examples of tree lattices

Example
Uniform lattice in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and finite quotient
$\Gamma=\pi_{1}($ graph of groups $) \cong C_{3} * C_{3}$
$\mu(G / \Gamma)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$

Examples of tree lattices

Example
Nonuniform lattice in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and infinite quotient so that

$$
\mu(G / \Gamma)=\sum \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|}<\infty
$$

Examples of tree lattices

Example
Nonuniform lattice in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and infinite quotient so that

$$
\mu(G / \Gamma)=\sum \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{V})\right|}<\infty
$$

Examples of tree lattices

Example

Nonuniform lattice in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and infinite quotient so that

$$
\begin{aligned}
\mu(G / \Gamma) & =\sum \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|}<\infty \\
\Gamma=\pi_{1}(\text { graph of groups }) & \cong C_{3} *(\cdots)
\end{aligned}
$$

Examples of tree lattices

Example

Nonuniform lattice in $G=\operatorname{Aut}\left(T_{3}\right)$:
$\Gamma<G$ which acts with finite stabilisers and infinite quotient so that

$$
\mu(G / \Gamma)=\sum \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|}<\infty
$$

$\Gamma=\pi_{1}($ graph of groups $) \cong C_{3} *(\cdots)$
$\mu(G / \Gamma)=\frac{1}{3}+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots<\infty$

Finite generation of tree lattices

A uniform tree lattice is always finite generated (fundamental group of finite graph of finite groups).

Finite generation of tree lattices

A uniform tree lattice is always finite generated (fundamental group of finite graph of finite groups).

But:
Theorem (Serre, Bass)
Let $\Gamma<\operatorname{Aut}(T)$ be a nonuniform tree lattice. Then Γ is not finitely generated.
Corollary
$S L_{2}\left(\mathbb{F}_{q}[t]\right)$ is not finitely generated.

Polygonal complexes

A polygonal complex is a CW-complex obtained by gluing together convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold: $\mathbb{S}^{2}, \mathbb{E}^{2}$ or \mathbb{H}^{2}.

Polygonal complexes

A polygonal complex is a CW-complex obtained by gluing together convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold: $\mathbb{S}^{2}, \mathbb{E}^{2}$ or \mathbb{H}^{2}.

Examples

Tessellations of sphere

Polygonal complexes

A polygonal complex is a CW-complex obtained by gluing together convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold: $\mathbb{S}^{2}, \mathbb{E}^{2}$ or \mathbb{H}^{2}.

Examples

Tessellations of Euclidean plane

Polygonal complexes

A polygonal complex is a CW-complex obtained by gluing together convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold: $\mathbb{S}^{2}, \mathbb{E}^{2}$ or \mathbb{H}^{2}.

Examples

Tessellations of Euclidean plane

Polygonal complexes

A polygonal complex is a CW-complex obtained by gluing together convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold: $\mathbb{S}^{2}, \mathbb{E}^{2}$ or \mathbb{H}^{2}.

Examples

Tessellations of hyperbolic plane

Polygonal complexes

A polygonal complex is a CW-complex obtained by gluing together convex polygons by isometries along their edges.

All polygons are from the same fixed constant curvature manifold: $\mathbb{S}^{2}, \mathbb{E}^{2}$ or \mathbb{H}^{2}.

Examples

Tessellations of hyperbolic plane

Product of trees

$T_{3} \times T_{3}$ product of trees

Product of trees

$T_{3} \times T_{3}$ product of trees

This is the building for $S L_{2}\left(\mathbb{F}_{2}((t))\right) \times S L_{2}\left(\mathbb{F}_{2}\left(\left(t^{-1}\right)\right)\right)$.

Product of trees

$T_{3} \times T_{3}$ product of trees

This is the building for $S L_{2}\left(\mathbb{F}_{2}((t))\right) \times S L_{2}\left(\mathbb{F}_{2}\left(\left(t^{-1}\right)\right)\right)$. Apartments are:

Buildings

Building for $S L\left(3, \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$ has apartments

Links

X polygonal complex
v vertex of X
The link of v in X is the graph $L=\operatorname{Lk}(v, X)$ with

- Vert $(L) \leftrightarrow$ edges of X containing v
- Edge $(L) \leftrightarrow$ faces of X containing v
- Vertices adjacent in $L \Longleftrightarrow$ corresp. edges of X share a face

Examples of links

The link of v in X is the graph $L=\operatorname{Lk}(v, X)$ with

- $\operatorname{Vert}(L) \leftrightarrow$ edges of X containing v
- Edge $(L) \leftrightarrow$ faces of X containing v
- Vertices adjacent in $L \Longleftrightarrow$ corresp. edges of X share a face

Example

Product of trees $T_{3} \times T_{3}$

Examples of links

The link of v in X is the graph $L=\operatorname{Lk}(v, X)$ with

- $\operatorname{Vert}(L) \leftrightarrow$ edges of X containing v
- Edge $(L) \leftrightarrow$ faces of X containing v
- Vertices adjacent in $L \Longleftrightarrow$ corresp. edges of X share a face

Example

Product of trees $T_{3} \times T_{3}$

Examples of links

Product of trees $T_{3} \times T_{3}$

Link is complete bipartite graph $K_{3,3}$

Examples of links

Building for $S L\left(3, \mathbb{F}_{2}\left(\left(t^{-1}\right)\right)\right)$ has apartments

and links

(k, L)-complexes

Let $k \geq 3$ and let L be a graph. A (k, L)-complex is a polygonal complex such that

- all faces are k-gons
- all vertex links are L

(k, L)-complexes

Let $k \geq 3$ and let L be a graph. A (k, L)-complex is a polygonal complex such that

- all faces are k-gons
- all vertex links are L

Examples

1. Product of trees $T_{3} \times T_{3}$ is a $\left(4, K_{3,3}\right)$-complex.
2. Building for $S L_{3}\left(\mathbb{F}_{2}\left(\left(t^{-1}\right)\right)\right)$ is a $(3, L)$-complex where L is

Bourdon's building $I_{p, q}$

$I_{p, q}$ is a $\left(p, K_{q, q}\right)$-complex such that:

- all faces are regular right-angled hyperbolic p-gons
- all vertex links are $K_{q, q}$

Hyperbolic version of product of trees

Bourdon's building

$I_{6,2}$: hexagons, links $K_{2,2}$

Bourdon's building

$I_{6,3}$: hexagons, links $K_{3,3}$

Bourdon's building $I_{p, q}$

- Hyperbolic building, right-angled building
- Building for certain Kac-Moody groups over finite fields

A (k, L)-complex which is not a building

Theorem (Swiątkowski, 1999)
For $k \geq 4$, there exists a unique simply-connected (k, L)-complex where L is Petersen graph

or any s-arc regular connected trivalent graph, $s \geq 3$.

Motivation

Theorem (Tits)
Let \mathcal{G} be higher-rank " p-adic Lie group" e.g. $\mathcal{G}=S L\left(3, \mathbb{Q}_{p}\right), S L\left(3, \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$.

Let X be building for \mathcal{G}.
Then \mathcal{G} is finite index or cocompact in $\operatorname{Aut}(X)$.

Lattices for polygonal complexes

X locally finite polygonal complex
G locally compact group acting cocompactly on X
Lattices in G characterised same way as tree lattices: $\Gamma<G$ is

- uniform lattice $\Longleftrightarrow \Gamma \curvearrowright X$ with finite stabilisers and finite quotient
- nonuniform lattice $\Longleftrightarrow \Gamma \curvearrowright X$ with finite stabilisers and infinite quotient, so that

$$
\mu(G / \Gamma)=\sum_{v \in X / \Gamma} \frac{1}{\left|\operatorname{Stab}_{\Gamma}(\tilde{v})\right|}<\infty
$$

Finite generation of lattices for polygonal complexes

G has Kazhdan's Property (T)
\Longrightarrow any lattice $\Gamma<G$ is finitely generated

Finite generation of lattices for polygonal complexes

G has Kazhdan's Property (T)
\Longrightarrow any lattice $\Gamma<G$ is finitely generated

Theorem (Ballmann-Swiątkowski, Cartwright-Mantero-Steger-Zappa, Zuk 1990s)
Let L be a graph satisfying a certain spectral condition. Let X be a locally finite, simply-connected $(3, L)$-complex.
e.g. $X=$ building for $S L_{3}\left(\mathbb{F}_{q}\left(\left(\left(t^{-1}\right)\right)\right)\right.$.

Then any locally compact group G acting cocompactly on X has Kazhdan's Property (T).

Finite generation of lattices for polygonal complexes

If G does not have Kazhdan's Property (T), lattices $\Gamma<G$ may or may not be finitely generated.
e.g. all uniform tree lattices are finitely generated, all nonuniform tree lattices are not finitely generated.

Finite generation of lattices for polygonal complexes

If G does not have Kazhdan's Property (T), lattices $\Gamma<G$ may or may not be finitely generated.
e.g. all uniform tree lattices are finitely generated, all nonuniform tree lattices are not finitely generated.

Theorem (Ballmann-Swiạtkowski 1997)
Let $k \geq 4$ and let L be a graph of girth ≥ 4. Let X be a locally finite, simply-connected (k, L)-complex. Then a locally compact group G acting cocompactly on X does not have Kazhdan's Property (T).

Examples

Products of trees, Bourdon's building, (k, L)-complexes with Petersen graph links ...

Irreducible lattices in products

Definition

Let G_{1} and G_{2} be locally compact groups. Let $G=G_{1} \times G_{2}$.
A lattice $\Gamma<G$ is irreducible if it has dense projections to both G_{1} and G_{2}.

Examples

1. $\Gamma=S L_{2}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$ is an irreducible lattice in

$$
G=S L_{2}\left(\mathbb{F}_{q}((t))\right) \times S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)
$$

G has building the product of trees $T_{q+1} \times T_{q+1}$

Irreducible lattices in products

Definition

Let G_{1} and G_{2} be locally compact groups. Let $G=G_{1} \times G_{2}$. A lattice $\Gamma<G$ is irreducible if it has dense projections to both G_{1} and G_{2}.

Examples

1. $\Gamma=S L_{2}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$ is an irreducible lattice in

$$
G=S L_{2}\left(\mathbb{F}_{q}((t))\right) \times S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)
$$

G has building the product of trees $T_{q+1} \times T_{q+1}$
2. Kac-Moody groups over finite fields are irreducible lattices for product of twin buildings.

Irreducible lattices in products

Definition

Let G_{1} and G_{2} be locally compact groups. Let $G=G_{1} \times G_{2}$. A lattice $\Gamma<G$ is irreducible if it has dense projections to both G_{1} and G_{2}.

Examples

1. $\Gamma=S L_{2}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$ in $G=S L_{2}\left(\mathbb{F}_{q}((t))\right) \times S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$.
2. Kac-Moody groups over finite fields.

Theorem (Raghunathan 1989)
For $i=1,2$, let G_{i} be a "p-adic Lie group" whose building is a locally finite regular or biregular tree. Then any irreducible lattice in $G=G_{1} \times G_{2}$ is finitely generated.

Corollary
$S L_{2}\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right)$ is finitely generated.

Irreducible lattices in products

Definition

Let G_{1} and G_{2} be locally compact groups. Let $G=G_{1} \times G_{2}$. A lattice $\Gamma<G$ is irreducible if it has dense projections to both G_{1} and G_{2}.

Theorem (Raghunathan 1989)
For $i=1,2$, let G_{i} be a "p-adic Lie group" whose building is a locally finite regular or biregular tree. Then any irreducible lattice in $G=G_{1} \times G_{2}$ is finitely generated.

Question
Let G_{1} and G_{2} be any locally compact groups which act distance-transitively on locally finite regular or biregular trees. Is any irreducible lattice in $G=G_{1} \times G_{2}$ finitely generated?

Nonuniform lattices for right-angled buildings

Examples

Right-angled buildings include products of trees, Bourdon's building,...

Nonuniform lattices for right-angled buildings

Examples

Right-angled buildings include products of trees, Bourdon's building, ...

Definition

$\Gamma \curvearrowright X$ has a strict fundamental domain if there is a subcomplex
$Y \subset X$ containing exactly one point from each 「-orbit.
Theorem (T-Wortman 2010)
Let G be a locally compact group acting cocompactly on a locally finite right-angled building X. Let Γ be a nonuniform lattice in G. If Γ has a strict fundamental domain, then Γ is not finitely generated.

Nonuniform lattices for right-angled buildings

Definition

$\Gamma \curvearrowright X$ has a strict fundamental domain if there is a subcomplex
$Y \subset X$ containing exactly one point from each 「-orbit.
Theorem (T-Wortman 2010)
Let G be a locally compact group acting cocompactly on a locally finite right-angled building X. Let Γ be a nonuniform lattice in G.
If Γ has a strict fundamental domain, then Γ is not finitely generated.

Proof uses facts about buildings and topological criterion:
Γ is finitely generated $\Longleftrightarrow \exists r>0$ such that r-neighbourhood of
a Γ-orbit is connected.

Nonuniform lattices for right-angled buildings

Definition

$\Gamma \curvearrowright X$ has a strict fundamental domain if there is a subcomplex
$Y \subset X$ containing exactly one point from each Γ-orbit.
Theorem (T-Wortman 2010)
Let G be a locally compact group acting cocompactly on a locally finite right-angled building X. Let Γ be a nonuniform lattice in G. If Γ has a strict fundamental domain, then Γ is not finitely generated.
Proof uses facts about buildings and topological criterion:
Γ is finitely generated $\Longleftrightarrow \exists r>0$ such that r-neighbourhood of a Γ-orbit is connected.

Question

If X is "negatively curved" (e.g. Bourdon's building), is every nonuniform lattice not finitely generated?

Nonuniform lattices for other (k, L)-complexes

Partial Result (T 2007)
Let $k \geq 4$ and let L be the Petersen graph. Let X be the unique simply-connected (k, L)-complex. If k has a prime divisor less than 11 , then $G=\operatorname{Aut}(X)$ admits a nonuniform lattice Γ, and Γ is not finitely generated.

Nonuniform lattices for other (k, L)-complexes

Partial Result (T 2007)

Let $k \geq 4$ and let L be the Petersen graph. Let X be the unique simply-connected (k, L)-complex. If k has a prime divisor less than 11 , then $G=\operatorname{Aut}(X)$ admits a nonuniform lattice Γ, and Γ is not finitely generated.

Questions

Do nonuniform lattices exist for other k ?
Are all nonuniform lattices not finitely generated?

